wo 2010/093750 A2 I 10K 0 OO 0RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/093750 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
19 August 2010 (19.08.2010) PCT
(51) International Patent Classification:
GO6F 1/28 (2006.01)
(21) International Application Number:
PCT/US2010/023829
(22) International Filing Date:
11 February 2010 (11.02.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/151,936 12 February 2009 (12.02.2009) US
(71) Applicant (for all designated States except US): PRESI-
DENT AND FELLOWS OF HARVARD COLLEGE
[US/US]; 17 Quincy Street, Cambridge, MA 02142 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): REDDI, Vijay,

Janapa [IN/US]; 345 Harvard St #1D, Cambridge, MA
02138 (US). GUPTA, Meeta, Sharma [IN/US]; 6 Sol-
diers Field Park, apt 519, Boston, MA 02163 (US). HOL-
LOWAY, Glenn [US/US]; 988 Memorial Dr, Apt 188,
Cambridge, MA 02138-5735 (US). WEIL, Gu-Yeon [KR/
US]J; 173 Pleasant St. #404, Cambridge, MA 02139 (US).
SMITH, Michael, D. [US/US]; 1 Taylor Lane, Lexing-
ton, MA 02420 (US). BROOKS, David [US/US]; 15
Gold Star Rd., Cambridge, MA 02140 (US).

(74) Agent: DEWITT, Timothy, R.; 24IP Law Group USA,
PLLC, 12 E. Lake Dr., Annapolis, MD 21403 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: ADAPTIVE EVENT-GUIDED SYSTEM AND METHOD FOR AVOIDING VOLTAGE EMERGENCIES

340

—

N

330
% C
X
el it . :
~~~~~ P i Lay
s \\ Processor Everits Triggering Layer
{ y 1
] Ao H
H
/AM‘ Manitar el ErTIETgENCY Harndler
Sy Currentsvoltage BrHEncy
) C
Rallbimck 310
: F
Fail-3afe Mechanism

\
320J

FIG. 3

(57) Abstract: In a preferred embodiment, the present invention is a system for avoiding voltage emergencies. The system com-
prises a microprocessor, an actuator for throttling the microprocessor, a voltage emergency detector and a voltage emergency pre-
dictor. The voltage emergency detector may comprise, for example, a checkpoint recovery mechanism or a sensor. The voltage
emergency predictor of a preferred embodiment comprises means for tracking control flow instructions and microarchitectural
events, means for storing voltage emergency signatures that cause voltage emergencies, means for comparing current control flow
and microarchitectural events with stored voltage emergency signatures to predict voltage emergencies, and means for actuating
said actuator to throttle said microprocessor to avoid predicted voltage emergencies.



10

15

20

25

WO 2010/093750 PCT/US2010/023829

ADAPTIVE EVENT-GUIDED SYSTEM AND METHOD FOR AVOIDING VOLTAGE
EMERGENCIES

INVENTORS: VIJAY JANAPA REDDI, MEETA S. GUPTA, GLENN HOLLOWAY, GU-
YEON WEI, MICHAEL D. SMITH, and DAVID BROOKS

CROSS-REFERENCE TO RELATED APPLICATIONS

N
Yy

W31} The present application claims the benefit of the filing date of U.S. Provisional Patent

N
IRy
A

Application Serial No. 61/151,936 filed by the present inventors on February 12, 2009.

{83t The aforementioned provisional patent application is hereby incorporated by reference in
its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

s

{3883 This invention was made with government support under CCF-0429782 and CSR-0720566

awarded by the National Science Foundation. The government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Field Of The Invention
19884t The present invention relates to systems and methods for predicting current swings that can
cause the voltage in a microprocessor to fluctuate beyond safe levels and for avoiding such

swings..

Brief Description Of The Related Art

N} Power-constrained CMOS designs are making it increasingly difficult for microprocessor
designers to cope with power supply noise. As current draw increases and operating voltage
decreases, inductive noise threatens the robustness and limits the clock frequency of high-
performance processors. Large current swings over small time scales cause large voltage swings in
the power-delivery subsystem due to parasitic inductance. A significant drop in supply voltage can

cause timing margin violations by slowing logic circuits. For reliable and correct operation of the



10

15

20

WO 2010/093750 PCT/US2010/023829

processor, voltage emergencies, i.c., large voltage swings that violate noise margins, must be
avoided.

1)) The traditional way to deal with inductive noise is to over-design the processor to allow for
worst-case fluctuations. Unfortunately, the gap between nominal and worst case operating
conditions in modern microprocessor designs is growing. A recent paper on supply-noise analysis
for a POWERG6 processor shows the need for timing margins that accommodate voltage
fluctuations of more than 18% of nominal voltage (200mV dips at a nominal voltage of 1.1V). N.
James, P. Restle, J. Friedrich, B. Huott, and B. McCredie, “Comparison of Split-Versus
Connected-Core Supplies in the POWER6 Microprocessor,” ISSCC 2007 (2007). Such

conservative operating voltage margins ensure robust operation of the system, but can severely

degrade performance due to the lower operating frequencies.

1 The power ceiling in modern microprocessors presents a major challenge to continued
performance scaling. Power reduction techniques such as clock gating, when aggressively applied
to constrain power consumption, can lead to large current swings in the microprocessor. When
coupled with the non-zero impedance characteristics of power delivery subsystem, these current
swings can cause the voltage to fluctuate beyond safe operating margins. Such events, called
“voltage emergencies,” have traditionally been dealt with by allocating sufficiently large timing
margins. Unfortunately, on-chip voltage fluctuations and the margins they require are getting
worse. Given the direct impact of voltage on circuit delay, intermittent voltage droops, past a
lower operating margin, can slow down logic delay paths and lead to timing violations. Voltage
spikes that exceed an upper margin can cause long-term reliability issues. Hence, modern designs

impose conservative operating voltage margins to avoid these voltage emergencies and guarantee



10

15

20

WO 2010/093750 PCT/US2010/023829

correct operation in the microprocessor. However, large margins translate to inefficient energy
consumption and lower performance.

{MSE A number of throttling mechanisms have been proposed to dampen sudden current swings,
including frequency throttling, pipeline freezing, pipeline firing, issue ramping, and changing the
number of the available memory ports. However, such mechanisms require a tight feedback loop
that detects an imminent violation and then activates a throttling mechanism to avoid the violation.
The detectors are either current sensors or voltage sensors that trigger when a soft threshold is
crossed, indicating a violation is likely to occur. Unfortunately, the delay inherent in such
feedback loops limits effectiveness and necessitates margins sufficiently large to allow time for
the loop to respond.

1M A typical sensor-based proposal uses a tight feedback loop like that shown in FIG. 1(a).
The loop includes a sensor that tries to detect impending emergencies and a throttling actuator that
tries to avoid them. The sensor relies on a soft current or voltage threshold as a “canary”. Crossing
that threshold means that voltage is approaching its lower margin, so the actuator turns on
throttling until the crisis is past. Proposed throttling schemes range from frequency throttling, to
pipeline freezing/firing, to issue ramping, and altering the number of accessible memory ports.
The behavior of the feedback loop is determined by two parameters, the setting of the soft
threshold level and the delays around the feedback loop. Unfortunately, choosing those parameters
to accommodate reduced operating margins is thwarted by correctness failures and/or performance
penalties.

W8 FIG. 1(b) illustrates the use of a soft threshold to throttle execution and prevent an
emergency. The graph shows voltage waveforms with and without sensor-based throttling

(Throttled Execution and Uncorrected Execution, respectively). The solid horizontal line marked



10

15

20

WO 2010/093750 PCT/US2010/023829

Aggressive Soft Threshold indicates the threshold at which a voltage sensor starts to take action to
prevent an emergency. Setting the soft threshold aggressively (i.e., close to the lower operating
margin) requires a very fast reaction by the sensor and actuation system. Failure to respond
quickly enough results in a voltage emergency. In FIG. 1(b), the voltage starts to recover under
throttling, but not in time to avoid crossing the lower operating margin.

{8111 FIG. 2(a) shows the sensitivity of sensor-based mechanisms to feedback loop delays by
plotting the number of emergencies that go unsuppressed in our benchmark suite as a function of
sensor-loop delay times. The graph assumes the soft threshold to be 3% below the nominal voltage
and the lower operating margin to be 4% below nominal. Feedback loop delays ranging between 0
and 5 cycles would require a nearly perfect sensor. Yet even a 2-cycle delay causes 50% of all soft
threshold crossings to violate the simulated microprocessor’s minimum operating margin
specification. In other words, fail-safe execution is not possible at this margin using sensor-based
schemes, as they cannot operate in a timely manner.

1112} To accommodate slow sensor response times and ensure that throttling effectively prevents
emergencies, sensor-based schemes can use conservative soft thresholds. Lifting the soft threshold
away from the lower operating margin, as illustrated by the Conservative Soft Threshold in FIG.
I(c), gives the throttling system more time to prevent an emergency. But as the Uncorrected
Execution waveform in FIG. 1(c) shows, even in the absence of throttling, a soft threshold
crossing may not be followed by an emergency. Throttling execution in such cases decreases
performance without any compensating benefit. The more conservative the soft threshold setting,
the greater the performance penalty. FIG. 2(b) shows that this penalty can be quite large.
Assuming an ideal sensor with no feedback loop delay (i.e., O-cycle sensor delay), the percentage

of benign soft threshold crossings is between 77% and 58% for soft thresholds ranging from 2% to



10

15

20

WO 2010/093750 PCT/US2010/023829

3%. So even if it were possible to design a feedback loop with no delay, the large performance
penalties would deter architects from reducing operating margins.

N

{3t A sensor-based scheme proposed by Powell and Vijaykumar reduces sensitivity to
feedback loop delay by focusing on voltage emergencies that are the result of resonating patterns.
