SMIV: A 16nm SoC with Efficient and Flexible DNN Acceleration for Intelligent IoT Devices

Paul N. Whatmough (Arm Research / Harvard)

S.-K. Lee (IBM, Harvard), S. Xi, U. Gupta, L. Pentecost,

M. Donato, H.-C. Hseuh, D. Brooks and G.-Y. Wei (Harvard)

Deep learning enables intelligent IoT devices

Making sense of sensor data

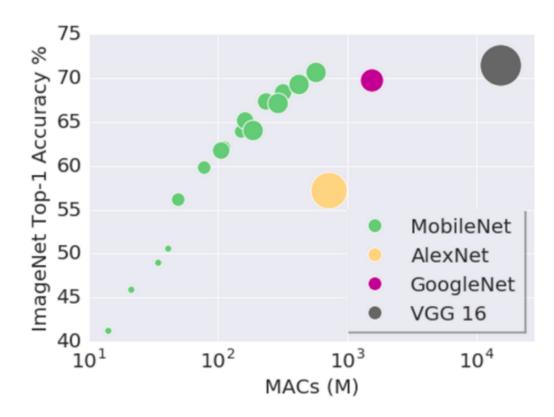
Classification/regression problems in diverse domains Multi-modal data (sensor fusion)

Unsupervised learning (e.g. anomaly detection)

Next-generation UI/UX

Small form-factor without a big screen or input device Speech detection/recognition/synthesis, gaze detection, biometric authentication (e.g. face detection)

Personalize interface and predict user decision-making


DNN inference on edge device

Privacy, latency and energy issues with transmitting data Demands a large compute and storage capability...

Closing the DNN gap on embedded devices

More efficient networks

[Howard et al., CoRR 2017]

More efficient hardware

Reduced precision

4x improvement from INT8 versus FP32

Data re-use

Drives overall microarchitecture

Data compression

Reduce mem footprint, bandwidth, and power

Transforms

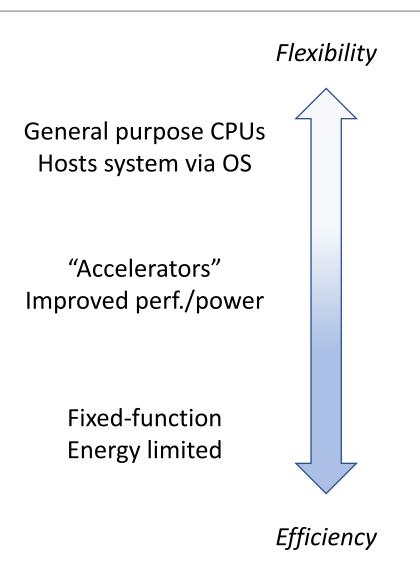
Winograd fast convolution (N² not N³)

Sparse computation

Static weight pruning + dynamic ReLU activation

Efficient and flexible hardware acceleration

Architecture specialization


Accelerators trade flexibility for efficiency Still care about silicon area in embedded DNNs pose risk of premature obsolescence

No silver bullet

"Fluid" workloads suit more programmable accelerators Always-on sensing and monitoring – energy limited Reconfigurable architectures – FPGA and CGRA

It's the system, stupid!

CPU interfacing and memory systems for accelerators Abstractions and tools to map workloads to rich SoC

