
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/254462703

XIOSim: power-performance modeling of mobile x86 cores

Article · July 2012

DOI: 10.1145/2333660.2333722

CITATIONS

15
READS

94

3 authors, including:

Gu-Yeon Wei

Harvard University

234 PUBLICATIONS 7,690 CITATIONS

SEE PROFILE

David C Brooks

Brigham and Women's Hospital

283 PUBLICATIONS 12,893 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gu-Yeon Wei on 18 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/254462703_XIOSim_power-performance_modeling_of_mobile_x86_cores?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/254462703_XIOSim_power-performance_modeling_of_mobile_x86_cores?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Harvard_University?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Brooks-12?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Brooks-12?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Brigham_and_Womens_Hospital2?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Brooks-12?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-1b19e3a2cfadbffedd092e33da6db453-XXX&enrichSource=Y292ZXJQYWdlOzI1NDQ2MjcwMztBUzoyMDg0NTU2MzA2MjY4MTZAMTQyNjcxMTEwMzA2OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

XIOSim: Power-Performance Modeling of Mobile x86 Cores

Svilen Kanev Gu-Yeon Wei David Brooks
Harvard University

33 Oxford St., Cambridge, MA
{skanev, guyeon, dbrooks}@eecs.harvard.edu

ABSTRACT
Simulation is one of the main vehicles of computer architec-
ture research. In this paper, we present XIOSim – a highly
detailed microarchitectural simulator targeted at mobile x86
microprocessors. The simulator execution model that we
propose is a blend between traditional user-level simulation
and full-system simulation. Our current implementation fea-
tures detailed power and performance core models which
allow microarchitectural exploration. Using a novel vali-
dation methodology, we show that XIOSim’s performance
models manage to stay well within 10% of real hardware for
the whole SPEC CPU2006 suite. Furthermore, we validate
power models against measured data to show a deviation of
less than 5% in terms of average power consumption.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance, Measurement, Experimentation

Keywords
simulation, x86, power-performance, in-order

1. INTRODUCTION
Architecture simulation has been used extensively both in

the early stages of a processor design and in architecture
research. During the design process, performance estimates
from simulations of various levels of detail are used to moti-
vate architectural decisions. Simulators are also heavily used
research tools, because they provide a relatively inexpensive
means of exploring new ideas.

After power has established itself as a significant metric in
microprocessor design, there has been a tendency to produce
simpler cores because of their better performance per watt.
Simple, in-order cores have been the norm for mobile appli-
cations, but recent industrial designs [10, 14, 15] explore the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, CA, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07 ...$10.00.

opportunity of using multiple such cores for parallel work-
loads found in datacenters, multimedia or networking. The
simulator we developed, XIOSim, is intended as an inte-
grated model of such simple in-order cores. Unlike other
microarchitectural simulators used in the research commu-
nity [2, 3], XIOSim targets the IA-32 instruction set due to
its widespread adoption. To the best of our knowledge, it
is the only publicly available (http://xiosim.org) detailed
microarchitectural model of in-order IA-32 cores.

Genealogically, XIOSim was derived from the Zesto x86
user-level simulator [8], which in turn originates from Sim-
pleScalar [3]. XIOSim extends the Zesto framework by pro-
viding a different, binary instrumentation-based functional
execution model, a detailed in-order core model, and by in-
tegrating very closely with the McPAT power models [7] for
producing power consumption traces.

In relation to other architectural simulators, we believe
XIOSim has a niche in the design space. As opposed to
other frameworks that support the IA-32 instruction set [2,
11, 16], it is not geared towards full-system simulation, but
rather focuses on user-level, CPU-intensive workloads in iso-
lation. Furthermore, its core models, albeit slower, are very
detailed and strive for accuracy. While we do not go as far
as to claim cycle-accuracy, such a level of detail allows us
to validate the simulator against a real machine with Intel
Atom cores across a statistically significant sample of the
29 SPEC CPU2006 benchmarks. This allows architectural
exploration that is grounded on current industrial designs.

