Characterizing the Scalability of Graph
Convolutional Networks on Intel® PIUMA

Matthew Joseph Adilettal2, Jesmin Jahan Tithi2, Emmanouil-Ioannis Farsarakis2, Gerasimos Gerogiannis
Robert Adolf"?, Robert Benke?, Sidharth Kashyap?

2,3

, Samuel Hsia!, Kartik Lakhotia2, Fabrizio Petrini2

Gu-Yeon Weil, David Brooks!

'Harvard University %Intel Corporation

Abstract—Large-scale Graph Convolutional Network (GCN)
inference on traditional CPU/GPU systems is challenging due
to a large memory footprint, sparse computational patterns,
and irregular memory accesses with poor locality. Intel’s Pro-
grammable Integrated Unified Memory Architecture (PIUMA) is
designed to address these challenges for graph analytics. In this
paper, a detailed characterization of GCNs is presented using
the Open-Graph Benchmark (OGB) datasets to determine the
viability of PIUMA as a potential solution to GCN scalability.

First, the extent of sparse matrix dense matrix multiplica-
tion (SpMM) as a performance driver for GCN on CPU and GPU
is explored, offering a methodology for predicting GCN behavior
as a function of dataset characteristics. Second, an SpMM kernel
optimized for PIUMA is described and investigated for sensitivity
to system parameters including memory bandwidth, latency, and
thread count. SpMM scalability on PIUMA is demonstrated,
while the scalability limitations of a Xeon-optimized SpMM
implementation are discussed. Finally, GCN performance is
compared on PIUMA versus a Xeon CPU system and Ampere
GPU system, showing impressive results on PIUMA for large-
scale datasets.

Index Terms—Graph Convolution, SpMM, Memory Band-
width Scaling, Latency Sensitivity, PIUMA, GCN

I. INTRODUCTION

Graph Neural Networks (GNNs) are emerging as a powerful
tool for graph analysis and learning. The graphical structure
native to particular datasets can be leveraged by GNNs to im-
prove task accuracy. GNNs have demonstrated success across a
wide range of application domains including recommendation,
health and drug discovery, and quantum chemistry [1]-[3]

Graph Convolutional Networks (GCN) [4] are a class of
GNNs that generalize convolutions over graph-structured data.
The fundamental GCN algorithm can be broken down into
two phases — (a) aggregation and (b) update. The com-
putation during the aggregation phase largely depends on
the neighborhood structure (which influences sparsity) of the
graph, while the computation during the update involves dense
matrix multiplication. The key kernel of the GCN algorithm
described in [4] is SpMM, introducing sparse computation,
unlike conventional Convolutional Neural Networks (CNNs)

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the author and should not be interpreted as repre-
senting the official views or policies of the Department of Defense or the
U.S. Government. Distribution Statement A — Approved for Public Release,
Distribution Unlimited.

3University of Illinois at Urbana-Champaign

which are mostly dense. CPU and GPU systems are well suited
for dense computation; however, they do not scale well for
sparse computation due to memory bandwidth and memory
capacity constraints. This motivates the need for fundamentally
different computer hardware and optimization techniques for
large-scale GCN inference.

Intel’s Programmable Integrated Unified Memory Architec-
ture (PIUMA) system was recently proposed for scalable graph
analytics using massive multi-threading, efficient remote atom-
ics, extreme capacity and memory bandwidth in a distributed
global address space [5]. Irregular memory access patterns,
low arithmetic intensity kernels, and large memory footprints
are key areas addressed by PIUMA, making it an attractive
platform for GCN inference at scale.

In this work, GCN was characterized on the PIUMA sys-
tem, demonstrating how PIUMA overcomes the performance
bottlenecks of conventional shared-memory systems to enable
GCNs at scale. The OGB datasets, one of the largest graph
datasets using non-synthetic features [6], were used for a scala-
bility evaluation. This work makes the following contributions.

1. An analysis of system bottlenecks that manifest during
GCN execution on conventional architectures (Section III).
System bottlenecks such as memory bandwidth and capacity
on CPU and GPU architectures should be mitigated by a
scalable graph processing system. This section offers intuition
about how PIUMA may overcome these bottlenecks.

2. A characterization of an optimized SpMM Kkernel
on PIUMA (Section IV). An analytical model for SpMM is
detailed. A DMA-based SpMM algorithm is compared against
this model, highlighting its strong scaling characteristics. This
characterization is important because it exposes the relation-
ship between memory bandwidth and SpMM, demonstrating
the viability of PIUMA for SpMM at scale.

3. A comparison of SpMM on PIUMA versus Xeon
CPU and Ampere GPU, leading to a discussion about
GCN scalability on PIUMA (Section V). The performance
of at-scale GCN was restricted by memory capacity on GPUs,
and memory bandwidth on CPU. PIUMA overcomes these
bottlenecks and GCNs were effectively accelerated. Further
GCN acceleration may be attained by improving the dense
computation capabilities of PIUMA.

II. BACKGROUND
A. Graph Convolutional Networks

Given a graph G(V, E) where V is the set of vertices and
E is the set of edges, the feature vectors of all vertices can be
represented as a matrix Hy. A single GCN layer transforms
these features using learned weights Wy, as:

H 1=0 (AH 0 Wo)

where A is the normalized adjacency matrix of G, and o
is a non-linear activation. A small number of these layers
are stacked, where each state vector H; feeds into the next
state vector H;, ;. While input and output features are dataset
specific, the number and feature length of hidden layers are
design parameters of the GCN model. As state information
propagates through the hidden layers, features of each vertex
exert influence on other vertices further away, similar to the
growing receptive field effect observed in CNNs.

The sparse adjacency matrix, dense feature matrix and
weight matrices result in a mix of sparse aggregation (AH,),
dense update ((O)W), and element-wise (o) matrix oper-
ations. GCN aggregation uses sparse matrix multiplication
and is referred to as SpMM, while update uses dense matrix
multiplication, referred to as Dense MM throughout this paper.

B. Dataset Selection - Open Graph Benchmarks

The datasets used in this investigation are from the Open
Graph Benchmark (OGB) [6]. This benchmark suite provides
real-world problems featuring domains such as nature, society
and information; scale from thousands of vertices, to millions
of vertices; and tasks such as node, link and graph problems.
In particular, the datasets considered are from the node and
link classification tasks. Details about the specific graphs used
are shown in Table I.

An RMAT generator provided by the Stanford Network
Analysis Platform [7] was used for performing linear function
sweeps, such as in Figure 2.

TABLE 1
OGB DATASET DESCRIPTIONS
Name V] |E|
ddi 4,267 1,334,889
proteins 132,534 39,561,252
arxiv 169,343 1,166,243
collab 235,868 1,285,465
ppa 576,289 30,326,273
mag 1,939,743 21,111,007
products 2,449,029 61,859,140
citation2 2,927,963 30,561,187
papers 111,059,956 1,615,685,872

C. Sparse Matrix - Dense Matrix Multiplication (SpMM)

SpMM is an important part of the GCN execution flow as it
represents the per-vertex accumulation of neighboring vertex
feature vectors during the aggregation phase.