SMIV: motivation and chip overview

SoC platform for architecture and systems research

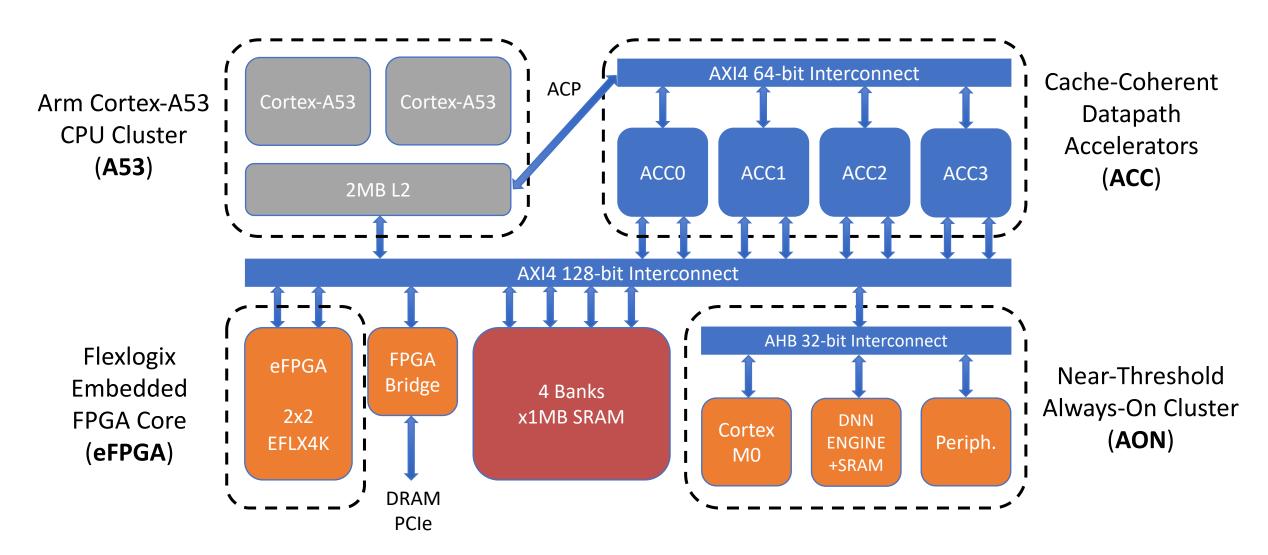
Test chip details

25mm² die area (5mm x 5mm), TSMC 16nm FFC

Half a billion transistors, 72.2 Mbit of SRAM, 7 clocks, 5 power domains

First academic chip to feature Arm Cortex-A class CPUs

All-digital GHz+ on-chip clock generation and chip-chip link


Custom 672-pin flip-chip BGA package

Very short design, validation and implementation cycle

7 people (4 PhDs and 3 post-docs) in about 9 months (final IP came in 6 weeks before tape out)

SMIV: SoC platform

Near-Threshold Always-On Cluster (AON)

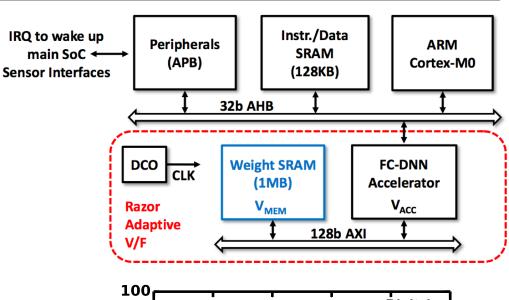
Cortex-M0, peripherals and accelerators

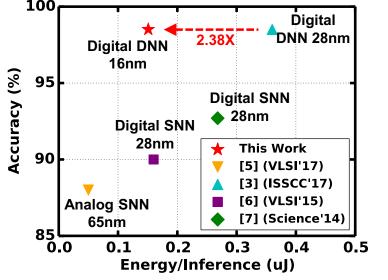
Runs firmware for system control

Performs low-energy always-on tasks

Optimized for robust low voltage operation

DNN ENGINE programmable classifier


Second generation design (ISSCC'17)


Parallelism, data-reuse, optimized data-types, sparse computation, algorithmic resilience

Model stored in on-chip SRAM

Energy as low as 150nJ/inference for MNIST @98.5%

[Lee et al., ESSCIRC'18]