Finally, XIOSim’s execution model can support executing
workloads that are out of reach for traditional user-level sim-
ulators. By using the host hardware as a functional model,
it can continue correct simulation in the presence of instruc-
tions or system calls that are not explicitly supported by the
performance model. Thus, in implementing XIOSim there
is no need for heroics such as modelling every instruction
in the complex IA-32 instruction set, or explicitly capturing
every POSIX system call.

In order to make sure that XIOSim is reasonably accurate,
we have developed a validation methodology that enables
comparing performance and power characteristics of short
benchmark fragments. This allows us to compare power
and performance of the exact same instruction sequences
both running on real hardware and being simulated with a
significant slowdown. Doing such a comparison eliminates
the need for sampled fragments to be representative of full
program execution and allows for a fair validation procedure.

The contributions of this paper are as follows:

• A simulator execution model that executes instruc-

http://xiosim.org

Pin

VM

Pin

VM

Un-core Un-core

Workload Workload

User-level VM User-level VM

Power Power

Host /

OS

Host /

OS

Core

Figure 1: XIOSim execution model.

tions on the host hardware and observes their effects
through binary instrumentation.

• A detailed methodology for validating simulators against
real hardware based on running full benchmarks, even
under a significant speed difference.

• A publicly available very detailed performance model
for in-order IA-32 cores, augmented with a power model.

In the beginning of this paper, Section 2 motivates a sim-
ulator execution model based on instrumenting instructions
running on real hardware. Section 3 describes a mobile IA-
32 core model that runs under this execution model. Sec-
tion 4 describes the extensive validation methodology that
we used while developing the power/performance models for
XIOSim and finally, Section 5 presents validation results.

2. EXECUTION MODEL
The simulator execution model we propose is a mixture

between traditional user-level simulation and full-system sim-
ulation. XIOSim is a user simulator in that it does not model
instructions past system call boundaries. However, it runs
as a pintool, under the Pin virtual machine [9], which trans-
lates application instructions to run natively on the simula-
tion host.

Figure 1 sketches out this execution model showing the in-
teractions between functional, performance and power sim-
ulation. The user-level workload is run under Pin control,
with the Pin VM instrumenting every instruction and cap-
turing the host machine state immediately before it. That
instruction context is passed to the performance model, which
is expecting it at the fetch stage of the modelled pipeline,
effectively achieving execute-at-fetch semantics. At certain
cycle intervals, simulated statistics are aggregated and passed
to a modified version of McPAT [7] to create a power con-
sumption trace.

The closest analog to this execution model is implemented
in PTLSim [16] and MARSS [11]. In these simulators, the
performance model is run as an extension to a system-level
virtual machine monitor or a full-system emulator. In our
approach, keeping the simulator completely in user-level,
while limiting the scope of benchmarks whose performance
will be accurately modeled, is beneficial from a simplicity
and a stability point of view. Full-system simulators need
to run a complete OS image, virtual device drivers, etc., all

bpred byteQ pre-decode IQ decode μopQ

IL1 MS

Figure 2: Front-end pipeline model.

of which affect simulation accuracy and reliability. For mi-
croarchitectural studies, it is often beneficial to ignore such
behavior and only focus on the characteristics of the bench-
mark under test in isolation.

Furthermore, this model has benefits over traditional user-
level simulation. First, all system code, including system call
handling, is directly executed on the host, freeing up the sim-
ulator from implementing a pass-through layer and keeping
up with relatively fast-changing system call interfaces. This
allows simulating a broader range of applications than tra-
ditional user-level simulation, where system call support is
typically added based on the popularity of the particular
call. For example, this has allowed us to simulate work-
loads under the ILDJIT user-level virtual machine [4] that
translates CIL bytecode in IA-32 instructions.

Second, by running under an instrumentation engine, the
performance model does not require a complete or correct
functional model in order to maintain the correct execution
of the workload. Since instructions are executed on native
hardware, the performance model can only observe their ef-
fects without explicit knowledge of instruction semantics.
This allows continuing execution even after encountering es-
oteric unsupported instructions, which is especially impor-
tant for simulating a complex and constantly evolving in-
struction set like IA-32.

Finally, this execution model allows for close-to-native
speeds of execution of code outside simulation regions of
interest. This enables efficient skipping of non-interesting
benchmark phases and integration with statistical sampling
tools, such as the SimPoint-based PinPoints [12].

