Exploring the design space of power-aware opto-electronic networked systems


Xuning Chen, Shiuan Peh, Gu Wei, Kai Huang, and Paul Prucnal. 2/12/2005. “Exploring the design space of power-aware opto-electronic networked systems.” In 11th International Symposium on High-Performance Computer Architecture, Pp. 120–131. San Francisco, CA, USA: IEEE. Publisher's Version


As microprocessors become increasingly interconnected, the power consumed by the interconnection network can no longer be ignored. Moreover, with demand for link bandwidth increasing, optical links are replacing electrical links in inter-chassis and inter-board environments. As a result, the power dissipation of optical links is becoming as critical as their speed. In this paper, we first explore options for building high speed optoelectronic links and discuss the power characteristics of different link components. Then, we propose circuit and network mechanisms that can realize power-aware optical links -links whose power consumption can be tuned dynamically in response to changes in network traffic. Finally, we incorporate power control policies along with the power characterization of link circuitry into a detailed network simulator to evaluate the performance cost and power savings of building power aware optoelectronic networked systems. Simulation results show that more than 75% savings in power consumption can be achieved with the proposed power aware optoelectronic network.
Last updated on 05/03/2022