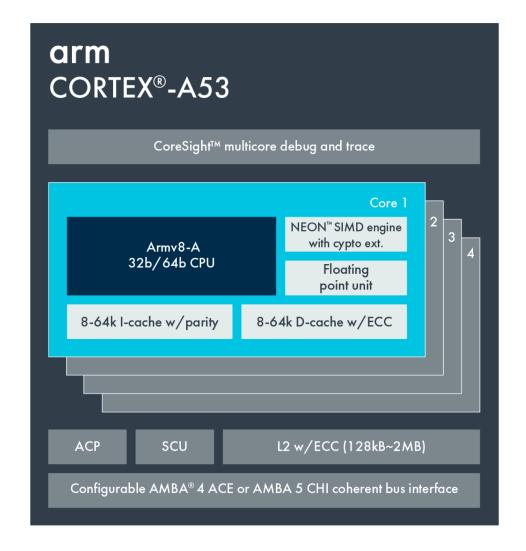
Arm Cortex-A53 CPU cluster

High efficiency embedded processor Mature product with high volume

In-order pipeline

Lower power consumption

Extensive dual-issue capability


Increased peak instruction throughput via dual instruction decode and execution

Advanced branch predictor

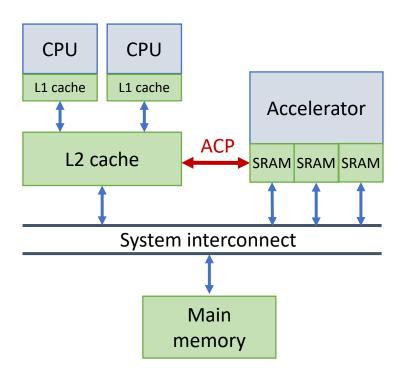
Increased branch hit rate with 6Kb Conditional Predictor and 256 entry indirect predictor

Extensive power-saving features

Hierarchical clock gating, power domains, advanced retention modes

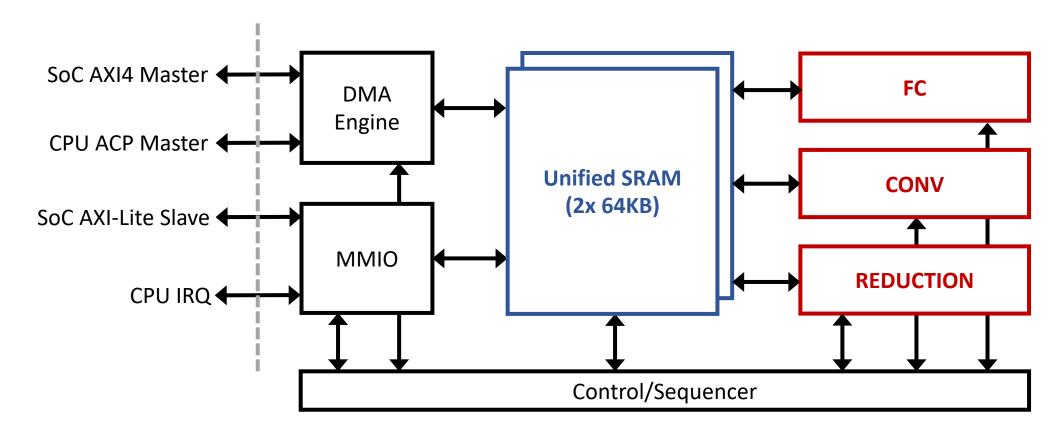
Accelerator coherency port (ACP)

Efficient accelerator interfacing


Avoids CPU cache flush when accessing cached data Coherent memory simplifies programming model Very low hardware cost for accelerator

Enables fine grained datapath acceleration

Focus on accelerating key composable kernels Increases flexibility...


Cache a larger working set in L2

Workload dependent - your mileage may vary Exploit lower energy of uncached loads (e.g. FC weights)

Cache-Coherent Datapath Accelerators (ACC)

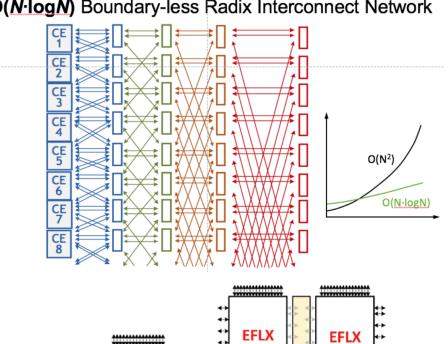
Modeled and implemented using high-level synthesis (HLS) methodology

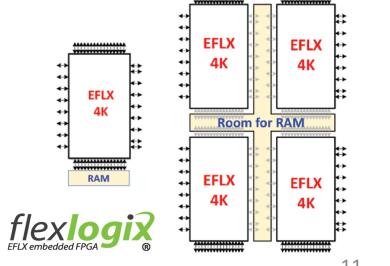
Flexlogix embedded FPGA (eFPGA)

Embedded FPGA IP

Efficient interconnect enables density and scalability Density & performance similar to full custom FPGA

