Publications by Author: Matthew Adiletta

2023
Matthew Adiletta, Jesmin Jahan Tithi, Emmanouil-Ioannis Farsarakis, Gerasimos Gerogiannis, Robert Adolf, Robert Benke, Sidharth Kashyap, Samuel Hsia, Kartik Lakhotia, Fabrizio Petrini, Gu-Yeon Wei, and David Brooks. 4/24/2023. “Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA.” In IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). Raleigh, North Carolina.Abstract

Large-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel's Programmable Integrated Unified Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark (OGB) datasets to determine the viability of PIUMA as a potential solution to GCN scalability.

First, the extent of sparse matrix dense matrix multiplication~(SpMM) as a performance driver for GCN on CPU and GPU is explored, offering a methodology for predicting GCN behavior as a function of dataset characteristics. Second, an SpMM kernel optimized for PIUMA is described and investigated for sensitivity to system parameters including memory bandwidth, latency, and thread count. SpMM scalability on PIUMA is demonstrated, while the scalability limitations of a Xeon-optimized SpMM implementation are discussed. Finally, GCN performance is compared on PIUMA versus a Xeon CPU system and Ampere GPU system, showing impressive results on PIUMA for large-scale datasets.

ispass_gnn_characterization_on_piuma.pdf
2022
Matthew Adiletta, David Brooks, and Gu-Yeon Wei. 11/28/2022. Architectural Implications of Embedding Dimension During GCN on CPU and GPU. Cambridge: Harvard University.Abstract
Graph Neural Networks (GNNs) are a class of neural networks designed to extract information from the graphical structure of data. Graph Convolutional Networks (GCNs) are a widely used type of GNN for  transductive graph learning problems which apply convolution to learn information from graphs. GCN is a challenging algorithm from an architecture perspective due to inherent sparsity, low data reuse, and massive memory capacity requirements. Traditional neural algorithms exploit the high compute capacity of GPUs to achieve high performance for both inference and training. The architectural decision to use a GPU for GCN inference is a question explored in this work. GCN on both CPU and GPU was characterized in order to better understand the implications of graph size, embedding dimension, and sampling on performance. 
Architectural Implications of Embedding Dimension During GCN on CPU and GPU