See M. Powell and T. N. Vijaykumar, “Exploiting Resonant Behavior to Reduce Inductive Noise,”
1SCA, 2004. While resonance-induced emergencies are dominant for some packages, recent work
by Gupta et al. illustrates that non-resonant (pulse) events are also a major source of emergencies
across a range of packages. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks,
“DeCoR: A Delayed Commit and Rollback Mechanism for Handling Inductive Noise in
Processors,” HPCA 08 (2008). James et al. have observed isolated (non-resonant) pulses in a
POWERG6 chip implementation. N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie,
“Comparison of Split-Versus Connected-Core Supplies in the POWER6 Microprocessor,” ISSCC
2007 (2007). And Kim et al. show that resonant emergencies are likely to become less important
than isolated pulses in future chip multi-processors with on-chip voltage regulators, as package
inductance effects are decoupled from the power grid via on-chip regulators. W. Kim, M. S.
Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast, per-core dvfs using on-chip
switching regulators,” HPCA (2007). Therefore, to realize the benefits in improved energy

efficiency or performance that reduced margins can enable, new solutions are needed that cope

with both resonant and non-resonant voltage emergencies in future systems.

41 Another way to handle inductive noise is to design the processor for typical-case operating
conditions and add a fail-safe mechanism that guarantees correctness despite noise margin
violations. This strategy can improve performance, but only if the cost of using the fail-safe

mechanism is not too high. However, the coarse-grained checkpointing intervals of traditional



10

15

20

WO 2010/093750 PCT/US2010/023829

checkpoint-recovery schemes (between 100 and 1000 cycles) translate to unacceptable
performance penalties. Gupta et al. have proposed a low-overhead implicit checkpointing scheme
to handle voltage emergencies by buffering commits until it is confirmed that no voltage
emergencies have occurred while the buffered sequence was in flight. M. S. Gupta, K. Rangan, M.
D. Smith, G.-Y. Wei, and D. M. Brooks, “DeCoR: A Delayed Commit and Rollback Mechanism
for Handling Inductive Noise in Processors,” HPCA 08 (2008). While shown to be effective,
implicit checkpointing is specialized and requires modifications to traditional microarchitectural
structures.

SUMMARY OF THE INVENTION
{8018t To reduce the gap between nominal and worst-case operating voltages, this paper proposes
a “voltage emergency predictor” that identifies when emergencies are imminent and prevents their
occurrence.
N84S A voltage emergency predictor anticipates voltage emergencies using “voltage emergency
signatures” and throttles machine execution to prevent them. An emergency signature is an
interleaved sequence of control-flow events and microarchitectural events leading up to an
emergency. A voltage emergency signature is captured when an emergency first occurs by taking
a snapshot of relevant event history and storing it in the predictor. A built-in checkpoint-recovery
mechanism then rolls the machine back to a known correct state and resumes execution.
Subsequent occurrences of the same emergency signature cause the predictor to throttle execution
and prevent the impending emergency. By doing so, the predictor enables aggressive timing
margins in order to maximize performance.

YN N AN
RN
IIMIY

{ The signature-based predictor outperforms previously proposed architecture-centric

SR8

techniques that rely on voltage sensors to detect and react to emergencies via throttling. E.



10

15

20

WO 2010/093750 PCT/US2010/023829

Grochowski, D. Ayers, and V. Tiwari, “Microarchitectural Simulation and Control of di/dt-
induced Power Supply Voltage Variation,” Int’l Symposium on High-Performance Computer
Architecture (2002); R. Joseph, D. Brooks, and M. Martonosi, “Control Techniques to Eliminate
Voltage Emergencies in High Performance Processors,” Int’l Symposium on High-Performance
Computer Architecture (2003); M. Powell and T. N. Vijaykumar, “Exploiting Resonant Behavior
to Reduce Inductive Noise,” ISC4, 2004; M. D. Powell and T. N. Vijaykumar, “Pipeline muffling
and a priori current ramping: architectural techniques to reduce high-frequency inductive noise,”
Int’l Symposium on Low Power Electronics and Design (2003). In these prior schemes,
emergencies are detected by using a voltage sensor to monitor the supply voltage for specific soft
threshold crossings, which indicate voltage margin violations are possible. Whenever the supply
voltage falls below this threshold, the machine throttles execution in pursuit of emergency
prevention. Unfortunately, these schemes cannot always guarantee correctness without incurring
large performance penalties. Aggressively setting the soft threshold close to the operating margin
limits time available to throttle and successfully prevent an emergency. Alternatively, setting the
threshold too conservatively leads to unnecessary throttling that degrades performance. Not every

conservative soft threshold crossing eventually crosses the lower operating voltage margin.

8} In contrast, the present invention recognizes and tracks patterns of emergency-prone
activity to proactively throttle execution well before an emergency can occur. The experimental
results show high prediction accuracy is possible, which translates to performance enhancements
by reducing otherwise conservative margins.
1N8IY An additional benefit is that the voltage emergency predictor of the present invention does
not require fine tuning based on specifics of the microarchitecture nor the power delivery

subsystem, as is the case with reactive sensor-based schemes. The current and voltage activity of a



10

15

20

WO 2010/093750 PCT/US2010/023829

microprocessor are products of machine utilization that are specific to the workload’s dynamic
demands. Capturing that activity in the form of voltage emergency signatures allows the predictor
to dynamically adapt to the emergency-prone behavior patterns resulting from the processor’s
interactions with the power delivery subsystem without having to be preconfigured to reflect the
characteristics of either.

{820t Since coarse-grained checkpoint-recovery is already available in existing production
systems to serve multiple purposes, preferred embodiments of the present invention use it as a fail-
safe mechanism during predictor training. See H. Ando et al., “A 1.3 GHz Fifth-Generation
SPARC64 Microprocessor,” Proceedings of Design Automation Conference (2003); T. J. Slegel,
et al., “IBM’s s/390 g5 microprocessor design,” IEEE Micro, 19, 1999; N. Kirman, M. Kirman,
M. Chaudhuri, and J. Martine, “Checkpointed Early Load Retirement,” HPCA '05: Proceedings of
the 11th International Symposium on High-Performance Computer Architecture, 2005; J. F.
Mart'inez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry, “Checkpointed Early
Resource Recycling in  Out-of-order Microprocessors,” International ~ Symposium on
Microarchitecture (MICRO), 2002; S. Narayanasamy, G. Pokam, and B. Calder, “BugNet:
Continuously Recording Program Execution for Deterministic Replay Debugging,” ISCA '05:
Proceedings of the 32nd Annual International Symposium on Computer Architecture, 2005; S.
Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin, “Ultra Low-Cost Defect
Protection for Microprocessor Pipelines,” ASPLOS-XII, 2006; D. J. Sorin, M. M. K. Martin, M. D.
Hill, and D. A. Wood, “Fast Checkpoint/Recovery to Support Kilo-instruction Speculation and
Hardware Fault Tolerance,” Computing science technical report, University of Wisconsin-
Madison, 2000; N. J. Wang and S. J. Patel, “ReStore: Symptom-Based Soft Error Detection in

Microprocessors,” IEEE Trans. Dependable Secur. Comput., 3(3), 2006.



10

15

20

25

30

WO 2010/093750 PCT/US2010/023829

A

{211 In summary, preferred embodiment of the present invention provide the following

advances:

o Voltage emergency prediction. Recognizing that activity leading to voltage emergencies is
a consequence of program control flow and microarchitectural events, we show that
voltage emergencies are predictable with over 90% accuracy by exploiting program
behavior and locality.

o Signature-based voltage emergency reduction. A voltage emergency predictor relies on
traditional checkpoint-recovery to capture voltage emergency signatures and prevents
emergencies via throttling. Its performance comes to within 5% of an oracle-based
throttling scheme.

o FEfficient predictor implementation. A Bloom filter-based voltage emergency predictor

implementation is shown to achieve 11.1% improvement in performance, approaching the
14.2% possible with an oracle-based throttling scheme.

W22 In a preferred embodiment, the present invention is a system for avoiding voltage
emergencies.  The system comprises a microprocessor, an actuator for throttling the
microprocessor, a voltage emergency detector and a voltage emergency predictor. The voltage
emergency detector may comprise, for example, a checkpoint recovery mechanism or a sensor.
The voltage emergency predictor of a preferred embodiment comprises means for tracking control
flow instructions and microarchitectural events, means for storing voltage emergency signatures
that cause voltage emergencies, means for comparing current control flow and microarchitectural
events with stored voltage emergency signatures to predict voltage emergencies, and means for
actuating said actuator to throttle said microprocessor to avoid predicted voltage emergencies.

{88231 In another preferred embodiment, the system for presenting voltage emergencies comprises
a microprocessor, an actuator for throttling the microprocessor, a sensor for detecting voltage
emergencies, a checkpoint recovery mechanism for recovery and resumption of execution, and a

voltage emergency predictor. The voltage emergency predictor comprises means for tracking

control flow instructions and microarchitectural events, means for storing voltage emergency



10

15

20

WO 2010/093750 PCT/US2010/023829

signatures that cause voltage emergencies, means for comparing current control flow and
microarchitectural events with stored voltage emergency signatures to predict voltage
emergencies, and means for actuating said actuator to throttle said microprocessor to avoid
predicted voltage emergencies.

1W824¢ In still another preferred embodiment, the present invention is a method for preventing
voltage emergencies in a microprocessor. The method comprises the steps of tracking control
flow instructions and microarchitectural events in the microprocessor, identifying voltage
emergencies that occur in the microprocessor, storing voltage emergency signatures corresponding
to identified voltage emergencies, comparing current control flow and microarchitectural events in
the microprocessor with stored voltage emergency signatures to predict impending voltage
emergencies in the microprocessor, and throttling said microprocessor to avoid said impending
voltage emergencies. The step of identifying voltage emergencies may comprise detecting
execution errors in the microprocessor with a checkpoint recovery mechanism and further may
comprise recovery and resumption of execution with said checkpoint recovery mechanism. In
another embodiment, the step of identifying voltage emergencies may comprise detecting a
voltage surpassing a threshold. The step of identifying voltage emergencies may further comprise
recovery and resumption of execution with a checkpoint recovery mechanism.

1838t Still other aspects, features, and advantages of the present invention are readily apparent
from the following detailed description, simply by illustrating a preferable embodiments and
implementations. The present invention is also capable of other and different embodiments and its
several details can be modified in various obvious respects, all without departing from the spirit
and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded

as illustrative in nature, and not as restrictive. Additional objects and advantages of the invention

10



10

15

20

WO 2010/093750 PCT/US2010/023829

will be set forth in part in the description which follows and in part will be obvious from the
description, or may be learned by practice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS
{88381 For a more complete understanding of the present invention and the advantages thereof,
reference is now made to the following description and the accompanying drawings, in which:
{827 FIG. 1(a) is a block diagram of a conventional system for sensor-based throttling.
