Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings for Resilient Deep Learning Inference


Thierry Tambe, En-Yang, Zishen Wan, Yuntian Deng, Vijay Reddi, Alexander Rush, David Brooks, and Gu-Yeon Wei. 7/20/2020. “Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings for Resilient Deep Learning Inference.” In . San Francisco, CA, USA: Design Automation Conference (DAC 2020). Publisher's Version


Conventional hardware-friendly quantization methods, such asfixed-point or integer, tend to perform poorly at very low preci-sion as their shrunken dynamic ranges cannot adequately capturethe wide data distributions commonly seen in sequence transduc-tion models. We present an algorithm-hardware co-design centeredaround a novel floating-point inspired number format,AdaptivFloat,that dynamically maximizes and optimally clips its available dy-namic range, at a layer granularity, in order to create faithful encod-ings of neural network parameters. AdaptivFloat consistently pro-duces higher inference accuracies compared to block floating-point,uniform, IEEE-like float or posit encodings at low bit precision (≤8-bit) across a diverse set of state-of-the-art neural networks, ex-hibiting narrow to wide weight distribution. Notably, at 4-bit weightprecision, only a 2.1 degradation in BLEU score is observed on theAdaptivFloat-quantized Transformer network compared to totalaccuracy loss when encoded in the above-mentioned prominentdatatypes. Furthermore, experimental results on a deep neural net-work (DNN) processing element (PE), exploiting AdaptivFloat logicin its computational datapath, demonstrate per-operation energyand area that is 0.9×and 1.14×, respectively, that of an equivalentbit width NVDLA-like integer-based PE.


Best paper award
See also: Speech and NLP
Last updated on 04/20/2022