The major disadvantage with such an approach comes
from speculative execution. Pin cannot instrument instruc-
tions on a speculative path since by definition they are not
visible above the architecture level of abstraction. In order
to deal with that, XIOSim keeps a legacy functional model
that is only used on speculative paths. On simulating a mis-
predicted branch, this functional model is invoked, and the
simulated core continues utilizing it until the branch is re-
solved in the execute portion of the pipeline. At this point,
the functional model is switched back to the instrumenta-
tion engine. Note that, to ensure correctness, the legacy
functional model does not need to be completely correct or
accurate, since the mispredicted branch will get resolved re-
gardless of the instructions on the speculative path.

3. PERFORMANCE MODEL
In this section, we describe the in-order core performance

model used in XIOSim. Overall, we model an in-order,
multi-issue x86 core, a proxy for Atom-style microarchitec-
tures [5]. Its pipeline is typically deeper than the ones found
in mobile cores, partially due to the complexities involved
in decoding a variable-length ISA, as well as due to the de-
sire for efficiently handling CISC instructions with memory

AGU LD

DL1

AGU

IEU/ SEU/ FP

IEU/ JEU/ FP

alloc

issue

exec

wait-IO

ST

pre-commit commit

DL1

Figure 3: Back-end pipeline model, configured to model an
Atom-like architecture.

operands without out-of-order execution.
The front-end model, as seen in Figure 2, is typical for

an IA-32 architecture. The pipeline starts with branch pre-
diction, which directs accesses to the instruction cache. It
continues with explicit pre-decode stages, whose aim is to
predict instruction boundaries in the raw byte stream that
was fetched. Pre-decoded instructions then propagate to the
asymmetrical decoders, which break the possibly complex
instructions into RISC-like µ-ops. The decoders can process
multiple instructions in parallel, in order to keep the rest of
the multiple-issue pipeline occupied. Complex instructions
are sent to the micro-sequencer for decoding, which incurs
an additional penalty of several cycles.

The decoders make heavy use of µ-op fusion – combin-
ing multiple µ-ops from a single instruction, such that they
progress together through the pipeline, not incurring addi-
tional latency and occupying less space in queue structures.
Out-of-order x86 microarchitectures have traditionally used
load-op fusion, which combines a load with its dependant
subsequent operation. In a deep in-order pipeline not in-
curring latency costs is even more important and fusion can
be applied more aggressively – combining loads, their de-
pendant operations and a store from a complex, memory-
reference instruction. This results in being able to execute
a large fraction of instructions in a CISC-like fashion.

Decoded and possibly fused µ-ops then enter the alloca-
tion stages of the pipeline (see Figure 3), where they access
the register file, and get assigned to an execution port based
on functional unit availability and port loading. Because de-
coding latencies can vary and different execution ports can
stall independently of each other, there is an explicit in-order
synchronization point at the end of the allocation pipeline.
Its purpose is to enforce program order of µ-ops entering the
execution ports, so that data dependencies can be observed
without any of the complexities of an out-of-order pipeline.

Once in an execution port, µ-ops go through issue stages,
mostly dedicated to memory accesses. These include address
generation, load dispatch and return from the data cache.
Having dedicated pipeline stages for processing loads is in
unison with µ-op fusion, effectively achieving a zero-cycle
load-to-use penalty for load-op or load-op-store fusions.

There is another in-order synchronization point at the end
of the issue stages. Since all execution latencies after it are
deterministic, this point ensures that µ-ops are properly se-
rialized for in-order commit. Once executed and serialized,
µ-ops enter a pre-commit pipeline stage which models ex-
ception handling. Then they follow to the commit buffer,
where stores are sent to the data cache and individual µ-ops
are composed back to macro instructions in order to commit

2.8

2.6

2.4

2.2

2.0

P
o

w
e

r
(W

)

1.61.20.80.40.0

Time (s)

(a) 453.povray

2.8

2.6

2.4

2.2

2.0

P
o

w
e

r
(W

)

1.41.21.00.80.60.40.20.0

Time (s)

(b) 447.dealII

Figure 4: Power traces with qualitatively different behavior,
but similar average power.

atomically, observing instruction boundaries.