{8038 FIG. 1(b) is a graph of voltage using a conventional sensor-based throttling system with

aggressive soft thresholds that allow too little time to prevent voltage emergencies.

M FIG. 1(c) is a graph of voltage using a conventional sensor-based throttling system with
conservative soft thresholds that trigger unnecessary throttling systems.

{38 FIG. 2(a) is a graph illustrating the sensitivity of sensor-based mechanisms to feedback
loops.

ey
N
ek

W83 FIG. 2(b) is a bar graph illustrating the performance penalty associated with sensor-based
mechanisms for preventing voltage emergencies.

{8833 FIG. 3 is a block diagram illustrating an overview of an event-guided architecture for

handling voltage emergencies in accordance with a preferred embodiment of the present invention.

3t FIG. 4(a) is a block diagram of a system for predicting voltage emergencies in accordance
with a preferred embodiment of the present invention.

{M¥34) FIG. 4(b) is a graph illustration how the system of FIG. 3(a) throttle execution with
sufficient lead time to prevent voltage emergencies.

1N038E FIG. 5(a) is a graph illustrating the association of voltage emergencies with recurring

activity over 880 cycles.

11



10

15

20

WO 2010/093750 PCT/US2010/023829

3s1 FIG. 5(b) is a diagram of an emergency prone nested loop in function init regs of
benchmark 403.gcc init_regs’s activity snapshot in FIG. 4(a).

o

137 FIG. 6 is a diagram illustrating an overview of voltage emergency signatures.

{8138t FIGs. 7(a) and (b) are graphs illustrating that voltage emergency prediction accuracy
improves as (a) signature contents represent machine activity more closely and as (b) the number
of entries per signature increases.

{803 FIGs. 8(a) and (b) are graphs illustrating that a voltage emergency predictor in accordance

with a preferred embodiment maintains high prediction accuracy across different (a) program

types and (b) power delivery packages and microarchitectural combinations.

Crr
e,

o

3t FIG. 8(c) is a graph illustrating that a voltage emergency predictor in accordance with a
preferred embodiment of the present invention also is capable of predicting emergencies with
sufficient lead time to prevent the emergencies.

W04 FIGs. 9(a) and (b) are graphs illustrating the effect of threshold value (T) on (a) the
fraction of emergencies not handled by the predictor and (b) performance gains when voltage
margin is reduced from a conservative 13% to an aggressive 4% setting.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 3 shows the operational flow of our event-guided method for detecting and
suppressing voltage emergencies. The parts of the diagram connected by solid arrows detect and
respond to actual voltage emergencies. The parts connected by dashed arrows are responsible for
learning to recognize impending violations and using this training to suppress future occurrences
of violations. Current and voltage are monitored by a sensor, and an emergency handler 310
determines when the supply voltage exceeds operating margins. On detecting a violation, the

handler invokes the fail-safe mechanism 320 to recover from any deleterious effects of the

12



10

15

20

WO 2010/093750 PCT/US2010/023829

emergency. The handler 310 also signals the triggering layer 330 to learn from this emergency, in
order to recognize future emergencies. Later, when the triggering layer 330 detects an emergency-

prone situation, it invokes the adaptation mechanism 340 to take appropriate preventive action.

When the emergency handler 310 detects a voltage swing that violates the
microprocessor’s voltage margins, the emergency handler 310 invokes the fail-safe mechanism
320 to recover an uncorrupted execution state. After recovery, the handler 310 invokes the
triggering layer 330 to train it to prevent voltage emergencies proactively, collecting details (such

as code location and event type) about the emergency just encountered to guide its analysis.

Emergencies can occur either because they are not anticipated by the triggering layer 330
or because event-guided adaptations prove ineffective. The preferred embodiment uses a recovery
or fail-safe mechanism 320 similar to the reactive mechanisms for processor error detection and
correction that have been proposed for handling soft errors. These mechanisms are based on
checkpoint and rollback. Two checkpoint-rollback mechanisms are discussed here, one that makes
checkpoints explicitly and one that saves them implicitly. Each is fine-grained—the interval
between checkpoints is just tens of cycles. Explicit-checkpoint mechanisms periodically save the
architectural state of the processor, i.e., the architectural registers and updated memory state.
Restoring the register state incurs substantial overhead, and there are additional cache misses at
the time of recovery. (A buffered memory update is assumed, and cache lines updated between
checkpoints are marked as volatile.) Moreover, a robust explicit-checkpoint mechanism for noise
margin violations requires the maintenance of two checkpoints (since any checkpoint falling after
a violation but before its subsequent detection must be considered corrupt).

1848t An implicit-checkpoint-rollback scheme based on delayed commit and rollback that

speculatively buffers updates to the machine state for long enough to be sure that no emergency

13



10

15

20

WO 2010/093750 PCT/US2010/023829

occurred while they were being computed may be used. Completed results wait in the reorder
buffer (ROB) or store queue (STQ) for an interval set by the sensor delay of the emergency
detector. After that interval, if there have been no emergencies, results are committed to the
retirement register file or the L1 data cache.

1W8dsf Explicit checkpointing is a less intrusive addition to existing processor designs, and it is
more likely to be useful for purposes other than voltage emergencies. But because of the high
frequency of noise margin violations, the performance cost of an explicit checkpoint mechanism
could be much greater than that of the implicit mechanism. Our event-guided emergency
suppression method brings the overhead of explicit checkpointing into line with that of implicit
checkpointing, giving us the best of both approaches.

The triggering layer or mechanism 330 tries to guide the hardware through safe
execution using adaptation mechanisms 340 that prevent emergencies. The triggering layer 330
waits for event notifications from the emergency handler 310. When it receives one, it caches the
time and recent microarchitectural event history, and it updates a frequency counter for the
particular emergency. This information determines when to locate and adapt the source instruction
that caused an emergency. Once an emergency has been flagged as frequently occurring, the
triggering layer uses an event characterization algorithm to determine the root cause of the
emergency. See M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks, “Towards a
software approach to mitigate voltage emergencies,” ISLPED, 2007. It targets subsequent
occurrences of the emergency for prevention, using microarchitectural events as cues to activate
an adaptation mechanism.

In order to provide pertinent information to the triggering layer 330 of the event-guided

approach, the processor maintains two circular structures similar to those found in existing

14



10

15

20

WO 2010/093750 PCT/US2010/023829

architectures like IPF and PowerPC. The first is a branch trace buffer (BTB), which maintains
information about the most recent branch instructions, their predictions, and their resolved targets.
The second is a data event address register (D-EAR), which tracks recent memory instruction
addresses and their corresponding effective addresses for all cache and TLB misses. The triggering
layer 330 reads this information at every voltage emergency and uses it to suppress future

emergencies.

Each entry is augmented in the BTB and D-EAR structures with a saturating counter that
gives the age of the entry in cycles. To determine whether an event described in one of the
structures is the likely cause of a subsequent emergency, we need to know the time interval
between the two. The age of an entry also helps the hardware to discard entries that are too old to
be of use to the triggering mechanism.

{8888t The trigger mechanism can either be implemented purely in hardware or as software-
assisted hardware. A hardware-only mechanism is practical because monitoring fewer than twenty
program points at once typically covers 90% of all emergencies. Information about which
instructions to track and the associated emergency-causing events can be maintained in a small
content-addressable memory that recognizes when to trigger preventive action. Alternatively,
software can be used to add hints to instructions (such as mispredicted branches or loads that have
missed in the data cache) that have been associated with noise margin violations, so that the
hardware can take preventive measures whenever those instructions are again associated with
emergency-prone events. Software has potential benefits that hardware-only mechanisms do not

share, since a software layer can perform intelligent code transformations to prevent emergencies.

Adaptations are intended to avoid the sudden current increases that lead to large voltage

swings. Four kinds of adaptations are discussed: frequency throttling, using a current shunt

15



10

15

20

WO 2010/093750 PCT/US2010/023829

regulator, pseudo-instruction padding, and prefetching. These techniques either stretch out current
fluctuations in time or smooth them out in amplitude.

{W883t  Throttling mechanisms spread out increases in current by slowing processor activity.
Several kinds of throttling have been proposed. See, for example, E. Grochowski, D. Ayers, and
V. Tiwari, ‘“Microarchitectural simulation and control of di/dt-induced power supply voltage
variation,” HPCA-8 (2002); R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to
eliminate voltage emergencies in high performance processors,” HPCA-9 (2003); M. D. Powell
and T. N. Vijaykumar, “Pipeline muffling and a priori current ramping: architectural techniques to
reduce high-frequency inductive noise,” ISLPED (2003); M. D. Powell and T. N. Vijaykumar,
“Exploiting resonant behavior to reduce inductive noise,” ISCA-28 (2004). In a preferred
embodiment, simple frequency throttling is used: dividing the frequency of the system in half
whenever throttling is turned on. This quickly reduces current draw, but it also reduces
performance by slowing down the machine. Throttling is used both for mispredicted branches and
for loads flagged as missing in the L2 cache.

{383 A push-pull regulator topology that uses an additional higher-than-nominal supply
voltage, comparator-based feedback, and a switched-source follower output stage to reduce supply
noise previously has been proposed generally. See E. Alon and M. Horowitz, “Integrated
regulation for energy-efficient digital circuits,” CICC (2007). In a preferred embodiment of the
present invention, the output stage of such a regulator is driven with the triggering mechanism
(hardware-event-guided or softwareguided) of the present invention. This may be referred to as it
the current-shunt mechanism. This technique has an effect similar to throttling, but without the

extra performance penalty associated with throttling. The current shunt is used either for a

mispredicted branch or an L2 miss. This mechanism suffers from additional power overhead since

16



10

15

20

WO 2010/093750 PCT/US2010/023829

the extra charge dumped into the power grid comes from a higher supply voltage. To simplify the
comparison of schemes, this power overhead can be translated into performance loss. For
example, designers might compensate for this power overhead by reducing global supply voltage
and clock frequency. For ease of analysis purposes, it is assumed that a 3% increase in power

translates to a 1% decrease in performance.