As shown in Algorithm 1, the kernel uses an input sparse
matrix with dimensions |V| x |V| and two dense matrices
(input and output) with dimensions |V| x K (K denotes the
embedding dimension). It scales the rows of the input dense
matrix by the values of the sparse matrix and accumulates

|
e e E &
s's 66| 558685
1 J‘ SPAD | Zine | sPAD | 22 1$
RF | RF
D$ | DRaM DRAM DS
= @ = @
BEs GG NE S GGEN

rrrrrrr

Fig. 1. PIUMA architecture overview showing 4 PIUMA cores, each
with Multi-Threaded Pipelines (MTPs), Single-Threaded Pipelines (STPs),
Scratchpad memory (SPAD), and DRAM slices.

them on the output. Thus, the non-zeros of the sparse matrix
dictate the access pattern for the rows of the input dense
matrix. SpMM can be parallelized at the granularity of in-
dividual elements of the sparse matrix or output matrix rows.
These methods are referenced throughout this paper as edge-
parallel or vertex-parallel, respectively. In the first case, edges
are distributed across threads while in the second case each
thread only processes the in-edges of the vertices assigned to it.
Trade-offs of these two methods are discussed in Section IV-B.

Algorithm 1 SpMM
Input: Sparse A€ R'V‘Xl‘/', Dense H;, € RIVIxK
Output: Dense H,,; = AH;,
1: procedure SPMM

2: for each non-zero (u,v) in A 5
3: H,t[u,:] = Hout[u,:] + Afu, v] * Hiplv,]
D. PIUMA

Intel’s Programmable Integrated Unified Memory Archi-
tecture (PIUMA) [5] is a specialized architecture developed
to address graph analytic applications at scale. In contrast
with conventional domain-specific accelerators, the PIUMA
processing element pipelines implement a custom RISC ISA.
Thus, PIUMA supports general purpose programming for
offloading arbitrary workloads.

There are two types of PIUMA pipelines in the system,
namely the Single-Threaded Pipelines (STPs) and the Multi-
Threaded Pipelines (MTPs). Both the MTPs and STPs im-
plement the same custom RISC ISA. The STPs are single
issue, in-order, stall-on-use pipelines and are capable of ex-
ploiting intra-thread memory and instruction-level parallelism.
Typically, they are used for single-threaded tasks such as
memory/thread management.

The MTPs are single-issue, in-order and round-robin multi-
threaded. Each thread can only have one in-flight instruction;
thus, through fine-grained thread interleaving, long memory
access latencies can be effectively hidden. For example, if a
thread is stalled waiting for memory, pipeline resources may
be utilized by other threads. The in-order single-issue design
contributes to significantly reduced power consumption when
compared to wide, out-of-order, superscalar cores.

Each pipeline is equipped with L1 data and instruction
caches. The programmer selects whether a memory access will
be cached or will bypass the cache. Caches are not coherent

across the whole system, meaning that it is the programmer’s
responsibility to ensure that coherency is retained for shared
read-write data, such as by implementing the corresponding
accesses as uncached.

PIUMA pipelines are organized in cores. Each core hosts
a fraction of the global shared DRAM, STPs and MTPs, a
local scratchpad and offload engines, as shown in Figure 1.
The offload engines increase the available memory-level par-
allelism and reduce the pipeline pressure of the MTP’s in-order
designs. They support a collection of operations including fast
remote atomics and atomic queue operations, Direct Memory
Access (DMA) and efficient global collectives such as barriers
and reductions.

PIUMA implements a hardware distributed global address
space (DGAS) allowing each thread to access a huge pool
of shared memory, distributed across the entire system. To
decrease the latency and increase the interconnect bandwidth
when accessing remote memory blocks, a Hyper-X network
topology [8] is used in combination with optical links for node-
to-node connections. The main characteristics of the PIUMA
system that motivate its use for GCN acceleration can be
summarized as follows:

e Latency tolerance: Pipelines in PIUMA cores hide long
memory latencies by massive multithreading.

o Enormous Parallelism: A single PIUMA node supports
concurrent execution of more than 16K threads.

o Efficient remote atomics: High thread count demands
efficient atomic memory access for conflict resolution to
prevent pipeline stalls.

e Memory Performance: DDR modules of each node pro-
vide aggregate TB capacities and TB/s bandwidths.

e Multi-node scalability: PIUMA’s low-latency intercon-
nection network and DGAS shared-memory abstraction
provide scalability to large-scale graphs without the over-
heads related to graph partitioning and message-passing.
This may enable high-performance GCN inference on
large graphs which far exceed the capacity of existing
CPUs/GPUs.

III. GCN INFERENCE PERFORMANCE ON CPU AND GPU

Prior work has shown GCN execution on both CPU and
GPU [9]-[14]. We build upon prior work by characterizing
the execution time of GCN kernels on conventional architec-
tures by deeply investigating the scaling trends of embedding
dimension. This section also provides intuition about why
PIUMA may be an interesting architectural candidate for GCN
at scale versus CPU or GPU solutions. For example, GPU
systems offer high memory bandwidth, latency tolerance, and
massive parallelism; however, GPUs are limited at scale by
memory capacity. On the other hand, CPU systems offer
terabytes of memory capacity and can support full graph oper-
ation; however, CPU systems will reach a memory-bandwidth
peak at the node level, limiting the maximum performance of
these systems.

OGB Graph Scale versus Density

\
2101 £ od
w
5
A 10724 \'ote‘“s
x x P
=
® 1073
=

) 2
kZJ' 1074 A0V PP .
(ot

It XX N8P nad prodV i

cC X nZ
5 1075 5 iat®
<

106
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Vertices le6

Fig. 2. Visualizing the relationship between the number of vertices, adjacency
matrix density, and percentage execution time for Sp)MM of a GCN layer with
input and output embedding dimensions of 256 on CPU. The fraction of sparse
execution time is shown by the dotted contour lines.

A. GCN Profiling Setup

GCN inference was implemented in PyTorch-Geometric
using the torch-sparse library. The characterization in this
work used a three-layer GCN model, where the hidden feature
dimensions were varied across experiments. Profiling on CPU
was conducted on a dual-socket Intel(R) Xeon(R) Platinum
8380 with 40 cores per socket and 512 GB of main memory
[15]. The highest instruction set available was AVX-512 with
2 AVX-512 FMA units. Profiling experiments on CPU were
aligned to existing findings from [16] which used an NVIDIA-
A100 GPU with 40 GB memory capacity and PCle 4.0
between CPU host and GPU [17]. The CPU host was a dual-
socket Intel(R) Xeon(R) Platinum 8358 with 32 cores per
socket and 512 GB of main memory.