4. VALIDATION METHODOLOGY
We will show that the performance model described ear-

lier can be configured to match a real design and is therefore
useful as a performance exploration tool, as well as a power
model driver. We start by presenting the extensive valida-
tion methodology that we used for developing XIOSim.

4.1 Fine-grained comparison
The major difficulty in validating a detailed model against

real hardware arises from the discrepancy in speed. While
real hardware can often commit instructions at rates of 10s
billions instructions per second (BIPS), a detailed perfor-
mance model typically achieves 10-100s kilo-instructions per
second (KIPS). Simulating full real-world benchmarks is there-
fore prohibitively slow and a sampling approach has to be
used. This presents two possible reference points for the
sampled benchmark run: (i) either data gathered from the
full benchmark execution, or (ii) collected data from a sim-
ilarly sampled run on a real machine.

The first approach is conveniently simple, but has sev-
eral issues. First, when doing sampling, the short execution
slices are selected with a particular metric in mind. For ex-
ample, SimPoints [13] targets end performance and the se-
lected slices can be used to estimate the full program’s execu-
tion time. However, this does not guarantee that SimPoint-
derived slices are representative of the full program’s branch
behavior or power consumption, since these metrics are not
always strongly correlated with performance.

Furthermore, even when used with the appropriate metric,
the predictions from sampling are within some confidence in-
terval of the full-length values. Patil et al. [12] demonstrate
that this error can be as high as 10% for predicting CPI with
SimPoints. This makes it impossible to separate simulator
errors from sampling errors in a validation scenario.

For these reasons, we choose the second validation ap-
proach. Since sampling is inevitable when dealing with the
slowdown of detailed simulation, we do sample with end per-
formance in mind for our simulated runs. For the reference
runs on a real machine, we use a very similar sampling ap-
proach, making sure we gather data only during the same
instruction intervals that are simulated. The difficulty in
this case lies in gathering data for a short period (mea-
sured in millions of instructions) without either modifying
the workload source code, or perturbing the experiment with
the measurement code.

Without source modification, one can use binary instru-
mentation to trigger the appropriate measurements once ex-
ecution reaches the simulated region. However, the instru-
mentation must be light enough in order not to introduce

Figure 5: Sample power trace corresponding to a single slice
between power markers. Inset shows an expanded view of
the pattern used for marking the start and end of slices.

errors in measurements on the host machine. For exam-
ple, in the Pin virtual machine even inserting a simple basic
block counting instrumentation routine can have overheads
in execution time on average exceeding 100% [9].

In order not to pay this penalty, we use Pin to insert
lightweight trampolines that effectively replace routines of
interest with versions that have thin instrumentation code
inserted. The instrumentation code tracks function call counts
and determines when it is appropriate to start or stop data
collection. The routines of interest are defined as the closest
ones to the beginning and the end of simulation slices, as
identified by SimPoints, and the target call counts for them
are gathered during an initial profiling run.

The stub code that we insert is a hand-optimized assembly
sequence tracking the number of times the routine has been
called and toggling data capture when appropriate. The
measured average instruction overhead of this scheme over
the SPEC CPU2006 suite is 0.7%. For performance valida-
tion, the stub code triggers performance counter collection
on the host machine through the Linux perfmon2 interface.
Its behavior in power validation mode is described in the
following section.

4.2 Targeting power
Measurement setup. Our particular power capture sys-

tem taps in the processor 12V power supply line and mea-
sures current consumption through a low-impedance high-
precision sense resistor. At a fixed nominal supply voltage
this provides enough data to capture processor power con-
sumption. The traces are collected using a high-end Aglient
DSA-91304A oscilloscope and a DSA-3100 differential probe.
Trace collection is triggered remotely over the network. The
high-end collection system allows us to gather power traces
for a short amount of time with enough resolution to cap-
ture intra-slice power behavior. The sampling rate used in
the following experiments is set to 160 kHz.

The benefit of being able to capture single execution slices
can be seen in Figure 4, which shows power traces for sam-
ples of the SPEC benchmarks 453.povray and 447.dealII. If
we average power over all execution slices, the difference be-
tween the two benchmarks is only 4%. However, in order
to perform any meaningful power validation, we need to be
able to capture and compare individual slice behavior for
benchmarks like 447.dealII.