One possible way to deal with a sudden increase in activity when an L2 cache miss
returns is to create a chain of instructions with data dependences that require them to be issued
serially, so that processor activity increases gradually. In a preferred embodiment of the present
invention, this is done by adding redundant pseudoinstructions, which may be referred to as
pseudo-nops. However, these nop instructions degrade performance by wasting CPU cycles.
Hence, a selective nop strategy is employed whereby pseudonops are discarded unless the L2 miss
occurs. Analysis shows that a single nop is able to achieve the same reduction in emergencies as
multiple pseudo-nops with less performance degradation, so a single pseudo-nop insertion is used
in the evaluation.

{8888t Another way to deal with large stalls is by prefetching loads that cause large L2 cache
miss penalties. To study the potential of dynamic prefetching adaptations for dealing with
emergencies, an ideal prefetch mechanism is assumed; the system inserts prefetch instructions for
delinquent loads, eliminating further cache misses for those loads. This does not capture the
complexities of a dynamic prefetching engine, but it gives a measure of its potential to combat
emergencies. To be unbiased in the analysis, the performance benefits of prefetching are omitted

when considering the overall performance of the system.

An effective emergency avoidance mechanism preferably should meet two criteria: First,

it must anticipate an emergency accurately to prevent performance degradation due to unnecessary

17



10

15

20

WO 2010/093750 PCT/US2010/023829

throttling. Second, it must initiate the emergency avoidance mechanism with enough lead time to
throttle and successfully prevent the emergency from occurring. With the present invention it is
possible to predict voltage emergencies with high accuracy and sufficient lead time to throttle and

prevent emergencies.

NN N T
NN
I¥IS™ Ty
NGRS

A voltage emergency predictor is a structure that learns recurring voltage emergency
activity during runtime and prevents subsequent occurrences of said emergencies via execution
throttling. FIG. 4(a) presents a block diagram of a preferred embodiment of the invention. As
shown in FIG. 4(a), the system 400 has an actuator 410, a CPU or microprocessor 420, a
checkpoint recovery system 430, and a voltage emergency predictor 440. The predictor 440
monitors control flow and microachitectural events and keeps track of the voltage emergency
signatures that cause voltage emergencies identified by the checkpoint-recovery block or
mechanism 430, for example by storing the voltage emergency signature in memory or other
storage media. The predictor 440 also actuates throttling of the microprocessor 420 via actuator
410 to avoid future emergencies, but does not suffer limitations associated with sensor delays or

soft thresholds. Unlike sensor-based schemes, the prediction-based approach of the present

invention allows the microprocessor to operate with margins much tighter than otherwise possible.

81 A voltage emergency signature comprises an interleaved sequence of program control
flow and microarchitectural events that give rise to an emergency. Voltage emergency signatures
are dynamic and, as such, must be discovered at runtime. Initially, no emergency signatures are
known. As the program executes, emergencies are detected as margin violations occur. Since an
emergency can potentially corrupt machine state, a checkpoint-recovery mechanism is in place to

recover and resume execution. While invoking the recovery mechanism, the predictor captures the

18



10

15

20

WO 2010/093750 PCT/US2010/023829

signature of the emergency. Over time, the predictor collects a history of emergency-prone activity
and uses this history to successfully prevent future emergencies via throttling.

IMS™Y A voltage emergency predictor does not require a soft threshold. Instead, it monitors
sequences of program paths and architectural events, and initiates throttling whenever an
emergency-causing pattern is detected. For clarity and a brief overview, FIG. 4(b) illustrates how a
preferred embodiment of a predictor-based scheme of the present invention outperforms a sensor-
based throttling scheme. As soon as the predictor observes a voltage emergency signature, it starts
to throttle execution with sufficient lead time to prevent an emergency from occurring. In contrast,
sensor-based throttling, corresponding to waveform Throttled Execution (Sensor) from FIG. 1(b),
fails to avoid the emergency with aggressive soft threshold settings. Conservative soft thresholds
incur large performance penalties.

{8889t The working principles underlying voltage emergency prediction of the present invention
is described using a specific, but real-life, scenario from benchmark 403.gcc. Building upon the
insights gained from this example, an embodiment illustrating how to capture a voltage emergency
signature, which is the enabling mechanism behind a voltage emergency predictor, is described.
Factors that influence the quality of an emergency signature, such as the type and amount of
information recorded, are then discussed.

188t} Repeating code patterns give rise to repeating patterns of memory access and data flow
through the processor. Gupta er al. show repeating sequences of processor activity have the
potential to cause voltage emergencies. M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D.
M. Brooks, “Towards a Software Approach to Mitigate Voltage Emergencies,” ISLPED 07, 2007.
They elaborate that microarchitectural events such as cache misses and pipeline flushes stall the

pipeline. As a consequence, machine activity temporarily reduces. Upon recovering/restarting,

19



10

15

20

WO 2010/093750 PCT/US2010/023829

there is a rush of activity that causes the current to spike and the voltage to drop sharply; a voltage
emergency occurs when the voltage exceeds the lower operating margin. However, it is not well
understood when such microarchitectural events are benign versus harmful. In other words, there
1S no guarantee that a branch misprediction or any recurring event will always cause an
emergency. With the present invention it is possible to predict the likelihood of an emergency

more accurately by taking into account the context leading up to the emergency.

TSR WY
RN
FREAER RN

A microarchitectural event acting in complete isolation only sometimes causes an
emergency by itself. To help illustrate when an event causes an emergency, FIG. 5(a) shows
pipeline activity over 880 cycles for benchmark 403.gcc while it is executing the nested loop
illustrated in FIG. 5(b). FIG. 5(a) illustrates pipeline flushing due to branch mispredictions using a
vertical bar in the Flush subgraph. The number next to each vertical bar in the Flush graph
corresponds to the basic block number in FIG. 5(b) containing the mispredicted branch. Other
relevant pipeline activities across different parts of our simulated microprocessor ranging from
cache access, to functional unit usage, to the rate at which instructions are being dispatched, issued
and committed are also shown for the same time frame. The resulting current draw and voltage

activity are also shown. Lastly, FIG. 5(a) shows three distinct phases A, B and C (see top of

figure) and each phase terminates at an emergency (see bottom of figure).

-
i$%

{883} Microarchitectural events perturb machine activity significantly, but by themselves are
not responsible for voltage emergencies. Pipeline flush Event 2 in FIG. 5(a) is an ideal candidate
for illustrating this point. Event 2 in Phase A causes a voltage droop a few cycles before Event 5
(also in Phase A), but it does not cause an emergency. The same event, however, always causes an
emergency in Phase B (at the end of B). Understanding the processor activity leading up to these

events explains this inconsistent behavior. The Issue, as well as other rates prior to Event 2 are

20



10

15

20

WO 2010/093750 PCT/US2010/023829

different between Phase A and Phase B, so the perturbation effects of Event 2 are different
between the phases. By comparison, pipeline flush Event 5 always occurs just prior to an
emergency in both Phase A and Phase C. Nevertheless, our argument that activity prior to an event
matters holds true. The voltage just prior to Event 5 in Phase A is rising versus falling in Phase C.
The latter occurs because the voltage is already in flux due to the perturbation brought about by
Event 2 in Phase B. For this reason, any scheme attempting to characterize and exploit recurring
patterns must take into account the execution context preceding an emergency.

1M084dt Voltage emergencies are uniquely identifiable by tracking control flow instructions and
microarchitectural events in order of occurrence. Rapid fluctuations in a program’s control and
data flow and in its level of parallel utilization of processor resources lead to changes in current
flow that induce large voltage swings. For instance, the distinct current and voltage activity
between phases A, B and C are the result of different control flow paths exercised by the program
combined with the voltage droops induced by pipeline flush Events 2 and 5. During the early part
of Phase A, the program is executing basic blocks 2—3—5 (from FIG. 5(b)) in a steady-state
manner. The stable and repetitive Issue rate pattern during the early part of Phase A in FIG. 5(a)
confirms this. Slightly past the midpoint of Phase A, the program switches control flow from basic
blocks 2—3—5 to basic blocks 2—5. This switch triggers a pipeline flush to recover from
speculatively executing incorrect code along Edge 2—3 to executing correct code along Edge
2—5. The activity on the recovery path following the pipeline flush causes the voltage to droop
slightly but not enough to violate the operating margin (shown using Lower Operating Margin).
After a few cycles, a misprediction on basic block 5’s control instruction eventually leads to a
voltage emergency. So the emergency in Phase A is because of the activity including, as well as

following, basic blocks 2—3—35 combined with pipeline flush Events 2 and 5. In contrast, the

21



10

15

20

WO 2010/093750 PCT/US2010/023829

emergency in Phase B arises from executing basic blocks 2—3—4—5 followed by the single
flush Event 2. Consequently, tracking control flow sequence along with pipeline flush events in
order of occurrence yields two unique activity patterns representing Phase A and Phase B.

{8888t Voltage emergencies, like program phases, are repetitive over a program’s lifetime,
which make them predictable. Consider the three phases illustrated in FIG. 5(a). The phases are
recurring because execution sequence flows through phases A — B — C and back to Phase A. A
subsequent occurrence of the same phase leads to yet another emergency. For instance, Event 2
always causes an emergency as execution flows through phases B—C, but not through phases
A—B. Thus, a pattern of voltage emergency occurrence emerges. Identifying and exploiting such

recurring activity is the basis for predicting voltage emergencies in terms of program behavior, as

well as microarchitectural behavior.

A preferred embodiment of the hardware used to capture program control flow and
microarchitectural event interleaving is now described. Capturing a voltage emergency signature
in a preferred embodiment of the present invention requires an emergency to occur at least once.
Thus the preferred embodiment has a mechanism, in this embodiment a voltage sensor, to monitor
operating margin violations. The embodiment is not time-sensitive to sensor delay because the
predictor does not react to sensing a soft threshold crossing to throttle. The sensor is used to signal

that an emergency has occurred and the system ought to take appropriate actions.