B. GCN Layer Execution Time Breakdown

For given embedding dimension(s), GCN layer performance
can be modeled as a function of:

e Scale |V'|: Determines capacity requirements and caching
behavior of GCN kernels.

o Sparsity %: Affects the computational patterns and
complexity of sparse operations.

The contour lines in Figure 2 represent the equivalence
class of graphs that are expected to spend an equal fraction
of the time in computing SpMM on the CPU. These lines
were discovered through extensive experiments using RMAT
graphs of uniform degree distributions with varied scale and
sparsity. By marking the respective contour of a dataset,
one can estimate the benefits of GCN execution on graph
accelerators like PIUMA: datasets with a large fraction of
sparse computation (SpMM) time are expected to benefit more
from such accelerators. To the best of our knowledge, such
analysis has not been shown in prior work.

The results in Figure 2 reveal for a given graph scale, the
fraction of execution time spent in SpMM increases with the
graph density. This is because the total number of non-zeros
in A increases proportionally with density, while the dense
matrix W has a fixed density.

Similarly, for a given graph sparsity, the fraction of execu-
tion time spent in SpMM increases with the graph scale. This
is because the number of non-zeros in A increase quadratically

GCN Execution Time Breakdown on CPU

:‘Ep;?a""| [| F [sl

=
o
S

Glue
mmm Dense MM
=

©
o

o
o

IS
o

L 100

N
o
—
2
Raw Execution Time (ms)

[101

Fraction of Execution Time (%)

o

L 1072
SREGES SIPEES SPieg [RESNS S S SemS
arxiv collab mag citation2 ppa products ddi proteins papers

Fig. 3. Execution time breakdown on CPU for OGB workloads using a 3-
layer GCN with hidden embedding dimensions ranging from 8 to 256 on
orders of 2. Left Axis: Bar chart comparing percent execution times. Right
Axis: Execution time of SpMM (red dots) versus Dense MM (blue dots).

GCN Execution Time Breakdown on GPU

. E——
. SpMM

Glue
s Offload Time

10°

=
o
S

L 105
Sampling Time

L 104
= Dense MM [103
I E 102

L 10t

o ©
o o

IS
o

=
o
>

N
o
Raw Execution Time (ms)

[10-1

Fraction of Execution Time (%)

o

[102

33

RERRN LREIR Sogs
arxiv

[ERRRERRAR LRERR < 2y
collab mag citation2 ppa products ddi proteins papers

Fig. 4. Execution time breakdown on GPU [16]. All graphs except papers fit
on a single-node GPU; thus papers required sampling on CPU. Offload time
is the main contributor to execution time for graphs which fit on GPU while
sampling is the main contributor for graphs which do not fit on GPU.

with vertices!, whereas the complexity of Dense MM increases
linearly.

OGB graphs scale and sparsity coordinates are annotated
on Figure 2. For example, arxiv and collab are expected to
spend less than 60% execution time in SpMM for a layer with
embedding dimension 256. This plot provides insight into the
potential benefits of running on PIUMA. PIUMA is expected
to do well on workloads bottlenecked by sparse computation;
thus arxiv and collab may benefit less from PIUMA, whereas
proteins and products may benefit more from PIUMA.

C. Execution Time Breakdown of GCN on CPU and GPU

GCN execution time was analyzed using three categories;
SpMM, Dense MM, and Glue Code. Glue Code comprises
auxiliary function calls, such as activation functions, kernel
initialization, and other PyTorch wrapper functions.

A sweep study over the hidden-layer embedding dimension
was performed. From an application perspective, the embed-
ding dimension is useful for tuning model accuracy. From
an architectural perspective, the embedding dimension influ-
ences the ratio of sparse to dense compute, memory capacity
requirements, memory bandwidth utilization, and end-to-end
latency. The impact of embedding dimension has not been
deeply analyzed from an architecture perspective in prior work.

'|E| = §|V|2, where |E|, |V| and § denote the number of edges, vertices,
and density of the graph, respectively.

The relative execution time of SpMM, Dense MM and Glue
Code, and the absolute execution time of SpMM and Dense
MM on CPU is shown in Figure 3. These results corroborate
the per-layer estimation methodology in Section III-B.

On CPU, the SpMM kernel dominated the execution time
of GCN, especially for large and/or dense datasets such as
ppa, products, ddi, proteins, and papers where more than 80%
of time was spent in SpMM. As the embedding dimension
increased, caching either maintained or decreased the influence
of Dense MM, while the memory bandwidth bottleneck wors-
ened, which increased the influence of SpMM. The memory
bandwidth bottleneck had a greater influence because larger
embedding dimensions meant fewer vertex embeddings were
cached, which increased off-chip communication.

For example, graphs such as ddi and proteins entirely fit in
the CPU cache at low embedding dimensions, which explains
why the fraction of execution time for SpMM increased with
higher embedding dimensions. Graphs such as products and
papers did not have as much benefit from caching at low
embedding dimensions, therefore, the fraction of off-chip com-
munication did not increase significantly at higher embedding
dimensions. In the extreme case of papers, the impact of the
Glue Code actually increased because the activation inputs
were evicted from the cache after being computed.

Key Takeaway 1: Caching benefits diminish with growing dataset
size. PIUMA trades off L2/L3 cache resources for latency hiding
massive thread-count and high memory bandwidth, offering a
potentially better architecture for at-scale GCN computation.

The GPU results from [16] are presented in Figure 4
for comparison. All graphs except papers fit entirely on
GPU. To enable GPU characterization for papers, layer-wise
sampling was employed. The sampling technique used full-
neighborhood sampling to provide a fair comparison.

For non-sampled workloads, the clear performance bottle-
neck for GPU was the offload time of the adjacency matrix
and vertex embeddings. Data offload is an unavoidable runtime
contribution in inductive graph problems.

As the embedding dimension increases, both the Dense MM
and SpMM kernels increase in influence on GPU. This is
because the volume of data-movement between CPU and GPU
does not change, as the embedding dimension sweep only
applies to the hidden-layers.

Papers, which does not fit on GPU, was largely bottlenecked
by sampling; more than 75% of the execution time was spent
sampling on CPU. The combined impact of sampling and
offloading was more than 99% of the execution time, leading
to considerably lower performance than CPU for at-scale GCN
inference.

Key Takeaway 2: GPUs are most effective at accelerating
workloads which require a compute first, high FLOPS to Bytes
ratio design. PIUMA takes a fundamentally different approach,
designed from a memory-first perspective with a low FLOPS to
Bytes ratio. The intent of PIUMA was to meet growing demand
in data-set capacity, sparsity, and communication, whereas GPUs
were designed to meet growing demand in compute, leading to a
communication bottleneck for at-scale GCN.

IV. CHARACTERIZATION OF SPMM ON PIUMA

In the previous section, it was shown that GCNs are largely
dominated by SpMM on CPUs. In this section, a detailed
analysis of SpMM on PIUMA is presented. Two implemen-
tations of SpMM on PIUMA are evaluated to show that a
scalable DMA implementation can overcome longer latencies
and saturate bandwidth at scale.

