
Sub-uJ Deep Neural Networks for
Embedded Applications

Paul N. Whatmough1,2, Sae Kyu Lee2, Gu-Yeon Wei2, David Brooks2

1Arm Research, Boston, MA
2Harvard University, Cambridge, MA

paul.whatmough@arm.com

Abstract—To intelligently process sensor data on internet of
things (IoT) devices, we require powerful classifiers that can
operate at sub-uJ energy levels. Previous work has focused on
spiking neural network (SNN) algorithms, which are well suited
to VLSI implementation due to the single-bit connections
between neurons in the network. In contrast, deep neural
networks (DNNs) are not as well suited to hardware
implementation, because the compute and storage demands are
high. In this paper, we demonstrate that there are a variety of
optimizations that can be applied to DNNs to reduce the energy
consumption such that they outperform SNNs in terms of energy
and accuracy. Six optimizations are surveyed and applied to a
SIMD accelerator architecture. The accelerator is implemented
in a 28nm SoC test chip. Measurement results demonstrate ~10X
aggregate improvement in energy efficiency, with a minimum
energy of 0.36uJ/inference at 667MHz clock frequency.
Compared to previously published spiking neural network
accelerators, we demonstrate an improvement in energy
efficiency of more than an order of magnitude, across a wide
energy-accuracy trade-off range.

Keywords—deep neural networks; accelerators; embedded;
IoT; Razor; SoC

I. INTRODUCTION
The burgeoning internet of things (IoT) market segment has

spurred interest in a varied assortment of new embedded
computing applications and form factors. These new IoT
applications often exploit an abundance of local sensor data.
Machine Learning (ML) techniques enable us to interpret
(noisy) sensor data, providing applications with a view into the
real-world environment around them.

A wide range of classification tasks are becoming
ubiquitous in embedded devices. Examples of these include:
character classification in images, key-word classification in
speech, and face detection in images. From an ML perspective,
these kinds of tasks are often considered simple, if not trivial,
and the research often focusses on much more challenging
classification problems, such as large category image
classification datasets, e.g. Imagenet. However, for heavily
constrained embedded SoCs, even relatively simple neural
network classifiers represent a serious challenge in terms of
both compute load and memory footprint.

There has been a variety of work presented recently on
specialized ML hardware, which has demonstrated the
advantage of specialized designs compared to CPU or GPU
implementations. These works tend to focus on either high-
power convolutional neural networks (CNNs) for computer

vision [1–3], or low-accuracy spiking neural networks (SNNs)
[4–5]. For simpler classification tasks, it is still not clear which
of a number of competing algorithms is the most efficient.
SNNs have been strongly motivated, but deep-learning
techniques can also be readily applied to constrained platforms
too. SoCs for the IoT segment require balancing classification
accuracy and energy to fall somewhere between the two
extremes of CNN and SNN. To achieve this, it is necessary to
systematically optimize across ML algorithms, computer
architecture and digital circuits. In this paper, we will address
each layer of this stack and present measured results on a 28nm
SoC test chip, for a range of common classification problems,
all at energy levels below 1uJ per classification [6].

The remainder of the paper is organized as follows. In
section 2 we survey some background material related to deep
neural networks and hardware accelerators. In section 3, we
describe a series of optimizations that can be applied to neural
networks to strongly reduce the energy consumption. Section 4
describes the proposed DNN ENGINE design, with
implementation details. Section 5 presents measurement
results. Finally, section 6 offers conclusions.