SHKT

IM8TY Processor state is potentially corrupted as emergencies occur, since voltage emergencies
induce timing faults, so the preferred embodiment has a fail-safe checkpoint-recovery mechanism
to recover from emergencies. The failsafe mechanism initiates a recovery whenever the sensor

detects an emergency, and in that process also captures a voltage emergency signature.

22



10

15

20

WO 2010/093750 PCT/US2010/023829

Checkpoints can be taken at varying intervals (e.g., 10-1000 cycles). A 100-cycle rollback penalty
is assumed in this embodiment.

W88t Coarse-grained checkpoint-recovery is already shipping in today’s production systems,
and researchers are proposing a broad range of novel applications that use traditional checkpoint-
recovery. With ever-increasing applications of this fail-safe mechanism, the checkpoint-recovery
may become part of future mainstream processors. However, checkpoint-recovery alone as a

solution for handling voltage emergencies is unacceptable due to performance penalties as

previously discussed and as will be shown below.

1
AR

The predictor of a preferred embodiment relies on a shift register to capture the
interleaved sequence of control flow instructions and architectural events that give rise to an
emergency. A signature is a snapshot of the event history register. The interleaving of events in the
event history register is important for capturing the dynamic current and voltage activity resulting
from program interactions with the underlying microarchitecture. The purpose of tracking the
instruction stream is to capture the dynamic path of a program. Consequently, control flow
instructions are ideal candidates for tracking a program’s dynamic execution path.

W87t Event history tracking is a well-studied topic in the area of branch prediction. The
present invention, however, is unique in that it can identify the information flow that precisely
captures activity prone to voltage emergencies.

W8Tt FIG. 6 illustrates example snapshots of the emergencies shown in FIG. 5(a) across
phases A, B and C. The updates into a 4-entry wide event history register are shown over time. At
the point of the emergency in Phase B, the history register contains the following (from oldest to

most recent): two control flow instruction addresses (illustrated as BR) and an event encoding for

the pipeline flush (illustrated as 2), followed by another branch. It is important to never clear the

23



10

15

20

WO 2010/093750 PCT/US2010/023829

event history register after capturing a snapshot to maintain a rolling window of contextual
information. For example, the oldest BR in Signature C overlaps with the most recent entry in
Signature B.

{8731 Since voltage emergencies contribute to timing faults, all predictor logic and checkpoint-
recovery hardware must be carefully designed with sufficiently conservative timing margins. As
these structures are not timing critical, there are no performance implications. Any state corruption
in the predictor logic only leads to incorrect predictions, and will therefore only affect the
performance of the system due to unnecessary throttling, but it will not violate correctness
guarantees.

\WT3F The function of a voltage emergency signature in accordance with a preferred
embodiment of the present invention is to precisely indicate whether a pattern of control flow and
microarchitectural event activity will give rise to an emergency. To evaluate the effectiveness of
different flavors of signatures, predictor accuracy is defined as the fraction of predicted
emergencies that become actual emergencies.

{8474t Information tracking in the event history register must correspond to parts of the
execution engine that experience large current draws, as well as dramatic spikes in current activity.
The event history register can collect the control flow trace at different points in a superscalar
processor: in-order fetch and decode, out-of-order issue, and in-order commit. Each of these points
contributes different amounts of information pertaining to an emergency. For instance, tracking
execution in program order fails to capture any information regarding the impact of speculation on

voltage emergencies. Tracking information at the in-order fetch and decode sequence captures the

speculative path, but it does not capture the out-of-order superscalar issuing of instructions.

24



10

15

20

WO 2010/093750 PCT/US2010/023829

The accuracies of different signature types are illustrated in FIG. 7(a) (assuming a
signature size of 32 entries, which will be discussed next). Tracking committed control flow
sequences in the event history register gives an accuracy of only 40%. If the history register tracks
information at the decode stage, an accuracy of 72% is possible because the decode stage captures
the speculative control flow path. Accuracy improves further by 12%, from 72% to 84%, if the
history register tracks control flow at the issue stage, since we can now capture interactions more
precisely at the level of hardware instruction scheduling and code executed along a speculative

path.

Interleaving microarchitectural events with program control improves accuracy even
further, as processor events provide additional information about swings in the supply voltage. For
instance, pipeline flushes cause a sharp change in current draw as the machine comes to a near halt
before recovering on the correct execution path (as observed in FIG. 5(a) immediately following
pipeline flush events). The last two bars of FIG. 7(a) show accuracy improvements from adding
microarchitectural event activity to the event history register. The second to last bar represents the
effect of capturing events that have the potential to induce large voltage swings—pipeline flushes
and secondary (L2) cache misses. An improvement of five percentage points is achieved by taking
flushes and L2 misses into account (i.c., total accuracy of 89%). Another additional improvement
in the margin of ~4% Capturing the more frequently occurring events like DTLB and DL1 misses
contributes additional improvements of ~4%. Microarchitecture perturbations resulting from
instruction cache activity (i.e., IL1 and ITLB) are negligible and do not lead to an improvement in

accuracy.

.
RN

™
1NN

From here on, we assume the event history register resides at the issue stage of the

pipeline and captures microarchitectural-event activity. More formally, the event history register is

25



10

15

20

WO 2010/093750 PCT/US2010/023829

updated whenever a control flow instruction is executed, along with Level 1 and Level 2 cache
and TLB misses. Lastly, pipeline flushes are also events recorded in the event history register.
{N4T8E Size. Accuracy depends not only on recording the right interleaving of events, but also
on balancing the amount of information the event history register keeps. Accuracy improves as the
length of history register increases.

ay

{8879 However, it can be detrimental to increase the number of register entries beyond a certain
count. Large numbers of entries in a signature can cause unnecessary differentiation between
similar signatures—signatures whose most recent entries are identical and whose older entries are
different, but not significantly so. The predictor would have to track more unique signatures per
emergency because of this differentiation.

IM%y FIG. 7(b) shows prediction accuracy improves as signature size increases. Accuracy is
only 13% on average for a signature containing only 1 entry, which supports the proposition that
voltage emergencies do not solely depend upon the last executed branch or a single
microarchitectural event. It is the history of activity that determines the likelihood of a recurring
emergency. Prediction accuracy begins to saturate once signature size reaches 16, and peaks at
99% for a signature size of 64 entries.

{1} Signature encoding. Hardware implementations are resource constrained. So the
number of bits representing a signature in a realistic hardware implementation matters. To avoid
large overheads, we use a 3-bit encoding per entry in the event history register. But encoding
causes aliasing between signatures. Therefore, we extend an encoded signature to also contain the
program counter for the most recently taken branch—the anchor PC. Anchor PC’s have the added

benefit of implicitly providing the complete path information leading up to the most recent event

in the history register. The 3-bit encoding compactly captures all of the relevant information

26



10

15

20

WO 2010/093750 PCT/US2010/023829

consisting of different processor events, and takes into account the edge taken by each branch (i.e.,
fall-through paths are encoded as 000 versus 001 for taken edges). The compact representation
described above results in a total signature length of 16 bytes (4 bytes for the anchor PC and 12
bytes for a signature size of 32 entries with 3 bits per entry).

{N4NYf  Signature compaction. We can further reduce hardware overheads by folding multiple
signatures corresponding to a specific anchor PC into a single representative signature. We use a
weighted similarity metric based on Manhattan distance to determine how much compaction is

possible for a set of signatures corresponding to a particular benchmark. Let x and y be k-element

signatures associated with the same instruction address. We define the similarity of x and y to be

_ 2 ki ifx; =y,
S_k(k+l)zo{

'~ | otherwise

{3 If the signatures are identical, s is one. If no two corresponding elements are the same, it
is zero. The later elements in x and y correspond to later events in time. They are more heavily
weighted in s, because they are more significant for emergency prediction. Other measures of
similarity might yield better compaction, but they would be more expensive to compute in
hardware. For a given instruction address, the signatures are partitioned into maximal sets in
which each signature x is related to one or more other signatures y with similarity of 0.9 or greater.
The resulting partition is then used instead of the original signature set.

{884t The number of recurring signatures per benchmark varies significantly. Benchmark
403.gcc has nearly 87000 signatures that repeatedly give rise to emergencies. At the other end of
the spectrum is benchmark 462./ibquantum with only 39 signatures. Applying signature
compaction on 403.gcc reduces the number of signatures to 29000, thereby achieving a ~67%
reduction. Overall, compaction reduces the number of signatures by over 61% and the biggest

winners are benchmarks that exhibit a large number of signatures.

27



10

15

WO 2010/093750 PCT/US2010/023829

Examples
{8088t The vehicle for the examples presented below is the x86 SimpleScalar infrastructure.

Table 1 lists the configuration parameters used to initialize SimpleScalar for our baseline

microprocessor design, which we refer to as Arch 1.

Clock Rate 3.0 GHz RAS 64 Entries
Inst. Window 128-ROB, 64-L.5Q Branch Penalty 10 cyeles
Functional g Int ALL, 4 FP ALLL Branch 64-KB himodal
Units 2 Int Mub/Div, Pradictor gshare/chooser
2 FP MuliDiv BTE 1K Entrias
Fetch Widih g Instructions Decods Widith g Instructions
L1 D-Cache 84 KB 2-way Lt |I-Cache G4 KB 2-way
L2 I'D-Cache ZMB 4-way, Main Memaory 300 cycle
16 cycle latency latancy

Table 1: Bascline architecture (Arch 1) parameters for SimpleScalar.

{88} The workload set is comprised of benchmarks from the SPEC CPU2006 suite. All but a
few were simulated for 100 million instructions across their different inputs using the phase most
heavily weighted by Simpoint (1445.gobmk input 13x13, 456.hmmer, 471.omnetpp, 473.astar,
434.zeusmp, 453.povray and 470.Ibm are omitted because SimpleScalar’s x86 decoder does not
support instruction encodings used by these benchmarks). E. Perelman, G. Hamerly, M. V.
Biesbrouck, T. Sherwood, and B. Calder. Using simpoint for accurate and efficient simulation. In
SIGMETRICS 03, New York, NY, USA, 2003. ACM. 1 The benchmarks were compiled at
optimization level -O3 using the GNU GCC 3.4 compiler toolchain.