The evaluation makes use of the PIUMA architecture
simulator [5], [18]-[22] which simulates the timing of all
instructions in the pipelines, engines, memory and network,
based on the hardware specifications.

A. SpMM Kernel Analytical Model on PIUMA

A bandwidth-bound analytical model was used to estimate
the performance of SpMM, which aided in architecting a
high-performing SpMM kernel for PIUMA. SpMM is a low
arithmetic intensity kernel [9] and is primarily bound by the
memory performance. Therefore, a bandwidth-bound analyti-
cal model was used, which assumed no reuse of input feature
vectors. This is a fair assumption since PIUMA does not use
an L2 or L3 cache unlike conventional CPUs.

BCSR:(|V|+1)*BR+|E‘*B0+|E|*BN (1)

BFeature = K x |E| * Bp (2)
Bwrie = K % |V| % Bp (3)
FLOP =2x|E|x K “4)

Total reads generated from the adjacency matrix assumes a
CSR storage format, corresponding to the row array (vertices
in the graph), the column array (edges in the graph), and the
non-zero value array (weight associated with each edge) as
shown in Equation 1. The format Bx indicates the size in
bytes of variable X where R is row index, C' is column index,
N is non-zero value, and F' is a feature vector element.

Feature reads account for the memory traffic generated from
embedding vectors. When a vertex is processed, the neighbors’
feature vectors are aggregated in a partial sum vector. Thus,
for every edge, one embedding vector of dimension K is
read from the memory. The total number of bytes read from
the dense feature matrix is given by Equation 2. For the
bandwidth-bound analytical model, the optimal scenario was
assumed where the cached partial sum vector was written back
to memory only once (output matrix row) after all neighbors
of the vertex were aggregated. Thus, the total write traffic is
given by Equation 3. The FLOP count to process one edge is
2 % K because each vertex aggregation is a multiply and add
(MAC) operation; an adjacent vertex embedding is scaled by
a value and accumulated. The total FLOP count is given by
Equation 4.

(BCSR + BFeature) BWrite
BWread BWwrite

To calculate the overall execution time, the total volume
of data read and written is divided by the respective read and
write bandwidths. The execution time from Equation 5 and the
FLOP count from Equation 4 is used to calculate the expected
throughput in FLOPS for the SpMM kernel.

®)

Time =

Algorithm 2 SpMM Edge-Parallel

Input: CSR matrix A - row offset array row € Z
non-zero array col € ZIE!, feature matrix H;,, € RIVI*K
Output: H,,; € RIVI*XK

1: procedure SPMM

2 for each thread id ¢ € {1,2,...T} do in parallel

3 start, end %, %

4 u 4— argmini s.t. row(i] > start > Binary Search
5 B0:K—-1]+0 > Accum. buffer
6: for each ¢ € {start, ..., stop}
7

8

9

0

1

Vi
9

if e > row[u + 1] then > Vertex completed
Houi[u,:] + Houtlu,:] + BJ:] > Atomic write
u<u+1, B[]+ 0

v < col[e] > Neighbor vertex

10:
11: B[] < B[] + A[u,v] * Hin[v,:] > Accumulate

B. SpMM Algorithms on PIUMA

As discussed in Section II-C, SpMM can use a vertex-
parallel or edge-parallel algorithm. Three key tradeoffs exist
between these strategies.

First, since the edge-parallel execution divides work (i.e.,
edges) across the column pointer, a binary search is required
to find the first vertex/row in the row pointer assigned to a
thread. Second, the edge-parallel algorithm requires atomic
memory writes to prevent conflicts between threads updating
the same vertex embedding. This is unlike the vertex-parallel
algorithm where each vertex is assigned exclusively to only
one thread. Finally, the vertex-parallel algorithm may exhibit
load imbalance.

The performance bottleneck of atomic write-backs in the
edge-parallel algorithm is addressed by PITUMA with its highly
optimized remote atomic instructions and tolerance to memory
latency. Therefore, the edge-parallel algorithm is an attractive
option for PIUMA which can improve load balance.

The fundamental edge-parallel algorithm, detailed in Al-
gorithm 2, uses a for-loop to iterate over the embedding
values of each adjacent vertex embedding vector (Line 11),
which is scaled and accumulated in the correct index of the
accumulation buffer. PIUMA does not have an AVX unit for
SIMD operations, therefore loop unrolling is employed to
group memory accesses and pipeline MAC operations. The
compiler is persuaded to unroll up to eight embedding values
at once, requesting a fully aligned, 64-byte cache line, which
is brought into the core’s data cache.

This loop-unrolling method was evaluated using the PI-
UMA simulator and compared against the analytical model,
revealing inefficiency in memory bandwidth utilization. As the
number of cores increased, the memory bandwidth utilization
decreased dramatically because the cores were waiting for
NNZ (non-zero edge) reads which were on average 6x higher
latency for a 32-core system compared to a single-core system.
Since the same scalar pipeline of MTPs that issued the memory
operations also issued all other operations, with the default 8-
byte load/store operation, the relative overhead of each NNZ
read was significant when the memory latency increased.

DMA versus Loop Unrolling - Embedding Dimension 256

| —&- BW Model
—— DMA
| —% Loop Unrolling

w
N

—

o
o

==

©
s

IS
s

==
==

Normalized GFLOPS

N
n

P
-

n
s

1 2 4 8 16 32
Number of Cores

Fig. 5. Comparing SpMM algorithms on PIUMA to the bandwidth model
for embedding dimension 256, normalized to single core DMA performance.
The Direct Memory Access implementation (red) was within 85% percent of
the bandwidth model performance while the Loop Unrolling implementation
(purple) was challenged with scaling past 8 cores. These scaling trends were
similar for embedding dimensions 8 and 64.

With elevated latency, while accessing remote memory slices
at a finer granularity (8-byte), it was challenging to hide
latency and saturate the memory bandwidth. This motivated
a new solution using the DMA offload engine which allowed
for requesting large chunks of memory at once, as well as
perform in-memory add and multiply operations, freeing MTP
pipelines to do other operations.

The PIUMA DMA controller provides specialized hardware
support for offloading compute to the DMA engine. First,
the DMA controller initializes a buffer of size embedding
dimension K with the edge weight. Next, a DMA multiply
operation atomically reads the feature vector from memory
and multiplies it by the vectorized weight. Finally, the DMA
engine executes a copy-add between the feature vector and the
accumulation buffer. After processing all edges for a vertex,
the DMA engine atomically writes the new embedding vector
to memory. Using the DMA controller ensured high memory
bandwidth utilization.

The strong scaling analysis shown in Figure 5 revealed that
the DMA implementation was within 10-20% of the analytical
model performance for embedding dimensions 8, 64 and 256,
while the loop-unrolled version was less than 40% of the
expected performance for higher numbers of cores. The DMA
implementation of SpMM was used in subsequent studies.