II. BACKGROUND

A. Deep Neural Networks
Fully Connected Deep Neural Networks (FC-DNNs) are a

mature ML model particularly well suited to general-purpose
classification tasks [7–8]. Generally, FC-DNNs offer better
accuracy than SNNs, but unfortunately do not map as well to
VLSI implementations, as they present a much larger
arithmetic workload and memory bandwidth requirement. An
FC-DNN is typically represented as a simple weighted directed
acyclic graph consisting of multiple layers of neurons (nodes)
and weights (edges), as shown in Fig. 1. The deep designation
refers to a graph containing more than one hidden layer, along
with the input and output (softmax) layers. The additional
hidden layers are an important characteristic, as they allow for
much more complex non-linear functions to be learned.
Concretely, the output of the jth neuron in the kth layer, xj(k) is
given by

xj(k) = f(Si wji(k) × xi(k-1)), (1)

where wji(k) is a unique weight connecting neurons in the
graph, and f is the rectified linear (ReLU) activation function,
f(x) = max(x,0). The wji(k) parameters are learned during a
training procedure [7], which is not described in this paper, as
we are concerned solely with performing inference assuming a
pre-existing trained model.

1912978-1-5386-1823-3/17/$31.00 ©2017 IEEE Asilomar 2017

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 14:27:08 UTC from IEEE Xplore. Restrictions apply.

 This kind of sum-of-products kernel (1) is very common in
DSP algorithms. However, in FC-DNN, the kernel is typically
much wider, and requires many more weights than might
typically be employed in DSP algorithms, such as FIR filters.
Nonetheless, as we will see, many of the optimizations that are
common in implementing DSP algorithms are also relevant
here.

B. Hardware Accelerators
At the cutting-edge, ML workloads are developing rapidly

and flexible software approaches on SIMD CPUs and/or
GPGPUs are the most practical approach. However, for
embedded applications that have converged sufficiently,
specialized hardware accelerators provide the efficiency
needed in energy-constrained use-cases. Accelerators allow for
much more freedom at implementation time, such that a
number of optimizations can be exploited, that are otherwise
difficult to implement in software. A more tailored
implementation in custom hardware inevitably leads to much
higher performance and efficiency. However, this comes at the
cost of diminished programmability and can lead to premature
obsolescence of the hardware platform.

 Neural networks are a compelling target for hardware
acceleration, because we can optimize the implementation for a
single algorithm (e.g. FC-DNN in this case), but retain
“programmability” for a range of applications, by changing the
weights (wji(k)). Fig. 1 shows a typical application scenario for
classifying sensor data, where provision for programmable
weights and network topology allow for the freedom to update
the classifier functionality as needs dictate. Although even
greater efficiency could be achieved by hard-coding the
weights for a given classification task, it would consume a very
large amount of silicon area and would result in a design that
can only be used for a single task.

III. ENERGY OPTIMIZATIONS
In this section, we describe a number of optimizations that

can be applied to the computation of the FC-DNN compute
graph to increase efficiency.

A. Parallelism
Deep neural networks are embarrassingly parallel. More

specifically, within the kth layer, there are no data
dependencies whatsoever, since the weights, wji(k) are unique
and the neuron values, xj(k) are arranged in parallel in the
graph. However, the degree of parallelism implemented is of
course limited by the silicon area and by the memory
bandwidth required to deliver the weights to the datapath. In
practice, the memory bandwidth limitation is the most severe.

B. Data Reuse
An interesting side-effect of increasing the parallelism is

that we see a benefit in terms of operand reuse. Operand reuse
refers to the situation where we are able to load an operand
from (local) memory and use it in more than one consecutive
computation. In FC layers, there is no reuse in the weights at
all, which are loaded, used once and then discarded.

In
pu

t	V
ec
to
r

O
ut
pu

t	C
la
ss
es

DNN	ENGINE

Hidden	Layers

Outputs

+
DNN	Topology

+
Weights

Inputs

Sensor	
Data

Weight
Neuron Classification

Argmax

Fig. 1. Illustration of a hardware accelerator for the FC-DNN algorithm,
which processes sensor data to generate a classification result. The topology
and weights for the FC-DNN are programmable, which allows the design to

be used for arbitrary classification tasks at run-time.