\BO8TY To get a detailed cycle-accurate current profile, a modified version of Wattch is
incorporated into the SimpleScalar simulator. See, D. Brooks, V. Tiwari, and M. Martonosi.
Wattch: a Framework for Architectural-level Power Analysis and Optimizations. In 27th Annual

International Symposium on Computer Architecture, 2000. Simulated current profiles are

28



10

15

20

WO 2010/093750 PCT/US2010/023829

convolved with an impulse response of the power delivery subsystem to obtain voltage variations.
Other studies use this second-order model as well.

{NOR8t  Operating margin. For the purpose of quantitative comparisons and evaluation, a
maximum swing of 4% is allowed between nominal supply voltage and the lower operating
voltage margin, beyond which a voltage emergency occurs. However, the example is independent
of a specific margin and the major findings remain unchanged across different margin settings.
1XYW Power delivery model. Three different packages are evaluated. Quality factor (Q) is the
ratio of the resonant frequency to the rate at which the package dissipates its energy. A larger Q
gives rise to larger voltage swings for currents oscillating within the resonance band of
frequencies. Applications with current fluctuations in the resonance band therefore suffer more

from inductive noise with a high-Q package. The packages are labeled Pkg 1, Pkg 2 and Pkg 3.

Details pertaining to the packages are shown in Table 2.

Package Pea}g: ii‘ﬂ;:;_t@dﬁf’;s::ﬁ Eﬁ:ulrrfe it ngiit@,f Ream;ame Comment
= fmOhmy {Al Factor Cycles
Pk 1 5 16-50 3 3G Pantiven 4 {2]
Pkg 2 2 3070 2 80 Used in [13]
Pkg 3 17 168-R0 & 30 Warst package

Table 2: Characteristics of the packages evaluated,
Our baseline package is Pkg 1, which closely resembles characteristics of the Pentium 4 package.
Intel. Intel Pentium 4 Processor in the 423 Pin/Package /Intel 850 Chipset Platform, 2002. Package
Pkg 2 is representative of the package used in an earlier study, and its parameters are based on the
Alpha 21264/21364 package. For comparisons, Package Pkg 3 is included, which represents a bad

package with very large quality factor.

Single-core vs. multi-core and multi-threaded architectures.

29



10

15

20

WO 2010/093750 PCT/US2010/023829

The examples are limited to a singlecore platform with an off-chip power delivery
subsystem. Much of prior work is also within the context of single-core platforms, which allows
comparative analysis of the present scheme to others. Kim ez al. and Gupta et al. have shown that
voltage emergencies are problematic for multi-core platforms as well. M. S. Gupta, J. L. Oatley,
R. Joseph, G.-Y. Wei, and D. M. Brooks, “Understanding voltage wvariations in chip
multiprocessors using a distributed power-delivery network,” DATE, 2007. The authors
demonstrate that synchronous/inphase operation of cores or chip-wide resonant behavior can cause
voltage emergencies, and so can per-core power domains. It is possible to extend the present
invention to capture inter-core activity leading to emergencies by tracking additional events such
as cache coherence messages and inter-thread synchronization primitives. And in the case of a
multi-threaded architecture, it is possible to easily adapt the emergency capturing mechanism to be

a part of the hardware’s thread context.

Predictor Accuracy Evaluation

B8 A signature-based emergency predictor, in contrast to a sensor-based scheme, is broadly
applicable across different combinations of microprocessor designs and power delivery
subsystems with no need for fine-tuning, catering for the worst-case, or relying on soft thresholds.
In this section, the robustness of signature-based prediction across different machine
configurations assuming a signature size of 32 entries is demonstrated. An ability to predict
emergencies 16 cycles ahead of time with 90% accuracy is also demonstrated.

W8N Workloads. Applications exhibit different characteristics that drive the machine into
different levels of activity and, therefore, varying rates of current draw. FIG. 8(a) plots prediction

accuracy across the spectrum of benchmarks from CPU2006. For benchmarks with multiple

30



10

15

20

WO 2010/093750 PCT/US2010/023829

inputs, we present the average prediction accuracy across different inputs. The signatures enable
high prediction accuracy with an average of 93% and a median of 94%. Voltage emergency
signatures are able to handle a range of benchmarks from control-flow-intensive benchmarks like
403.gcc and 400.perlbench to memory-intensive benchmarks like 429.mcf, and to 462.libquantum
that exhibit a large number of microarchitectural events such as cache misses. Overall, high
prediction accuracy is observed across both the integer and floating-point benchmarks.

{883t Tolerance. FIG. 8(b) shows that when power delivery packages Pkg 1, Pkg 2, and Pkg 3
are paired with the baseline microprocessor design Arch 1 (Table 1), average prediction accuracy
remains high (93%, 96%, and 95%, respectively) despite decreasing package quality. Signatures
consistently enable emergency prediction with over 90% accuracy without specialization. By
comparison, sensor-based schemes require careful configuration of soft thresholds. When package
Pkg 1 is paired with a simpler out-of-order processor Arch 2 (one with the same structure as that
in Table 1, but with half-sized fetch and decode widths and half-sized buffers, queues, and
caches), the accuracy of the present predictor still remains high at 97%.

{884t Lead time. Predicting an emergency with sufficient lead time enables the machine to
throttle execution and successfully avoid an impending emergency. FIG. 4(b) illustrates this
notion of lead time using the Lead time label. Up to this point in the example, it has been assumed
that a lead time of 0 cycles to initially validate that signatures are good predictors of emergencies.
However, real systems require non-zero lead times to account for circuit delays and allow for
throttling to take effect. To experiment with other lead times, trailing segments of the signatures
that are captured can be erased. FIG. 8(c) shows accuracy slightly degrades from 93% as lead time
increases. However, even with 16 cycles of lead time, ample time to prevent an emergency,

prediction accuracy remains high at 90%.

31



10

15

20

WO 2010/093750 PCT/US2010/023829

It is important to note that throttling cannot prevent all emergencies even when they are
correctly predicted with 16 cycles of lead time. In such cases, the fail-safe mechanism must
recover processor state and the machine incurs rollback penalties. However, our experimental data
(not shown) verifies that the number of such emergencies is only 1% of the total emergencies that

occur without throttling and resulting penalties are very low.

Performance Evaluation

N8O8NS An aggressive reduction in operating voltage margins can translate to higher performance
or higher energy efficiency. Since performance and power are inextricably tied, clock frequency
performance improvements are demonstrated. Assessing performance also enables straightforward
accounting of penalties resulting from throttling and rollbacks. The maximum attainable
performance is evaluated within the context of all runtime costs previously illustrated in FIG. 4(a)
and compare to a variety of idealized and non-ideal approaches. While the initial analysis makes
optimistic assumptions in regards to hardware implementations of the voltage emergency
predictor, design tradeoffs are also explored and show a resource-constrained predictor
implementation that retains high accuracy and performance improvements.

Designers typically build in conservative margins (guard-bands) to safeguard against
potentially large voltage droops that can lead to timing violations. Such margins translate to clock
frequency reductions and performance loss. Recent papers on industrial designs have shown that
15% to 20% operating voltage margins would be required to protect against voltage emergencies.
K. A. Bowman, J. W. Tschanz, N. S. Kim, J. Lee, C. B. Wilkerson, S.-L. Lu, T. Karnik, and V.

De. Energy-efficient and metastabilityimmune timing-error detection and instruction replay-based

32



10

15

20

WO 2010/093750 PCT/US2010/023829

recovery circuits for dynamic variation tolerance. In ISSCC 2008, 2008. Similarly, the present
analysis of the baseline example system (Pkg 1 and Arch 1) reveals a worst-case droop of 13%.
{8t The nearly-linear relationship between operating voltage and clock frequency facilitates
translation of voltage margin reductions into performance gains. Based on detailed circuit-level
simulations of an 11-stage ring oscillator consisting of fanout-of-4 inverters, we observe a 1.5x
relationship between voltage and frequency at the PTM 32nm node. W. Zhao and Y. Cao,
“Predictive technology model for sub-45nm early design exploration,” ACM JETC. This
relationship is consistent with results reported by Bowman et al., which show that a 10% reduction
in voltage margins leads to a 15% improvement in clock frequency. While the present example
uses this 1.5x voltage-to-frequency scaling factor, a disconcerting trend across technologies is also
observed. Simulation results reveal voltage-to-frequency scaling factors of 1.2x, 1.5x, 2.3x, and
2.8x for PTM nodes at 45nm, 32nm, 22nm, and 16nm, respectively. Given a slowdown in
traditional constant-field scaling trends, sensitivity of frequency to voltage is growing, which
further stresses the need for techniques that can efficiently reduce voltage noise in future
processors.

1388t Based on the 1.5x scaling factor, the 4% operating voltage margin assumed in this paper
corresponds to a 6%loss in frequency. Similarly, a conservative voltage margin of 13%, sufficient
to cover the worst-case droops observed, leads to 20% lower frequency. Taking this conservative
margin as the baseline for comparisons and given that the 13% margin can reduce to 4% while
avoiding voltage emergencies, the corresponding clock frequency improvement offers system

performance gains of 17.5%.

Comparison of Schemes

33



10

15

WO 2010/093750 PCT/US2010/023829

1t To thoroughly evaluate the benefits of using the present signature-based predictor, it is
compared to variety of other schemes that also use throttling and/or checkpoint-recovery. A half-
rate throttling mechanism that gates every other clock cycle is assumed. For sensor-based
schemes, it is assumed that sensors are ideal with zero delay, and can instantly react to either
resonant or single-event-based voltage emergencies. For the predictor of the present invention, it is
assumed that an unbounded prediction table with a voltage emergency signature predictor with 16
cycle lead time. Calculation of performance gains shown for each scheme begins with the
maximum 17.5% gains possible, which then scales down by accounting for all performance
overheads. Again, a conservative voltage margin of 13% allows for emergency-free, lower-
frequency operation and is the common baseline for all comparisons. Table 3 shows the

performance gains of all schemes.

Schemes Performance
Gain (%]

Oracle 14.2

Predictor throttling Voltage emergency signature 13.5
Microarchitectural event 4.1

ldeal sensor throtting 2% soft threshold 2.2
) ) MY a0, soft threshold 9.0
Explicit checkpoint and recovery -13.0
Delayed commit and roliback {DaCoR) 13.0

Table 3: Performance comparison across different flavors of throttling and
checkpoint-recovery for handling voltage emergencies.