Key Takeaway 1: The DMA-based SpMM implementation fully
saturates the available memory bandwidth and gives the highest
performance on PIUMA.

C. Latency Sensitivity of SpMM on PIUMA

The scalability beyond single-node PIUMA configurations
is tightly coupled with the ability of the cores to tolerate
longer network latency to remote memory slices. To vali-
date the latency tolerance property of the pipelines, higher
memory access latency scenarios were modeled by sweeping
the DRAM access latency. Figure 6 (bottom) displays the
simulated results of this sweep, for a varying number of cores
and embedding dimensions. The embedding dimensions were
purposely selected at the two extremes of this range in order to
capture the worst-case scenarios. DRAM latency tolerance is

PIUMA - DRAM Bandwidth Sweep

—— Num Cores 2 o4
w 4] —— Num Cores 4 A A
% Num Cores 8 P
pur A EmbDim 8 A
5 2 o Emboim //
= 3
3 IS
N1
©
€ //
2 0.51
0.2
0.22x 0.44x 0.87x 1.0x
Effective DRAM Bandwidth
PIUMA - DRAM Access Latency Sweep
8 4
¢ o & NumCores2 ~®
" = Num Cores 4
o A & A Num Cores 8 —4A
9 44 A EmbDim 8
I} ® Emb Dim 256
o . . . —e
(9
N R A N
© A = - —A
g 2
o
z L . -]
1 A il 4 A
45 90 180 360
DRAM Access Latency (ns)
Fig. 6. Impact of DRAM bandwidth and latency across 2, 4 and 8 core

PIUMA system for embedding dimensions 8 and 256. Top: Bandwidth sweep
showing linear performance with respect to bandwidth. Bottom: Latency
sweep showing latency-insensitivity up to 360 ns DRAM latency.

displayed for SpMM across a range of embedding dimensions
and number of PIUMA cores.

To further investigate the reasons behind the latency insensi-
tivity property of PIUMA, the latency sweep experiments were
repeated with a varying number of threads per MTP, ranging
from 1 to 16. One characteristic of the DMA engine is that
DMA requests from threads belonging to the same core are
directed to the same DMA engine and are serialized on the
order of arrival. Consequently, if a thread could determine its
DMA requests without having to wait for the sparse NNZs
to be first fetched from DRAM, then it would be capable of
saturating the DMA engine (which is latency tolerant) without
the need for more threads in the same core.

The results displayed in Figure 7 (top) suggest that when
the number of threads is reduced, the latency insensitivity
property is lost for smaller embedding dimensions, while it is
retained for higher embedding dimensions. This is attributed
to the fact that for smaller embedding dimensions, fewer DMA
requests are generated, thus the NNZ reads constitute a larger
percentage of the total memory accesses. Regardless of the
embedding dimension for all single-threaded cases, the latency
of the NNZ reads appears on the critical path.

This means, that before being able to issue a new DMA
request, the thread is blocked by the NNZ read, and the DMA
is unused in this time window. In smaller leading dimensions,
this time window is closer to the latency of the fine-grained
DMA operation while in higher leading dimensions it is
significantly smaller (refer to the PIUMA execution time
breakdown displayed in Figure 8). Thus, when the latency
increases for smaller embedding dimensions and the MTPs

Consequences of MTPs on Latency Insensitivity

Emb Dim 8 Emb Dim 64 Emb Dim 256
g ——a—a—_
£ 10
] ~ :
w
]
5 0504
()
N
T 0251
g O —e— MTP Threads-16
g —#— MTP Threads-4
0.12 1 MTP Threads-1
45 90 180 360 720 45 90 180 360 720 45 90 180 360 720
Latency (ns) Latency (ns) Latency (ns)
Execution Time Breakdown for Embedding Dimension 8
MTP Threads - 1 MTP Threads - 4 MTP Threads - 16
GE)loo%A?«wm-.w-.-w v-rrrr'-!-v-r‘-l-r-vvv-rh “_T_TEDMAOp H-.-.
£ . =3I NNZ Read [
't 80%1 N XN QT | == other. . []
g SINNNRNNN .
S 60% T s -
g N
W 40%
ERR =TS NN NNNNIN
O 20% 1 = E RN :::_sl
[s s | | | |} | s —) —
a) —(o— — — Y — o— o— — —1
0% == A A A Al e e A e e e e e e e
45 90 180 360 720 45 90 180 360 720 45 90 180 360 720
Latency (ns) Latency (ns) Latency (ns)

Fig. 7. An 8 core PIUMA system (1 die) was evaluated, sweeping the DRAM
latency from 45 ns to 720 ns and the number of threads per MTP from 1 to
16. The default configuration uses 16 threads per MTP. Even extreme DRAM
latency can be tolerated with sufficient MTP threads.

consist of a single thread, the DMA engines are underutilized
and the performance is degraded.

Increasing the number of threads makes PIUMA more
latency tolerant, especially for small embedding dimensions.
This is because if a thread is blocked, waiting for the NNZ
reads to complete, another thread can utilize the DMA engine
providing full utilization of the DMA engine and available
memory bandwidth (Figure 7 bottom).

Key Takeaway 2: The PIUMA pipelines displayed significant
DRAM latency tolerance for SpMM across a range of embedding
dimensions and number of PIUMA cores. Using a large number
of threads per MTP makes PIUMA highly latency tolerant, which
especially benefits execution with smaller embedding dimensions.

D. Bandwidth Sensitivity of SpMM on PIUMA

In order to highlight the ability of the PIUMA cores to
saturate the available memory bandwidth, a DRAM bandwidth
sweep study was performed. The results shown in Figure 6
(top) used the DMA implementation with 16 threads per MTP.

The system performance, as measured by the GFLOPs
throughput, scales linearly as the available bandwidth of a
single DRAM slice increases. The bandwidth is normalized
with respect to the actual bandwidth provided by a single
DRAM-slice memory controller. This behavior is preserved
as the number of cores increases, suggesting that the network
is fine-tuned and can provide adequate throughput for accesses
that are directed to remote memory controllers.

Key Takeaway 3: SpMM is limited by the memory bandwidth and
not by the network interconnect bandwidth at scale on PIUMA.

V. PIUMA SCALABILITY VERSUS CPU AND GPU

In this section, the DMA-based SpMM kernel on PIUMA
is compared to SpMM on CPU. Then, the performance of
GCN on PIUMA is compared to CPU and GPU, revealing the
speedup of one PIUMA node versus one CPU / GPU node,
highlighting the scalability of PIUMA through an execution
time breakdown.

A. Strong Scaling of SpMM on PIUMA versus CPU

SpMM is a memory bound kernel, therefore, a memory
bandwidth comparison between CPU and PIUMA is an indica-
tor for speedup. A stream benchmark was used to capture the
effective memory bandwidth on the Xeon CPU. The control
of threads and memory was maintained using numactl flags
and OpenMP variables. The results of this bandwidth study
are shown in Figure 8 (Left) which includes a comparison of
PIUMA bandwidth. Notice the memory bandwidth of PIUMA
exceeds CPU after ~16 cores. Furthermore, the memory
bandwidth for CPU decreased past 80 cores because the dual-
socket Xeon only has 40 physical cores per socket; thus, more
than 80 cores leads to hyper-threading which actually causes
contention on the memory bandwidth.

Next, a strong scaling analysis was conducted using the
DMA implementation of SpMM for PIUMA and an optimized
CPU vertex-parallel implementation with dynamic load bal-
ancing using OpenMP. The edge-parallel algorithm was slower
than vertex-parallel on CPU due to the overheads of atomic
operations. The products graph was used for this study to show
how at-scale graphs with minimal cache reuse would perform
on CPU versus PIUMA.

Two parameters were swept in this study: the number of
cores and the embedding dimension. The strong scaling study
results using embedding dimension 256 are shown in the
middle plot of Figure 8, while an execution time breakdown
for an embedding dimension sweep is shown in the right plot.

The performance of SpMM on both CPU and PIUMA scale
according to the available memory bandwidth for large graphs.
This was expected as SpMM is a bandwidth bound kernel. At
16 cores, the PIUMA SpMM implementation is expected to
be slightly higher performing than the CPU SpMM imple-
mentation according to the bandwidth comparison; however,
Figure 8 (middle) shows that PIUMA is actually slightly lower
performing than CPU.

This may be attributed to the fact that products, although
large, can make use of the CPU caches. Frequently used
feature vectors can be cached which reduces the DRAM read
traffic and improves the performance of GCN inference on
CPU. Compiler-aided vectorization and prefetching may have
helped as well.

The results shown in Figure 8 (right) reveal the execution
time attributed to reading non-zero values decreases as the
embedding dimension increases. For embedding dimension
8, 2-NNZs are read for every 8 DMA reads and writes,
while for embedding dimension 256, 2-NNZs are read for
every 256 DMA reads and writes. This validates the latency
sensitivity study in Section IV-C which revealed that the NNZ

PIUMA versus Xeon - Strong Scaling Analysis

System Bandwidth Comparison

SpMM FLOPS Analysis - Embedding Dimension 256

PIUMA Execution Time Breakdown - 16 Cores

é 256 xeon 256 xeon /,A 1004
B —A— piuma 4 —&— piuma . [J]
o P 0 128 P /,/‘3.35x £ gol
- S 644 A& ';
= e 324 7 o
] © 5 60 Z1 DMA Op
T § 16 Sox § =1 NNZ Read
S I .
o = 8 E..J 404 E= Other
® E 4 g
N o 7 o]
® = 5l o 20
g a
o 14
= T T T T T T T T T T T T T T T T T T 0 T T T
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 8 64 256

Number of Cores

Number of Cores

Embedding Dimension

Fig. 8. A strong scaling analysis of SpMM on PIUMA versus Xeon using the products graph, normalized to single core PIUMA. Left: System bandwidth
comparison. Middle: SpMM FLOPS comparison. Right: Execution time breakdown of a 16 core PIUMA system for three embedding dimensions.

reads were the primary reason for latency sensitivity and why
embedding dimension 256 may need fewer threads per MTP
than embedding dimension 8.

These results offer insight into the fundamental scalability
challenges of CPU systems which are overcome by PIUMA.
Traditional CPU systems such as Xeon can not scale their
memory bandwidth by increasing the number of systems.
Therefore, the scaling of SpMM on a shared-memory system
is limited by the SoC memory-bandwidth. PIUMA does not
have this limitation.

Key Takeaway 1: PIUMA overcomes CPU scalability bottlenecks
for SpMM by offering scalable memory bandwidth. As the number
of nodes in a PIUMA system increases, the DGAS memory ca-
pacity and effective bandwidth increase proportionally. Thus, the
performance of SpMM on PIUMA scales perfectly for SpMM while
CPU systems must rely on distributed-memory solutions at-scale.

Prior work has investigated distributed-memory solutions
for sparse computation [12], [23]. Although this provides
a means of scaling on CPU-based systems, communication
overheads of MPI significantly reduces performance relative
to an at-scale DGAS system [24].

B. GCN on PIUMA versus CPU and GPU

The expected performance of a single PIUMA node was
compared to the performance of a Xeon CPU system. Equiv-
alent GPU performance data from [16] was also included.
This comparison is meaningful because it compared a single
PIUMA node against two of the largest non-distributed mem-
ory CPU and GPU systems. The expectation is that PIUMA
will scale well beyond the single-node comparison because
of its scalable memory bandwidth and DGAS; therefore, this
comparison is only a taste of what PIUMA is capable of for
at-scale GCN acceleration.

Prior work has characterized the performance of Dense
MM on PIUMA [21]. The observed peak FLOPS was used
to calculate Dense MM time for GCN in this section. The
results shown in the top plot of Figure 9 revealed the speedup
of a single PIUMA node (red), the speedup of an A100-GPU
(blue), normalized against a dual-socket Xeon CPU.

As the embedding dimension increased, the achieved
speedup on PIUMA decreased, while the achieved speedup
on GPU increased, relative to the CPU baseline. GPU speedup

increased because it spent less time offloading data and more
time computing. Since the input and output GCN dimensions
do not change, the volume of data transferred between CPU
and GPU does not change. However, since the hidden layer
embedding dimensions increased, the GPU memory footprint
requirement and amount of computation on GPU increased.
GPUs have higher on-chip memory bandwidth than CPUs
and higher compute capacity; thus, GPUs accelerate SpMM
and Dense MM regions better than CPU, leading to improved
performance. GPUs actually performed worse than CPUs for
lower embedding dimensions due to the offloading overhead.

PIUMA speedup decreased with larger embedding dimen-
sions because the amount of dense computation increased.
Dense multiplication is a challenge for PIUMA as it does not
have a SIMD unit. The execution time breakdown shown in
Figure 10 offers deeper insights into why PIUMA performed
worse at higher embedding sizes.

Workloads such as arxiv, collab, mag, citation2 and papers
spent over 75% execution time on Dense MM at an embedding
dimension of 256. Even workloads such as ppa and products
which had between 80 — 90% percent SpMM on CPU were
dominated by 50 — 60% Dense MM on PIUMA for embed-
ding dimension 256. PIUMA effectively accelerated SpMM;
however, the dense computation demands at higher embedding
dimensions limited PIUMA’s performance.

Key Takeaway 2: Increasing the embedding dimension tends to
shift computational pressure of GCN from SpMM to Dense MM
on PIUMA. A single PIUMA node always outperforms the CPU
system due to its greatly improved sparse support, whereas a GPU
has similar performance to PIUMA at large embedding dimension
due to its strong Dense MM throughput.

Understanding the implications of embedding size is impor-
tant from an architecture perspective because systems such as
PIUMA should be prepared to handle a spectrum of GCNs.

The GPU characterization for papers highlights the fun-
damental limitation of using GPUs for GCN. A threshold
for GPU performance exists where a graph does not fit
in GPU memory. Since the GPU relies on CPU sampling,
the GPU performance degrades significantly. This memory-
capacity limitation is a key reason why someone would desire
a PIUMA system over a GPU system for at-scale GCN.

GCN Performance

PIUMA Node versus NVIDIA-A100 versus Xeon

64x

16x

A\, i 2 i
| R

Speed Up over Xeon

0.25x 1

SRS T EIERe

arxiv collab mag citation2 ppa products

24 —4— SpMM Speedup
= 2100
= piuma

e

R B R Y R I R A Y i AL VLR L R R R

ddi proteins power-16 power-22 papers

Fig. 9. Single-node performance of PIUMA against dual-socket performance of Xeon CPU and NVIDIA A100 GPU with embedding dimension sweep.
PIUMA always outperformed CPU while GPU only outperformed CPU at higher embedding dimensions. Bars represent GCN speedup against Xeon while
diamonds represent SpMM kernel speedup. PIUMA had similar SpMM speedups as GPU for large graphs (products), but significantly outperformed GPU on
SpMM for graphs with low locality (power-16/power-22). GPU outperformed PIUMA on small graphs with good locality (ddi, proteins).

GCN Execution Time Breakdown on PIUMA

100 4

801

60 q

404

204

Fraction of Execution Time (%)

o
'

SHEpE SeFeP

arxiv. collab

LEERSSY

mag citation2

SEREPs S EPEPs

ppa

LEERSSY

products ddi

SERE P SEEPE SeIP

proteins papers

Fig. 10. Execution time breakdown for PIUMA, complimenting CPU and
GPU results shown in Figure 3 and Figure 4.

Key Takeaway 3: Az-scale GCN is a challenge for GPUs because
when a graph does not fit in GPU memory, CPU sampling and
offload time causes a severe performance bottleneck. PIUMA does
not require sampling and avoids this problem entirely through
its DGAS, offering continued performance improvement through
scalable memory bandwidth and Terabytes of memory capacity.

VI. DISCUSSION AND FUTURE WORK

The execution of GCNs on PIUMA may be improved by
changing how dense matrix multiplication is computed or the
underlying algorithms.

Heterogeneous SoC: One approach could be to design a het-
erogeneous SoC combining PIUMA dies with dense compute
accelerators that can improve the dense matrix multiplication
performance on PIUMA. The ratio of PIUMA dies to dense
units will largely depend on the application requirements.

Graph Fartitioning: The DGAS of PIUMA may be bene-
ficial for GNNs to avoid graph partitioning needed for large
input graphs [10]. In distributed GNNs, a graph is partitioned
so that each partition can fit in the local memory of each node.
This graph partitioning is often done using a vertex cut or
edge cut technique, which can be expensive. PIUMA’s shared
memory abstraction helps avoid such partitioning.

Graph Clustering and Sampling: Subgraph-based GCN
training methods utilize graph clustering and sampling to
create mini-batches [25], [26]. PIUMA can significantly accel-
erate graph clustering methods such as Louvain [27]. Neigh-
borhood sampling-based GNN algorithms such as pinSAGE
[28] and graphSAGE [29] often use random-walk for neighbor

sampling. The random-walk algorithm is known to be latency
bound, and PIUMA being latency optimized, has been shown
to greatly accelerate random-walk over standard CPUs [5]. It
would be interesting to explore the overall performance gains
on PIUMA for such GCN methods during training.

VII. RELATED WORK

Graphite presents a SW/HW co-design featuring layer fu-
sion and DMA-based aggregation [9]. Layer-fusion demon-
strated a 1.3x speedup for SpMM and is an interesting software
optimization for PIUMA. Graphite’s proposed DMA imple-
mentation is similar to the PIUMA DMA implementation.
However, Graphite’s DMA engine only supports aggregation;
whereas, the PIUMA DMA engine is used for PIUMA specific
operations and other basic arithmetic operations. The PIUMA
DMA study is also distinguished through several in-depth
sensitivity analyses.

Optimizations and characterizations for GNNs on GPU have
also been investigated. GE-SpMM [11] proposed a method
that uses Coalesced Row Caching to access sparse and dense
data, improving the utilization of GPUs memory bandwidth.
Characteristics of execution patterns of GCN training and
inference on GPUs have been investigated as well [13], [14].

Several other works noted the importance of accelerating
GCNs and proposed accelerator designs [30]-[32]. Although
these accelerators demonstrated significant speedup over tradi-
tional computing methods, they are not comparable to PIUMA
because they were not designed for at-scale graph analytics;
thus, PIUMA holds a competitive edge for at-scale GCN.

VIII. CONCLUSION

This work characterized the scalability of GCN on the
PIUMA architecture. Existing system bottlenecks in CPU and
GPU systems were explained. The architectural implications
of embedding dimension were discussed for both CPUs and
GPUs, which lead to a discussion about why PIUMA may be
beneficial for GCNs at scale.

An optimized DMA-based GCN implementation on PIUMA
was developed and characterized, achieving up to 88% of the
theoretical peak performance. Finally, a detailed comparison
of performance scaling on PIUMA, CPUs and GPUs as a
function of GCN architectural parameters was investigated.

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

W. Fan et al, “A Graph Neural Network Framework for Social
Recommendations,” IEEE Transactions on Knowledge and Data
Engineering, vol. 34, no. 5, pp. 2033-2047, May 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9139346/

S.-H. Wang, V. V. Govindaraj, J. M. Gérriz, X. Zhang, and Y.-D. Zhang,
“Covid-19 classification by FGCNet with deep feature fusion from graph
convolutional network and convolutional neural network,” Information
Fusion, vol. 67, pp. 208-229, Mar. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1566253520303705

S. Ye, J. Liang, R. Liu, and X. Zhu, “Symmetrical Graph
Neural Network for Quantum Chemistry with Dual Real and
Momenta Space,” The Journal of Physical Chemistry A, vol.
124, no. 34, pp. 6945-6953, Aug. 2020. [Online]. Available:
https://pubs.acs.org/doi/10.1021/acs.jpca.0c03201

T. N. Kipf and M. Welling, “Semi-Supervised Classification
with Graph Convolutional Networks,” Feb. 2017, number:
arXiv:1609.02907 arXiv:1609.02907 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1609.02907

S. Aananthakrishnan et al., “PIUMA: Programmable Integrated Unified
Memory Architecture,” arXiv:2010.06277 [cs], Oct. 2020, arXiv:
2010.06277. [Online]. Available: http://arxiv.org/abs/2010.06277

W. Hu et al., “Open Graph Benchmark: Datasets for Machine Learning
on Graphs,” Feb. 2021, number: arXiv:2005.00687 arXiv:2005.00687
[cs, stat]. [Online]. Available: http://arxiv.org/abs/2005.00687

J. Leskovec and R. Sosi¢, “SNAP: A General-Purpose Network
Analysis and Graph-Mining Library,” ACM Transactions on Intelligent
Systems and Technology, vol. 8, no. 1, pp. 1-20, Oct. 2016. [Online].
Available: https://dl.acm.org/doi/10.1145/2898361

J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber, “HyperX: topology, routing, and packaging of efficient
large-scale networks,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis - SC
’09. Portland, Oregon: ACM Press, 2009, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=1654059.1654101

Z. Gong et al., “Graphite: optimizing graph neural networks on CPUs
through cooperative software-hardware techniques,” in Proceedings of
the 49th Annual International Symposium on Computer Architecture.
New York New York: ACM, Jun. 2022, pp. 916-931. [Online].
Available: https://dl.acm.org/doi/10.1145/3470496.3527403

V. Md et al., “DistGNN: scalable distributed training for large-scale
graph neural networks,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
St. Louis Missouri: ACM, Nov. 2021, pp. 1-14. [Online]. Available:
https://dl.acm.org/doi/10.1145/3458817.3480856

G. Huang, G. Dai, Y. Wang, and H. Yang, “GE-SpMM: General-
Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph
Neural Networks,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. Atlanta,
GA, USA: IEEE, Nov. 2020, pp. 1-12. [Online]. Available:
https://ieeexplore.ieee.org/document/9355302/

O. Selvitopi et al., “Distributed-memory parallel algorithms for
sparse times tall-skinny-dense matrix multiplication,” in Proceedings
of the ACM International Conference on Supercomputing. Virtual
Event USA: ACM, Jun. 2021, pp. 431-442. [Online]. Available:
https://dl.acm.org/doi/10.1145/3447818.3461472

Z. Zhang et al., “Architectural Implication of Graph Neural Networks,”
IEEE Computer Architecture Letters, pp. 1-1, 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9075391/

M. Yan et al., “Characterizing and Understanding GCNs on GPU,” I[EEE
Computer Architecture Letters, vol. 19, no. 1, pp. 22-25, Jan. 2020.
[Online]. Available: https://ieeexplore.ieee.org/document/8976117/
“Intel® Xeon® Platinum 8380 Processor”” [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/212287/intel-
xeon-platinum-8380-processor-60m-cache-2-30-ghz/specifications.html
M. Adiletta, D. Brooks, and G.-Y. Wei, “Architectural Implications
of Embedding Dimension during GCN on CPU and GPU,”
2022, publisher: arXiv Version Number: 1. [Online]. Available:
https://arxiv.org/abs/2212.00827

J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“NVIDIA A100 Tensor Core GPU: Performance and Innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29-35, Mar. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9361255/

10

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

S. Eyerman, W. Heirman, Y. Demir, K. Du Bois, and I. Hur, “Projecting
Performance for PIUMA using Down-Scaled Simulation,” in 2020
IEEE High Performance Extreme Computing Conference (HPEC).
Waltham, MA, USA: IEEE, Sep. 2020, pp. 1-7. [Online]. Available:
https://ieeexplore.ieee.org/document/9286184/

B. Seshasayee, J. Fryman, and I. Hur, “Hash Table Scalability on
Intel PIUMA,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC). Waltham, MA, USA: IEEE, Sep. 2020, pp. 1-2.
[Online]. Available: https://ieeexplore.ieee.org/document/9286204/

K. Lakhotia, F. Petrini, R. Kannan, and V. Prasanna, “Accelerating
Allreduce With In-Network Reduction on Intel PIUMA,” [EEE
Micro, vol. 42, no. 2, pp. 44-52, Mar. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9665261/

J. J. Tithi, F. Checconi, D. Doerfler, and F. Petrini, “SU3 Bench on a
Programmable Integrated Unified Memory Architecture (PIUMA) and
How that Differs from Standard NUMA CPUs,” in High Performance
Computing, A.-L. Varbanescu, A. Bhatele, P. Luszczek, and B. Marc,
Eds. Cham: Springer International Publishing, 2022, vol. 13289, pp.
65-84, series Title: Lecture Notes in Computer Science.

J. J. Tithi and F. Petrini, “A New Parallel Algorithm for Sinkhorn
Word-Movers Distance and Its Performance on PIUMA and Xeon
CPU,” Apr. 2022, number: arXiv:2107.06433 arXiv:2107.06433 [cs].
[Online]. Available: http://arxiv.org/abs/2107.06433

V. Bharadwaj, A. Bulug, and J. Demmel, “Distributed-Memory

Sparse Kernels for Machine Learning,” Mar. 2022, number:
arXiv:2203.07673 arXiv:2203.07673 [cs]. [Online]. Available:
http://arxiv.org/abs/2203.07673

F. McSherry, M. Isard, and D. G. Murray, “Scala-
bility! But at what COST?” in I5th Workshop on
Hot Topics in Operating Systems (HotOS XV). Kartause
Ittingen, Switzerland: USENIX Association, May 2015. [On-

line]. Available: https://www.usenix.org/conference/hotos15/workshop-
program/presentation/mcsherry

W.-L. Chiang et al., “Cluster-GCN: An Efficient Algorithm for Training
Deep and Large Graph Convolutional Networks,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. Anchorage AK USA: ACM, Jul. 2019, pp. 257-266.
[Online]. Available: https://dl.acm.org/doi/10.1145/3292500.3330925
H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“GraphSAINT: Graph Sampling Based Inductive Learning Method,”
2019, publisher: arXiv Version Number: 4. [Online]. Available:
https://arxiv.org/abs/1907.04931

J. J. Tithi, A. Stasiak, S. Aananthakrishnan, and F. Petrini, “Prune the
Unnecessary: Parallel Pull-Push Louvain Algorithms with Automatic
Edge Pruning,” in 49th International Conference on Parallel Processing
- ICPP. Edmonton AB Canada: ACM, Aug. 2020, pp. 1-11. [Online].
Available: https://dl.acm.org/doi/10.1145/3404397.3404455

R. Ying et al., “Graph Convolutional Neural Networks for Web-Scale
Recommender Systems,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Jul.
2018, pp. 974-983, arXiv:1806.01973 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1806.01973

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
Representation Learning on Large Graphs,” Sep. 2018, number:
arXiv:1706.02216 arXiv:1706.02216 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1706.02216

J. Li, H. Zheng, K. Wang, and A. Louri, “SGCNAX: A Scalable Graph
Convolutional Neural Network Accelerator with Workload Balancing,”
IEEE Transactions on Parallel and Distributed Systems, pp. 1-1, 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9645224/

X. Chen et al, “Rubik: A Hierarchical Architecture for
Efficient Graph Neural Network Training,” [EEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 4, pp. 936-949, Apr. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9428002/

J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A Flexible and
Energy-efficient Accelerator for Graph Convolutional Neural Networks,”
in 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). Seoul, Korea (South): IEEE, Feb. 2021, pp. 775—
788. [Online]. Available: https://ieeexplore.ieee.org/document/9407104/