Aligning code and measurements. Since executing a single
sampled slice on a real machine can take time on the order

of 10ms, which is comparable to the network delay to trigger
power capture, explicit measures have to be taken to syn-
chronize the power trace collection with the slice execution.
We use the low-overhead instrumentation described in Sec-
tion 4.1 to insert power markers at the beginning and end
of a sampled slice. The markers are repeating sequences of
a hand-crafted power virus instance (derived from CPUB-
urn and modified for an in-order pipeline) and suspending
the core by executing a usleep() system call. By sand-
wiching the slice execution with long enough markers, we
can mitigate the various variable delays and latencies in the
measurement system and be also sure that the correct execu-
tion slice has been captured. A sample trace captured with
this methodology is shown in Figure 5, with two iterations
of a power marker in the inset.

In a post-processing step, the power markers are program-
matically removed from the collected trace, so that only the
slice region-of-interest is accounted for. The marker removal
algorithm operates by searching for the specific frequency
footprint of the power markers.

5. VALIDATION RESULTS
We applied the validation methodology described in the

previous section to the XIOSim implementation. Measure-
ments were performed on a real system with a dual-core
Intel Atom 330 processor, with only one core active. Hyper-
threading was also disabled during all experiments.

Since XIOSim focuses on detailed modeling of the core
microarchitecture, the benchmark suite we use is the CPU-
centric SPEC CPU2006 [1]. The sampled slices are collected
using PinPoints [12], with a slice length of 100M instruc-
tions. Over the whole benchmark suite, this results in ≈500
slices, totalling ≈50B simulated instructions.

5.1 Performance
The in-order performance model is reasonably accurate.

This is demonstrated in Figure 6. It shows measured ver-
sus simulated data for overall IPC, as well as for the major
microarchitectural events. The dashed unit lines in each
subplot represent the ideal case, and each circle marker is
measured from a single 100M instruction execution slice. In
an ideal, cycle-accurate model, all markers should be clus-
tered along the unit lines.

Figure 6a shows that the performance model tracks end-
to-end performance with satisfactory accuracy – the geo-
metric mean of the IPC error over all slices is 11.02%. Fur-
thermore, if we take into account the relative importance of
each slice as computed by SimPoints, the mean IPC error
decreases to 7.67%. Looking at the distribution of markers
in Figure 6a, the simulator is not systematically underesti-
mating or overestimating end performance.

The relative accuracy in predicting individual microar-
chitectural events is lower, as seen by Figures 6b-6f. For
example, the average error in instruction cache miss rates
(Figure 6e) is as high as 74%. The explanation of this dis-
crepancy comes from the absolute values of these events –
they are often small numbers. In that case, the error be-
tween a simulated miss rate of 0.1% and a measured rate
of 0.2% is 50%, but the end impact on performance is in-
significant because both rates are sufficiently small. This is
especially true for miss rates in the instruction cache and
the TLB, which are, on average 0.3% and 0.7%.

While most of the event errors also appear unbiased to-

1.0

0.8

0.6

0.4

0.2

0.0

M
e

a
s
u

re
d

 I
P

C

1.20.80.40.0

Simulated IPC

err = 11.02 % errweighted = 7.67 %

(a)

100

80

60

40

20

0

M
e

a
s
u

re
d

 L
2

 m
is

s
 r

a
te

 (
%

)

100806040200

Simulated L2 miss rate (%)

err = 32.27 % errweighted = 41.50 %

(b)

160

140

120

100

80

60

40

20

0

M
e

a
s
u

re
d

 b
ra

n
c
h

 M
P

K
I

16012080400

Simulated branch MPKI

err = 27.53 % errweighted = 25.79 %

(c)

20

15

10

5

0

M
e

a
s
u

re
d

 D
T

L
B

 m
is

s
 r

a
te

 (
%

)

20151050

Simulated DTLB miss rate (%)

err = 25.29 % errweighted = 29.76 %

(d)

6

5

4

3

2

1

0

M
e

a
s
u

re
d

 I
L

1
 m

is
s
 r

a
te

 (
%

)

6543210

Simulated IL1 miss rate (%)

err = 74.87 % errweighted = 77.40 %

(e)

60

50

40

30

20

10

0

M
e

a
s
u

re
d

 D
L

1
 m

is
s
 r

a
te

 (
%

)

6050403020100

Simulated DL1 miss rate (%)

err = 66.57 % errweighted = 84.61 %

(f)

Figure 6: Comparison of microarchitectural statistics between performance counter measurements and simulation for execution
slices of the SPEC CPU2006 suite.

ward under-counting or over-counting, there are two dis-
tinct clusters of slices in Figure 6c and Figure 6e, where the
simulator underestimates branch mispredictions and overes-
timates instruction cache misses. Most of those slices can
be traced to the benchmark 445.gobmk, which has been
shown to have high branch misprediction rates [6]. On a
real machine, the higher number of branch misses can have
a prefetcher-like effect explaining the lower miss rates in the
instruction cache.

5.2 Power
It is reasonable to expect that the power model is less

accurate than the performance model. We first show that
it can qualitatively track benchmark behavior on a real ma-
chine. We then go on to validate the quantitative predictions
for power consumption, starting with leakage estimates, and
continuing with the sum of static and dynamic power.

Workload tracking. The methodology described in Sec-
tion 4.2 allows us to demonstrate that the power model can
adequately track workload-related activity. Figure 7 shows
that by comparing measured versus simulated power con-
sumption for the benchmarks 400.perlbench and 401.bzip2.
Vertical lines denote execution slice boundaries. Even though
the two benchmarks show qualitatively very different power
profiles, XIOSim’s power model tracks the shape of both rel-
atively well. As with any model, the synchronization is not
perfect – for example, notice how the first simulated slice of
400.perlbench finishes significantly before its corresponding
measured slice. In this particular instance, the misalignment

comes from a large IPC error in the performance model,
which predicts execution time wrongly.

Leakage. In order to quantify the model accuracy, we start
by estimating the leakage of our real machine with a sim-
ple experiment. While our test processor is executing an
instance of the power virus, we scale the frequency from the
maximum supported 1600 MHz to the minimum 200 MHz
at 200 MHz increments, measuring average power consump-
tion at each step. Since we are only scaling frequency and
not voltage, power consumption scales linearly, and we can
estimate the static power as the portion independent of fre-
quency in a linear fit.

Performing this experiment, we estimated that the Atom
330 consumes 1.79 W static power. Our power model leak-
age estimate is 1.4 W. However, it does not include any over-
heads associated with simultaneous multi-threading (SMT).
Even though we keep SMT disabled through our experi-
ments, it still incurs a leakage cost because it requires ad-
ditional queues and buffers, or additional access ports to
existing structures. Intel data [5] suggests that the power
cost of adding SMT to an Atom core is 15%. Adding this
overhead to our leakage estimates results in 1.61 W in static
power, which is within 10.1% of the measured value. It is
logical that the model underestimates static power – a real
design includes components that are not explicitly modelled,
such as PLLs, bus drivers and memory buses, which could
consume a non-ignorable amount of energy.

Total power. After incorporating the leakage correction

2.6

2.4

2.2

2.0

1.8

P
o

w
e

r
(W

)

0.50.40.30.20.10.0

Time (s)

 Measured Simulated

(a) 400.perlbench

2.6

2.4

2.2

2.0

1.8

P
o

w
e

r
(W

)

1.21.00.80.60.40.20.0

Time (s)

 Measured Simulated

(b) 401.bzip2

2.6

2.4

2.2

2.0

1.8

M
e
a
s
u
re

d
 p

o
w

e
r

(W
)

2.62.42.22.01.8

Simulated power (W)

err = 4.18 %

(c) Aggregate for CPU2006

Figure 7: Comparing measured and simulated power consumption for execution slices of SPEC CPU2006.

for SMT, we can look at total processor power across bench-
marks. We collapse the dynamic behavior of each execution
slice to a single average power value and compare measured
and predicted per-slice average power in a manner similar
to Section 5.1. Figure 7c shows the results of this validation
procedure. The geometric mean power error is only 4.18%
(after accounting for SMT). However, as seen in Figure 7c,
a large fraction of execution slices cluster around an average
power consumption of 2.2 W. We attribute this low vari-
ability to the fact that the core under test is in-order and
relatively simple.

From Figure 7c, we can clearly notice that the simula-
tion systematically underestimates power consumption. As
discussed in the previous paragraph, this is expected behav-
ior, since we do not model all components on a real system.
There is a distinctive set of slices with measured power be-
tween 2.4 and 2.6 W which correlate very poorly with sim-
ulation results. One such example is the 7-th slice in Fig-
ure 7b. We have not been able to identify the reason for
the discrepancy, but possible candidates are the operating
system timer triggering on the real system, or the voltage
regulator triggering a feedback loop.

6. CONCLUSION
With the growth of the mobile sector, simple power-efficient

cores are becoming increasingly more relevant, even with in-
struction sets as IA-32 that have been traditionally reserved
for high-performance, high-power domains. We have pre-
sented XIOSim – a simulation tool that is able to model the
power and performance of such cores. In order to validate
its correctness, we have developed a rigorous methodology
and an experimental setup that allows comparing the same
execution slices on a real machine and in simulation.

This paper explicitly focuses on single-core modelling and
validation, leaving the multi-core case for future work. In
the near future, we are planning to extend our simulation
methodology and infrastructure to be able to handle hetero-
geneous multi-core configurations, keeping true to a rigorous
validation approach.

Acknowledgements
This work was partially supported under SRC contracts
with task ID 1814 and 1973, as well as partially supported
by National Science Foundation grants CCF-0903437, CSR-
0720566 and CCF-0702344. Any opinions, findings, conclu-

sions, or recommendations expressed are those of the authors
and do not necessarily reflect the views of the SRC or NSF.

7. REFERENCES
[1] SPEC CPU2006, http://www.spec.org/cpu2006/.
[2] N. Binkert et al. The GEM5 simulator. ACM SIGARCH

Computer Architecture News, 2011.
[3] D. Burger and T. Austin. The SimpleScalar tool set, v. 2.0.

ACM SIGARCH Computer Architecture News, 1997.
[4] S. Campanoni et al. A highly flexible, parallel virtual

machine: design and experience of ILDJIT. Softw., Pract.
Exper.

[5] G. Gerosa et al. A Sub-1W to 2W Low-Power IA Processor
for Mobile Internet Devices and Ultra-Mobile PCs in 45nm
Hi- κ Metal Gate CMOS. In 2008 IEEE International
Solid-State Circuits Conference.

[6] A. Kejariwal et al. Comparative architectural
characterization of SPEC CPU2000 and CPU2006
benchmarks on the intel Core2 Duo processor. 2008
International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation.

[7] S. Li et al. McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore
architectures. In 42nd International Symposium on
Microarchitecture (MICRO-42), 2010.

[8] G. H. Loh and S. Subramaniam. Zesto: A Cycle-level
Simulator for Highly Detailed Microarchitecture
Exploration. 2009 IEEE International Symposium on
Performance Analysis of Systems and Software.

[9] C.-K. Luk et al. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In PLDI
’05: Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation.

[10] H. McGahn. Niagara 2 Opens the Floodgates.
Microprocessor Report, 2006.

[11] A. Patel et al. MARSS: A full system simulator for
multicore x86 CPUs. In Design Automation Conference
(DAC), 2011.

[12] H. Patil et al. Pinpointing Representative Portions of Large
Intel Itanium Programs with Dynamic Instrumentation. In
37th International Symposium on Microarchitecture
(MICRO-37), 2004.

[13] T. Sherwood et al. Automatically characterizing large scale
program behavior. In 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

[14] S. Vangal et al. An 80-tile Sub-100-W Teraflops processor
in 65nm CMOS. IEEE Journal of Solid-State Circuits,
2008.

[15] D. Wentzlaff et al. On-chip Interconnection Architecture of
the Tile Processor. IEEE Micro, 2007.

[16] M. Yourst. PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. In International Symposium
on Performance Analysis of Systems & Software, 2007.

View publication statsView publication stats

http://www.spec.org/cpu2006/
https://www.researchgate.net/publication/254462703

	Introduction
	Execution Model
	Performance Model
	Validation Methodology
	Fine-grained comparison
	Targeting power

	Validation Results
	Performance
	Power

	Conclusion
	References