However, the activation data can be loaded and reused across
all the parallel neurons in a given layer. This leads to
significant savings in memory bandwidth, which ultimately
result in energy savings. Although beyond the scope of this
paper, CNNs exhibit reuse in both activations and weights, and
hence 2D systolic array architectures are popular as they allow
reuse of both of the MAC operands, rather than just one.

C. Sparse Data
Both weights and activations typically contain a large

number of zero and small non-zero values. Since we are
implementing a sum-of-products kernel, if either of the
operands are close to zero, the resulting accumulator update
will be negligible. Therefore, it is not necessary to perform
operations associated with small operands, and we can skip
them entirely. We exploit this property to reduce the compute
requirement and memory bandwidth, without impacting the
classification accuracy of the trained model.

In this work, we demonstrate dynamic activation pruning,
which does not impose any new constraints on the DNN
training procedure. The general approach is to threshold
activation data as it is generated, and then only store
significant activations that are larger than a pre-determined
threshold. Subsequently, when calculating the next layer, we
then only load the significant activations that were stored in
the preceding layer. Operations and storage associated with
small activations is pruned entirely, significantly reducing the
memory bandwidth and also the compute.

D. Small Data Types
The optimal data type used in neural networks is the

subject of significant research effort [7]. However, it is clear
that for inference, it is possible to use quite small fixed-point
types, without impacting classification accuracy. The
bitwidths that can be safely used to represent the weights are
typically in the range of 4-16 bits, and depend on the exact
network that is being executed. In order to provide flexibility
while also increasing efficiency, we support both 16-bit and 8-
bit weights, with a number of programmable rounding modes,
all of which are configurable on a per-layer basis for
maximum flexibility.

1913

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 14:27:08 UTC from IEEE Xplore. Restrictions apply.

MAC	DatapathWeight	Load

RZNBUF

IPBUF

XBUF

RZ

Data	In

Data	Out

CFG

ActivationDMAIndex

Ho
st
	P
ro
ce
ss
or

W
riteback

SKIP

Data	Read

W-MEM

Fig. 2. Simplified micro-architecture of the DNN ENGINE, showing the
pipeline stages and the interfacing.

ARM	
Cortex-M0

UART
DNN	
Engine

W-MEM
1MB

SYSCTL

Bridge

GPIO

D-MEM
64KB

I-MEM
64KBTimers

BIST

Wdog

UARTs

32
b	
AH

B

32
b	
AP

B

12
8b

	A
XI

M

M

S

S

S

S M S

S

S

Low-BW	Peripherals

S

S

SCAN M
S M

S

Accelerator	SubsystemCortex-M0	Subsystem

VACC	–	Accelerator	Logic
VMEMP	–	SRAM	Periphery
VMEMC	–	SRAM	Core

USB

GPIO

Scan

USB

DCO

28nm	SoC	Test	Chip

S

VDCO

VSOC

RTC

AS
YN

C
FCLKHCLKOSC

VSOC

Fig. 3. Block diagram of the 28nm SoC test chip.

E. Noise Tolerance
Neural networks are inherently noise tolerant, and this can

be exploited in a number of ways. The use of small datatypes,
discussed previously, is an example of this. In this work, we
also implement a light-weight Razor error detection scheme,
which allows us to remove worst-case timing margins which
account for process, voltage and temperature (PVT) variations.
Razor is an approach that provisions for the occurrence of
timing violations in order to detect and track changes in the
PVT operating point [9]. Unlike previous work, even if timing
errors are detected, it is not necessary to implement an
expensive error correction mechanism, since DNNs can
intrinsically tolerate noise arising from intermittent bit errors.
A number of similar approaches have been previously studied
for DSP algorithms, following either the Razor approach [10–
12], or the earlier algorithmic noise tolerance (ANT) approach
[13] pioneered by Shanbhag et al.