Scalable and flexible array size and layout


Logic tile: 2,520 LUT6 + 21 kbits distributed mem


DSP tile: 40 22b hardware MACs + 1,880 LUT6

SMIV contains a 2x2 eFPGA array

2x logic tiles and 2x DSP tiles Total ~9,000 LUT6 logic, 80 hardware MACs, 44kbits RAM Attached as a first-class citizen on the SoC interconnect

O(N-logN) Boundary-less Radix Interconnect Network

SMIV in action

Initial silicon bring up successful

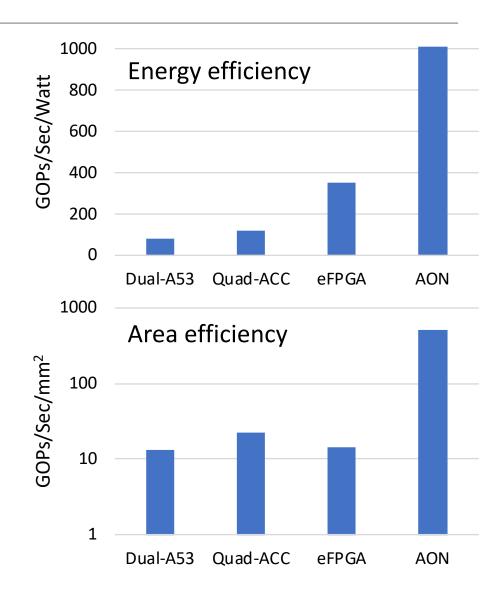
All pre-silicon tests passed
Off-chip interface to FPGA board working, providing
DRAM main memory and peripherals
eFPGA programming fully-functional

Using SMIV SoC platform for research

Scheduling accelerators sharing L2 over ACP eFPGA as first class citizen on an SoC Incremental wakeup from AON sub-system Real applications!

SMIV measured efficiency

Measured on representative DNN kernels


Energy efficiency range is >10x

CPU to fixed-function AON

This also spans the whole flexibility spectrum AON will not benefit from new algorithm advances eFPGA is 4.5x energy efficiency of CPUs

Area efficiency heavily impacted by SRAM

Important to share on-chip SRAM resources efficiently ACP allows accelerators to use large L2 cache eFPGA has the area overhead of reconfiguration

Rapid SoC design and implementation

DARPA program - Circuit Realization at Faster Timescales (CRAFT)

7 people (4 PhDs and 3 post-docs) in about 9 months (final IP came in 6 weeks before tape out)

How did we make a complex SoC in a short timescale?

Industry strength IP, interface standards and software eco-system

Arm Socrates tool for rapid iteration on SoC integration and IP configuration

Scripted methodologies for generating memory-mapped registers, IO pad-ring, clock domains etc.

No custom layout - entirely std-cells + SRAM, including clock generation and off-chip link PHY

High-level synthesis (HLS) from a SystemC design, using Nvidia methodology

Minimize the long tail of validation and timing closure

Arm research enablement offerings

SoC HW/SW co-development with DesignStart

DesignStart Eval - Cortex M0/ M3 based systems, evaluation with obfuscated RTL DesignStart Pro Academic - Cortex M0/ M3 based systems, RTL for SoC design


Compute systems modelling and architecture exploration Gem5 - CPU and system modelling

IP Building blocks*

Design IP – CPUs, Interconnects, peripherals
Physical IP – Standard cells, Memory compilers, POP IP

www.arm.com/resources/research/enablement

^{*}Any logic Arm IP that is not part of DesignStart will be provided on a case by case basis, depending on the research project scope, objectives and alignment with Arm research agenda

Summary

Deep learning on edge devices is driving new IoT use cases

Efficient and flexible DNN acceleration

It's the system, stupid!

SMIV - a 16nm SoC platform for architecture and systems research

First academic chip to feature Arm Cortex-A class CPUs

Near-threshold always-on cluster

Cache-coherent multi-core datapath accelerators with ACP attach

Embedded FPGA cluster

Rapid SoC design and implementation

Acknowledgments

We are very grateful to our sponsors, including the DARPA PERFECT and CRAFT programs, and to Arm, Flex Logix and TSMC for IP support