19811 Oracle predictor. To set an upper bound on the potential benefits of prediction-based
schemes, an oracle predictor is considered. It throttles exactly when an emergency is about to
occur, and it always prevents the emergency. It does not waste throttles nor does it incur rollback
penalties. By removing all voltage emergencies, the resulting performance gain of 14.2%, is the

best achievable performance while incurring only 2.9% throttling overhead.

34



10

15

20

WO 2010/093750 PCT/US2010/023829

Y31 Voltage emergency signature predictor. The signature-based prediction scheme of the
present invention incurs performance overhead of 3.5% on average, due to throttling and rollbacks
that are needed to detect emergencies and also due to emergencies that throttling cannot avoid.
The slightly higher overhead translates to performance gain relative to our baseline of 13.5%, just
0.7% less than the oracle predictor.

181N} Microarchitectural event predictor. A simpler prediction scheme that associates an
emergency with the most recent microarchitectural event and the address of the instruction
responsible for it is also evaluated. See, M. S. Gupta, V. J. Reddi, M. D. Smith, G.-Y. Wei, and D.
M. Brooks, “An event-guided approach to handling inductive noise in processors,” DATE, 2009.
Whenever that combination recurs, this scheme throttles execution to prevent another emergency.
The prediction accuracy of this simple scheme is poor, translating to large amounts of unnecessary
throttling that severely degrades performance. Large overheads limit performance gain to only

4.1% with this method.

{810y Ideal sensor. Still using a 4% operating margin as the hard lower operating voltage
margin, sensor-based schemes are evaluated for two soft voltage threshold settings, a conservative
threshold of 2% and an aggressive one of 3%. It is optimistically assumed that a 0-cycle sensor
delay and that all emergencies that would occur after crossing the soft threshold are prevented.
Note that an actual sensor would have a delay of several cycles and so would give poorer
performance results. Despite the optimistic assumptions, performance gains for the 2% and 3%
soft thresholds are only 2.2% and 9.0%, respectively. These low gains are due to the high fraction

of benign soft threshold crossings that lead to unnecessary throttling penalties, shown earlier in

FIG. 2(b).

35



10

15

20

WO 2010/093750 PCT/US2010/023829

19881 Explicit checkpoint and recovery. Gupta et al. propose the use of checkpointing

‘ehr

specifically for the purpose of handling voltage emergencies. They demonstrate that explicit
checkpoint-recovery schemes cannot be directly applied to handling voltage emergencies due to
their high rollback costs. The present results confirm their claim. A 13% performance loss when
using an explicit checkpoint-recovery mechanism that has a 100-cycle rollback penalty is
observed.

{8810 Delayed commit and rollback. To overcome limitations of explicit checkpoint-
recovery, Gupta et al. propose an implicit checkpointing scheme called DeCoR that speculatively
buffers register file and memory updates until it has been verified that no emergency has occurred
during a period long enough to detect an emergency. The commit proceeds as usual unless an
emergency is detected, in which case the machine rolls back and resumes execution at a throttled
pace. A 5-cycle sensor delay is assumed for DeCoR, which represents the best case as
demonstrated by its designers.

18T DeCoR’s performance gain is 13.0%, so the signature-based predictor of the present
invention outperforms it, but only slightly. However, the benefits of using a signature-based
predictor outweigh using DeCoR for a general-purpose processor design. DeCoR’s implicit
checkpointing requires changes to traditional microarchitectural structures. In comparison,
coarsegrained checkpoint-recovery is already shipping in production systems and can serve
multiple purposes ranging from boosting processor performance to fault detection and debugging.
A signature-based predictor leverages the coarse-grained checkpoint-recovery hardware, thereby

retaining all the benefits of coarse-grained checkpoint-recovery while also reducing voltage

emergencies.

36



10

15

20

WO 2010/093750 PCT/US2010/023829

N
N
B

Nt Issue-rate staggering. Pipeline muffling and a floor-plan aware di/dt controller both
stagger 1issue rates to combat cycle-to-cycle high-frequency noise within individual
microarchitectural units. M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari, “An architectural
solution for the inductive noise problem due to clock-gating,” ISLPED, 1999; F. Mohamood, M.
Healy, S. Lim, and H.-H. S. Lee, “A Floorplan-Aware Dynamic Inductive Noise Controller for
Reliable Processor Design,” MICRO, 2006. In contrast, the present examples consider inductive
noise in the mid-frequency (10-100MHz) range that impacts the entire chip over periods of tens of
cycles. Issue-ramping strategies are not suitable for mid-frequency noise because ramping current

over such a large number of cycles is not practical; these strategies are thus orthogonal to the

present approach.

Proof-of-Concept Implementation

N8 Up to this point it is assumed that unbounded resources are available for matching
voltage emergency signatures. In this section, an embodiment of the present invention
implementing a resource constrained predictor is shown. The embodiment combines a content-
addressable memory (CAM) with a Bloom filter. It is discussed why this combination is more
efficient than a CAM or a Bloom filter by itself. Using a 8KB table, a performance gain of 11.1%
is observed, as compared to the 13.5% gain for the unbounded predictor of other embodiments.
{8118 Prediction table. A prediction table is a hardware structure for recognizing voltage
emergency signatures. Lookups in the prediction table happen whenever the processor updates the
contents of the event history register. The processor combines the event sequence from the history

register with the address of the last issued branch instruction to form a signature, and then tries to

match that signature in the prediction table. If the match succeeds, the processor throttles

37



10

15

20

WO 2010/093750 PCT/US2010/023829

execution to prevent a potential emergency. It is assumed the prediction table is managed by
firmware. When an emergency occurs, the firmware makes a signature by combining the contents
of the event history register with the most recently issued branch address and enters it in the
prediction table.

W81l CAM. A CAM is a natural structure for implementing a prediction table. However, our
analysis shows that at least 8,000 entries would be needed to achieve good performance. At 16
bytes per entry, such a large CAM would require too much area and power. With a smaller CAM,
capacity misses could prevent emergencies from being detected, which could lead to severe
rollback penalties.

131131 Bloom filter. A Bloom filter is a compact lookup structure that saves space, but may
sometimes return a false match. It is a probabilistic hash table that maps keys to boolean values,
implemented using a bit vector and k£ hash functions. The procedure to add a key to the Bloom
filter hashes the key k& ways and sets the bits in the bit vector corresponding to the % indices
returned by the hash functions. A key matches in the Bloom filter if and only if the bits for all £
indices hashed from that key are set. With some probability, all of the indices for a key that has
never been entered may nevertheless be set, in which case matching that key produces a false
positive result.

\W0113) For the present purposes, false positives can be tolerated because they only affect
performance, not correctness. However, a Bloom filter by itself needs to be quite large to give
acceptable performance. Smaller Bloom filters have higher false positive rates, and the resulting
unnecessary throttling severely degrades performance. While a 64KB Bloom filter could yield a
performance gain comparable to the exemplary unconstrained signature-based predictor, that for a

Bloom filter of a more practical size, such as 8KB, falls to less than 2%.

38



10

15

20

WO 2010/093750 PCT/US2010/023829

{1114} CAM plus Bloom filter. By screening the anchor PC components of signatures using a
CAM, the number of lookups can be reduced in the Bloom filter, which reduces the number of
times false positives cause throttling. In the examples it was observed that the working set of
anchor PCs is small enough that a CAM is practical. Sizing the CAM appropriately is important,
however, because capacity misses allow emergencies to happen, which leads to rollbacks. At
CAM sizes of 32 and 64 entries, the results show that rollback penalties reduce performance gains
by as much as 50% and 10%, respectively. But with a 128-entry CAM, the performance loss due
to capacity misses is negligible.

{M} i8] Thresholds. The other way to reduce false positives is to keep the occupancy of the
Bloom filter low. That can be done by excluding the less frequently occurring emergency
signatures. The trade-off is that with higher thresholds, more emergencies are missed and more
rollback costs are incurred. The firmware that manages the prediction table could at the same time
profile signature occurrences and exclude those signatures whose occurrence counts fall below a
chosen threshold.

{881is] To investigate the effects of thresholds, a prediction table is used combining a 128-entry
CAM (one 32-bit address per entry) with a Bloom filter that uses three hash functions. FIG. 9(a)
shows that a threshold of one captures all but 2.8% of all emergencies. Larger thresholds cause so
many emergencies to be missed that performance degradation due to rollbacks is severe.

W8T FIG. 9(b) shows the performance gains with different prediction table sizes for a variety
of threshold values. For small table sizes, a higher threshold yields better performance because it
reduces the false positive rate. With a 2KB prediction table size, performance gain is only 0.8%
without a threshold (T=0). But a threshold of T=10 reduces throttles caused by false positives so

much that performance gain increases to 7.3%, despite increased rollback penalties. On the other

39



10

15

20

WO 2010/093750 PCT/US2010/023829

hand, as table size grows, the false positive rate drops so that lower thresholds are more attractive.
With an 8KB prediction table size, performance gain for a threshold of T=10 is 3 percentage
points less than that for a threshold of T=1, because false positives are reduced so much that
rollback penalties dominate. With T=1 (which simply excludes all non-recurring emergency
signatures), the performance gain for an 8KB table is 11.1%, as compared to the 13.5% gain for

the unbounded prediction table described previously.

YIS With continued technology scaling, the inductive noise problem is an increasingly
important design challenge. Several architectural solutions have been proposed in the past to deal
with inductive noise in processors. However, these solutions either have trouble guaranteeing
correctness or they incur severe performance penalties. The present invention provides a novel
voltage emergency predictor that learns to predict recurring voltage emergencies by collecting
signatures of the program behavior and processor activity that leads to such emergencies. The
predictor-based architecture of the present invention uses the collected signatures to anticipate
emergencies and proactively avoid them via throttling, while relying on a checkpoint-restart fall-
back scheme already available in today’s production systems to train the throttling predictor. The
signature-based voltage emergency predictor operates independently of sensor delays, package
characteristics, and microarchitecture details, and it enables operation at aggressive voltage
margins without compromising correctness. With an aggressive margin of 4%, it can enable a
performance gain of as much as 13.5%, compared to 14.2% for an ideal oracle-based throttling
mechanism.