F. Weight Storage
Embedded devices typically have very limited access to

bulk storage. When the system design does include off-chip
flash or SRAM memory devices, it is typically very expensive
to access them. This presents a challenge to the
implementation of DNNs, since for inference, it is necessary
to access the model weights, which tend to be of the order of
hundreds of KBs for small classification problems. Accessing
this through off-chip storage would lead to excessive energy
consumption. Therefore, we implement an on-chip 1MB
SRAM to store the weights, thereby eliminating off-chip
access once the SRAM has been populated.

IV. DNN ENGINE

A. Design
The DNN ENGINE is a specialized hardware accelerator

for efficiently performing FC-DNN inference for energy-
constrained applications. The accelerator is programmable to
allow processing FC-DNNs of various sizes for different
application tasks and accuracy goals. The accelerator is
controlled by a driver running on the host CPU, which
configures the parameters of the target network, and stores the
input data into a scratch pad memory. An address pointer is
also provided for the network weights. The accelerator then
processes the network one layer at a time, working on 8
neurons in parallel. After the output layer has been calculated,
the accelerator sends an interrupt to the host CPU, which can
retrieve the output data.

Fig. 2 is a simplified block diagram of the DNN ENGINE
micro-architecture. The pipeline is arranged in five stages and
incorporates all the optimizations described in section 3. The
design is essentially based around a simple single-instruction
multiple-data (SIMD) template. Hence, the datapath includes
an 8-way MAC unit that calculates 8 neuron accumulations in
parallel. The MAC datapath is fed with weight and activation
operands from SRAM. The weights are stored in a 1MB
SRAM on the SoC (outside the accelerator), while the
activations are relatively small and stored in SRAM inside the
accelerator itself. The activation stage adds a bias term and
applies the ReLU activation function. It also applies a threshold
function to test for sparse activations. Non-sparse activations
are written back to XBUF for use in the following layer, while
small activations are ignored. XBUF stores activation data, and
is double-buffered to allow data for layer k to be read, while
writing data for use in layer k+1. The DMA stage contains
address generation logic used to sequence weights into the
datapath in the correct order. Due to the sparse nature of the
compute graph, the weight load sequences are not sequential
and are derived from the contents of NBUF, which is a list of
active nodes in the current layer and previous layers.

B. Implementation
 The DNN ENGINE accelerator was implemented in a
28nm SoC test chip (Fig. 3). The SoC is based around an ARM
M0 microcontroller, with associated peripherals and I/O
blocks. The accelerator subsystem includes the DNN ENGINE
macro, a 1MB SRAM block and a digitally controlled
oscillator (DCO) to generate fast on-chip clocks. Various
power domains are included to allow for a variety of voltage
and clock frequency scaling experiments. Fig. 4 gives a
summary and photo annotated with the floorplan for the SoC.

V. RESULTS
Measured results for the DNN ENGINE demonstrate that

on aggregate, the various optimizations result in an
improvement in energy per inference at 667MHz, from 3.28uJ
(0.9V, 16-bit), down to 0.36uJ (715mV, 8-bit, Razor, sparsity)
– an improvement of nearly 10X. These results are for the
MNIST dataset at 98.5% accuracy.

1914

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 14:27:08 UTC from IEEE Xplore. Restrictions apply.

DNN ENGINE

W-MEM
256KB
BANK1

W-MEM
256KB
BANK0

W-MEM
256KB
BANK3

W-MEM
256KB
BANK2

D-MEM
64KB

Cortex-
M0

UART

2.4mm

2.
4m

m

GPIO

I-MEM
64KB

DCO

Fig. 4. Test chip summary table and die photograph.

Fig. 5. Comparison of low-power hardware accelerators with published

MNIST results. For the DNN ENGINE (this work), we present five different
DNN topologies that cover a range of accuracy/energy points.

For energy constrained applications, there are a number of
competing neural network models, namely DNN, SNN and
CNN. Although SNNs have been strongly motivated as an
energy efficient solution [4–5], it seems that they are best
suited to moderate accuracy regimes, and even then, do not
compete on energy with our optimized DNN implementation
(Fig. 5). The DNN ENGINE demonstrates more than an order
of magnitude improvement in energy efficiency. CNNs excel
at image recognition tasks such as MNIST. Therefore,
accuracy achieved is high. However, most CNN accelerators
published to date are fairly powerful designs that are not well
suited to energy-constrained devices. For example, they
typically use off-chip memory which is not included in power
measurements [1–3]. Hence, energy per prediction is higher.

VI. CONCLUSION
In this paper, we discussed the optimization of hardware

accelerators for FC-DNN workloads. We described six areas
for optimization, viz. parallelism, data reuse, sparse data, small

data types, noise tolerance and weight storage. By exploiting
these optimization opportunities, we implemented an
accelerator architecture for energy constrained platforms. The
accelerator is implemented in a 28nm SoC test chip, based
around a microcontroller and associated peripherals.
Measurement results demonstrate a reduction of nearly 10X in
energy per inference due to the optimizations described.
Compared to previously published spiking neural network
hardware, the energy efficiency achieved is more than an
order of magnitude higher.

ACKNOWLEDGMENT
 This research was, in part, funded by the U.S. Government
under the DARPA CRAFT (HR0011-16-C-0052) and
PERFECT (HR0011-13-C-0022) programs. Intel Corporation
also provided support. Arm Inc. kindly provided IP support.

REFERENCES
[1] Y. H. Chen, et al., “Eyeriss: An Energy-Efficient Reconfigurable

Accelerator for Deep Convolutional Neural Networks,” IEEE Journal of
Solid-State Circuits, Jan. 2017.

[2] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W precision-scalable
processor for real-time large-scale ConvNets,” IEEE Symp. on VLSI
Circuits, 2016.

[3] J. Sim, et al., “14.6 A 1.42TOPS/W deep convolutional neural network
recognition processor for intelligent IoE systems,” IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2016.

[4] J. Kim et al., “A 640M pixel/s 3.65mW sparse event-driven
neuromorphic object recognition processor with on-chip learning,” IEEE
Symp. on VLSI Circuits, 2015.

[5] S. Esser, et al., “Backpropagation for energy-efficient neuromorphic
computing”, Int. Conf. on Neural Information Processing Systems, 2015.

[6] P. N. Whatmough, et al., “14.3 A 28nm SoC with a 1.2GHz
568nJ/prediction sparse deep-neural-network engine with >0.1 timing
error rate tolerance for IoT applications,” IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2017.

[7] B. Reagen, R. Adolf, P. Whatmough, G.-Y. Wei, D. Brooks, “Deep
Learning for Computer Architects”, Synthesis Lectures on Computer
Architecture, Morgan & Claypool, August 2017.

[8] B. Reagen, et al., “Minerva: enabling low-power, highly-accurate deep
neural network accelerators”, Int. Symp. on Computer Architecture
(ISCA), 2016.

[9] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” IEEE/ACM Int. Symp. on Microarchitecture, 2003.

[10] P. N. Whatmough, S. Das and D. M. Bull, “A Low-Power 1-GHz Razor
FIR Accelerator With Time-Borrow Tracking Pipeline and Approximate
Error Correction in 65-nm CMOS,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 1, pp. 84-94, Jan. 2014.

[11] P. N. Whatmough, S. Das, D. Bull and I. Darwazeh, “Error-resilient
low-power DSP via path-delay shaping,” ACM/EDAC/IEEE Design
Automation Conference (DAC), 2011, pp. 1008-1013.

[12] P. N. Whatmough, S. Das, D. M. Bull and I. Darwazeh, “Circuit-Level
Timing Error Tolerance for Low-Power DSP Filters and Transforms,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, no. 6, pp. 989-999, June 2013.

[13] R. Hegde and N. R. Shanbhag, “A voltage overscaled low-power digital
filter IC,” in IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp.
388-391, Feb. 2004.

1915

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 14:27:08 UTC from IEEE Xplore. Restrictions apply.

