Publications by Author: Russ Joseph

2007
David Brooks, Robert Dick, Russ Joseph, and Li Shang. 5/2007. “Power, thermal, and reliability modeling in nanometer-scale microprocessors.” Micro, IEEE, 27, 3, Pp. 49–62. Publisher's VersionAbstract
System integration and performance requirements are dramatically increasing the power consumptions and power densities of high-performance microprocessors. High power consumption introduces challenges to various aspects of microprocessor and computer system design. It increases the cost of cooling and packaging design, reduces system reliability, complicates power supply circuitry design, and reduces battery life. Researchers have recently dedicated intensive effort to power-related design problems. Modeling is the essential first step toward design optimization. In this article, the power, thermal and reliability modeling problems are explained and recent advances in their accurate and efficient analysis are surveyed.
Power, thermal, and reliability modeling in nanometer-scale microprocessors
Meeta Gupta, Jarod Oatley, Russ Joseph, Gu Wei, and David Brooks. 4/16/2007. “Understanding voltage variations in chip multiprocessors using a distributed power-delivery network.” In Design, Automation & Test in Europe Conference & Exhibition, 4/16/2007. DATE'07, Pp. 1–6. Nice, France: IEEE. Publisher's VersionAbstract
Recent efforts to address microprocessor power dissipation through aggressive supply voltage scaling and power management require that designers be increasingly cognizant of power supply variations. These variations, primarily due to fast changes in supply current, can be attributed to architectural gating events that reduce power dissipation. In order to study this problem, the authors propose a fine-grain, parameterizable model for power-delivery networks that allows system designers to study localized, on-chip supply fluctuations in high-performance microprocessors. Using this model, the authors analyze voltage variations in the context of next-generation chip-multiprocessor (CMP) architectures using both real applications and synthetic current traces. They find that the activity of distinct cores in CMPs present several new design challenges when considering power supply noise, and they describe potentially problematic activity sequences that are unique to CMP architectures
Understanding voltage variations in chip multiprocessors using a distributed power-delivery network
2003
Russ Joseph, David Brooks, and Margaret Martonosi. 2/12/2003. “Control techniques to eliminate voltage emergencies in high performance processors.” In High-Performance Computer Architecture, 2/12/2003. HPCA-9 2/12/2003. Proceedings. The Ninth International Symposium on, Pp. 79–90. Anaheim, CA, USA: IEEE. Publisher's VersionAbstract
Increasing focus on power dissipation issues in current microprocessors has led to a host of proposals for clock gating and other power-saving techniques. While generally effective at reducing average power, many of these techniques have the undesired side-effect of increasing both the variability of power dissipation and the variability of current drawn by the processor This increase in current variability, often referred to as the dI/dt problem, can cause supply voltage fluctuations. Such voltage fluctuations lead to unreliable circuits if not addressed, and increasingly expensive chip packaging techniques are needed to mitigate them. This paper proposes and evaluates a methodology for augmenting packaging techniques for dI/dt with microarchitectural control mechanisms. We discuss the resonant frequencies most relevant to current microprocessor packages, produce and evaluate a "dI/dt stressmark" that exercises the system at its resonant frequency, and characterize the behavior of more mainstream applications. Based on these results plus evaluations of the impact of controller error and delay, our microarchitectural control proposals offer bounds on supply voltage fluctuations, with nearly negligible impact on performance and energy. With the ITRS roadmap predicting aggressive drops in supply voltage and power supply impedances in coming chip generations, novel voltage control techniques will be required to stay on track. Our microarchitectural dI/dt controllers represent a step in this direction.
Control techniques to eliminate voltage emergencies in high performance processors
2001
Russ Joseph, David Brooks, and Margaret Martonosi. 8/2001. “Live, runtime power measurements as a foundation for evaluating power/performance tradeoffs.” Workshop on Complexity Effectice Design WCED, held in conjunction with ISCA, 28.Abstract
Of the many ways one could gauge the complexity-effectiveness of a design or design element, one candidate approach is to consider a design's power/performance tradeoffs. This paper describes our early-stage results in a broad effort to evaluate the power-performance tradeoffs of a range of benchmarks and microarchitectures. In particular, this paper presents power data collected on-the-fly on real x86 machines as they execute carefully-constructed microbenchmarks. The microbenchmarks exercise aspects of the system such as data cache and branch predictor. They are parametrically-variable to consider how load dependence, cache miss rate, branch mispredict rate, and branch distance all impact the power and performance of a CPU. For example, from these experiments, we learn that CPU performance increases essentially monotonically with cache hit rate, while CPU power encounters a maximum at roughly 80-90% cache hit rates. Likewise, we show results demonstrating that performance-neutral issues such as bit populations in the data cache values can display interesting power trends. While the experimental results are preliminary, we feel that the techniques described in this paper will o er a useful foundation for a broad range of power/performance tradeoffs.