IW81ESY Our event-driven mechanism of the present invention triggers corrective action when it
detects certain emergency-prone events (L2 cache misses and branch flushes, as they are the

events associated with most of the emergencies). A naive implementation might be to take

40



10

15

WO 2010/093750 PCT/US2010/023829

preventive measures at every such event (for example, to activate a throttling mechanism at every
L2 miss). That would be overly conservative, however, since most such events don’t give rise to
emergencies. Analysis shows a false alarm rate of 71% for such a naive mechanism. Instead, it
tracks specific instructions associated with events (L2 misses or pipeline flushes) that have caused
emergencies, and it maintains contextual information for each event and emergency. Reacting only
to events associated with emergencies results in much less overhead than the naive
implementation.

1902 The foregoing description of the preferred embodiment of the invention has been
presented for purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed, and modifications and variations are possible in light
of the above teachings or may be acquired from practice of the invention. The embodiment was
chosen and described in order to explain the principles of the invention and its practical
application to enable one skilled in the art to utilize the invention in various embodiments as are
suited to the particular use contemplated. It is intended that the scope of the invention be defined

by the claims appended hereto, and their equivalents. The entirety of each of the aforementioned

documents is incorporated by reference herein.

41



10

15

20

WO 2010/093750 PCT/US2010/023829

CLAIMS

What 1s claimed is:

s

A system for avoiding voltage emergencies comprising:
a MiCroprocessor;
an actuator for throttling said microprocessor;
a voltage emergency detector; and
a voltage emergency predictor comprising:
means for tracking control flow instructions and microarchitectural events;
means for storing voltage emergency signatures corresponding to voltage
emergencies detected by said voltage emergency detector;
means for comparing current control flow and microarchitectural events with stored
voltage emergency signatures to predict voltage emergencies;
means for actuating said actuator to throttle said microprocessor to avoid predicted
voltage emergencies.
2. A system for avoiding voltage emergencies according to claim 1, wherein said
emergency detector comprises a checkpoint recovery mechanism.
A system for avoiding voltage emergencies according to claim 1, wherein said
emergency detector comprises a sensor.

A system for avoiding voltage emergencies according to claim 3, further

.

comprising:
a checkpoint recovery mechanism for recovering the system and resuming execution after

voltage emergencies.

S A system for avoiding voltage emergencies comprising:

42



WO 2010/093750 PCT/US2010/023829

a MiCroprocessor;
an actuator for throttling said microprocessor;
a sensor for detecting voltage emergencies;
a checkpoint recovery mechanism for recovery and resumption of execution after a voltage
5 emergency occurs; and
a voltage emergency predictor comprising:
means for tracking control flow instructions and microarchitectural events;
means for storing voltage emergency signatures corresponding to voltage
emergencies detected by said voltage emergency detector;
10 means for comparing current control flow and microarchitectural events with stored
voltage emergency signatures to predict voltage emergencies;
means for actuating said actuator to throttle said microprocessor to avoid predicted
voltage emergencies.
& A method for preventing voltage emergencies in a microprocessor comprising the
15  stepsof:
tracking control flow instructions and microarchitectural events in said microprocessor;
identifying voltage emergencies that occur in said microprocessor;
storing voltage emergency signatures corresponding to identified voltage emergencies;
comparing current control flow and microarchitectural events in said microprocessor with
20  stored voltage emergency signatures to predict impending voltage emergencies; and
throttling said microprocessor to avoid said impending voltage emergencies.
A method for preventing voltage emergencies in a microprocessor according to

claim 6, wherein said step of identifying voltage emergencies comprises detecting execution errors

43



10

WO 2010/093750 PCT/US2010/023829

in said microprocessor with a checkpoint recovery mechanism.

8 A method for preventing voltage emergencies in a microprocessor according to
claim 7 wherein said step of identifying voltage emergencies further comprises recovery and
resumption of execution with said checkpoint recovery mechanism.

A method for preventing voltage emergencies in a microprocessor according to
claim 6, wherein said step of identifying voltage emergencies comprises detecting a voltage
surpassing a threshold.

1, A method for preventing voltage emergencies in a microprocessor according to

claim 9 wherein said step of identifying voltage emergencies further comprises recovery and

resumption of execution with a checkpoint recovery mechanism.

44



WO 2010/093750

Actuator

PCT/US2010/023829

- Throttle -»

A

— On / Off

CPU

Monitor
Current / Voltage

Y

Soft Threshold
Sensor

FIG. 1(a)
PRIOR ART

1/12



WO 2010/093750 PCT/US2010/023829

-~== Lingorrected Execution
~ Throttled Execution

Sensor enables throttling

. Nominal Voltage

Voltage
~— Operating Margin —w-

\ e (.},s;':‘.': -
\\ < ..-"'"f
......................... N AdQressive
N\, Soft Threshold
Vd e
Emergencies

Time (cycles)

FIG. 1(b)

-~~~ Uncorrected Execution
~ Throttled Execution

Sensor enables throttling

.. Nominal Voltage

-

NS0ft Threshold

“

-
TN s

Voltage
~— QOperating Margin —

Time {cycles)

FIG. 1(c)

2/12



WO 2010/093750

% Unsuppressed Emergencies

% Benign Crossings

80 -

60 —

\gu
:5
40 -~ {
§
$
§
20 — !
‘ N
§
H
§
0 — FeT—
o N

17273 45"

PCT/US2010/023829

Feedback Loop Delay (cycles)

R

‘ | AR
2%  2.5%

FIG. 2(a)

AR

3%

Sensor Thresholds

FIG. 2(b)

3/12



WO 2010/093750 PCT/US2010/023829

& d k= m‘tatj.@n Mé@h FITTESITT Tl s <o 0 s s e e o o g s o son i 3, S e e 40 200, S, 20 S < s

330

Yo o e e ph ph pr

Mot : :
== o o e Trigoering Layer
Frovassar Events HOEMNG L

{0 ]a]

L

. J
s
et it

s N — »  Emergency Handler
Currentdvaltage STYRNLY halidie

P
N 310

he.u..\:‘.d-\-“"’#‘

il rerrerresers;

Rollbisck

N

Fail-Safe Mechanism

W

N

o
UL

FIG. 3

4/12



PCT/US2010/023829

430

F 3

WO 2010/093750
400
(420
Actuator o Throttle ——m{ > Py
“ & '
Monitor
( Control Flow and Microarchitectural Events
¥
41 O - On £ O </ Predictor
440
FIG. 4(a)

L)

Checkpoint-Recovery

Ermnargency
Notification

-~ Throttled Execution {Sensor)
~~- Throttled Execution {Predictor)

Predictor enables throttling

Sensor enables throttling

... Nominal Voltage

Soft

Voltage
-— (Onerating Margin—

Fhreshold

Time (cycles)

FIG. 4(b)

5/12

X N N
' Lead time
. il



PCT/US2010/023829

WO 2010/093750

(e)s ol

Aaualisaws

AousBiay Asualiews Aouabiowy Aausfusig
o &

o

ot

AousBasig
o

. UIB3EN BUiiersdy 1sMET/

- -

e

g 288Yd

weuny  efeyoa

ysnid

mv
6/12

ayoe)

anss

9 yoredsig

B



WO 2010/093750 PCT/US2010/023829

..
e
o

4 i
H

A M‘M&"w\r

h "\ i i
\\\ 5.3 §
e B f‘
N §
N,
L W i

FIG. 5(b)

7/12



WO 2010/093750 PCT/US2010/023829
>t B >t »
} I §
BR | BR | BR BRIBR| 5 | BR|BRIBR|BR BR | BR BR
Y
o
Signature A BR{BR! 5 5
\ 2
63
Signature B | BR | BR BR &
Signature C | BR | BR BR

FIG. 6

8/12




WO 2010/093750 PCT/US2010/023829

} OO -3 \&:\\.\«“k“
80 — ,,
<C 40 — A
= 3
20~ 7
o :
P R B R DR I
1 2 4 8163264
Signature Size (# of entries)
FIG. 7(a)
80 —
>
O
£ 60—
3
3
<« 40 —
X
20
Omiwlmim!“‘ X
£ 2 39 4o
g § 2 & o 0B
S & g3ggq
LK H IO
L0

Signature Content

FIG. 7(b)

9/12



WO 2010/093750 PCT/US2010/023829

% Accuracy

— 0
— (02
— 001

H o w
o O O
i | |

astar [m
bwaves |
bzipd |
cactusADM |
calcudix |
dealll |
gamess
gee |
gemsFDTD |
gobmik |
gromacs |
hZb4ref
leslie3d
libquantum |
mcf |

milc
namd |
peribench
sjeng |
soplex |
sphinx3 |
wrf [
xalanchmk |

AVERAGE‘i :
MEDIAN [¢

FIG. 8(a)

10/12



PCT/US2010/023829

WO 2010/093750

e

_
o
)

_
5 ﬁu
N T

ADBINIIY %

FIG. 8(b)

m
-
O

ASBINDOY %

Lead time (cycles)

FIG. 8(c)

11/12



PCT/US2010/023829

WO 2010/093750

prennnngt

e 7
R A s s s

z

am._"m_wnmﬁm__mm

»
< 4y od -

$810uslIBLIT POSSIN %

001
06
08
04
09
08
O
0¢€
0¢
01
L

Threshold
FIG. 9(a)

] o
4 -
% %

%
\:
LY H
> :
% T
[ ¢ )
in <l
e
o
3 e -
% s “
"o,
% w7 .
!

mﬂm
2n]
pa—

LINLEN TR S N 20
< tp <

uie 9

1
T=10
en i
N,
o
o

Prediction Table Size

FIG. 9(b)

12/12



	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings

