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Abstract—To intelligently process sensor data on internet of 
things (IoT) devices, we require powerful classifiers that can 
operate at sub-uJ energy levels. Previous work has focused on 
spiking neural network (SNN) algorithms, which are well suited 
to VLSI implementation due to the single-bit connections 
between neurons in the network. In contrast, deep neural 
networks (DNNs) are not as well suited to hardware 
implementation, because the compute and storage demands are 
high. In this paper, we demonstrate that there are a variety of 
optimizations that can be applied to DNNs to reduce the energy 
consumption such that they outperform SNNs in terms of energy 
and accuracy. Six optimizations are surveyed and applied to a 
SIMD accelerator architecture. The accelerator is implemented 
in a 28nm SoC test chip. Measurement results demonstrate ~10X 
aggregate improvement in energy efficiency, with a minimum 
energy of 0.36uJ/inference at 667MHz clock frequency. 
Compared to previously published spiking neural network 
accelerators, we demonstrate an improvement in energy 
efficiency of more than an order of magnitude, across a wide 
energy-accuracy trade-off range. 

Keywords—deep neural networks; accelerators; embedded; 
IoT; Razor; SoC 

I.  INTRODUCTION 
The burgeoning internet of things (IoT) market segment has 

spurred interest in a varied assortment of new embedded 
computing applications and form factors. These new IoT 
applications often exploit an abundance of local sensor data. 
Machine Learning (ML) techniques enable us to interpret 
(noisy) sensor data, providing applications with a view into the 
real-world environment around them. 

A wide range of classification tasks are becoming 
ubiquitous in embedded devices. Examples of these include: 
character classification in images, key-word classification in 
speech, and face detection in images. From an ML perspective, 
these kinds of tasks are often considered simple, if not trivial, 
and the research often focusses on much more challenging 
classification problems, such as large category image 
classification datasets, e.g. Imagenet. However, for heavily 
constrained embedded SoCs, even relatively simple neural 
network classifiers represent a serious challenge in terms of 
both compute load and memory footprint.  

There has been a variety of work presented recently on 
specialized ML hardware, which has demonstrated the 
advantage of specialized designs compared to CPU or GPU 
implementations. These works tend to focus on either high-
power convolutional neural networks (CNNs) for computer 

vision [1–3], or low-accuracy spiking neural networks (SNNs) 
[4–5]. For simpler classification tasks, it is still not clear which 
of a number of competing algorithms is the most efficient. 
SNNs have been strongly motivated, but deep-learning 
techniques can also be readily applied to constrained platforms 
too. SoCs for the IoT segment require balancing classification 
accuracy and energy to fall somewhere between the two 
extremes of CNN and SNN. To achieve this, it is necessary to 
systematically optimize across ML algorithms, computer 
architecture and digital circuits. In this paper, we will address 
each layer of this stack and present measured results on a 28nm 
SoC test chip, for a range of common classification problems, 
all at energy levels below 1uJ per classification [6]. 

The remainder of the paper is organized as follows. In 
section 2 we survey some background material related to deep 
neural networks and hardware accelerators. In section 3, we 
describe a series of optimizations that can be applied to neural 
networks to strongly reduce the energy consumption. Section 4 
describes the proposed DNN ENGINE design, with 
implementation details. Section 5 presents measurement 
results. Finally, section 6 offers conclusions. 

II. BACKGROUND 

A. Deep Neural Networks 
Fully Connected Deep Neural Networks (FC-DNNs) are a 

mature ML model particularly well suited to general-purpose 
classification tasks [7–8]. Generally, FC-DNNs offer better 
accuracy than SNNs, but unfortunately do not map as well to 
VLSI implementations, as they present a much larger 
arithmetic workload and memory bandwidth requirement. An 
FC-DNN is typically represented as a simple weighted directed 
acyclic graph consisting of multiple layers of neurons (nodes) 
and weights (edges), as shown in Fig. 1. The deep designation 
refers to a graph containing more than one hidden layer, along 
with the input and output (softmax) layers. The additional 
hidden layers are an important characteristic, as they allow for 
much more complex non-linear functions to be learned. 
Concretely, the output of the jth neuron in the kth layer, xj(k) is 
given by 

xj(k) = f(Si wji(k) × xi(k-1)), (1) 

where wji(k) is a unique weight connecting neurons in the 
graph, and f is the rectified linear (ReLU) activation function, 
f(x) = max(x,0). The wji(k) parameters are learned during a 
training procedure [7], which is not described in this paper, as 
we are concerned solely with performing inference assuming a 
pre-existing trained model.  
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 This kind of sum-of-products kernel (1) is very common in 
DSP algorithms. However, in FC-DNN, the kernel is typically 
much wider, and requires many more weights than might 
typically be employed in DSP algorithms, such as FIR filters. 
Nonetheless, as we will see, many of the optimizations that are 
common in implementing DSP algorithms are also relevant 
here. 

B. Hardware Accelerators 
At the cutting-edge, ML workloads are developing rapidly 

and flexible software approaches on SIMD CPUs and/or 
GPGPUs are the most practical approach. However, for 
embedded applications that have converged sufficiently, 
specialized hardware accelerators provide the efficiency 
needed in energy-constrained use-cases. Accelerators allow for 
much more freedom at implementation time, such that a 
number of optimizations can be exploited, that are otherwise 
difficult to implement in software. A more tailored 
implementation in custom hardware inevitably leads to much 
higher performance and efficiency. However, this comes at the 
cost of diminished programmability and can lead to premature 
obsolescence of the hardware platform. 

 Neural networks are a compelling target for hardware 
acceleration, because we can optimize the implementation for a 
single algorithm (e.g. FC-DNN in this case), but retain 
“programmability” for a range of applications, by changing the 
weights (wji(k)). Fig. 1 shows a typical application scenario for 
classifying sensor data, where provision for programmable 
weights and network topology allow for the freedom to update 
the classifier functionality as needs dictate. Although even 
greater efficiency could be achieved by hard-coding the 
weights for a given classification task, it would consume a very 
large amount of silicon area and would result in a design that 
can only be used for a single task. 

III. ENERGY OPTIMIZATIONS 
In this section, we describe a number of optimizations that 

can be applied to the computation of the FC-DNN compute 
graph to increase efficiency. 

A. Parallelism 
Deep neural networks are embarrassingly parallel. More 

specifically, within the kth layer, there are no data 
dependencies whatsoever, since the weights, wji(k) are unique 
and the neuron values, xj(k) are arranged in parallel in the 
graph. However, the degree of parallelism implemented is of 
course limited by the silicon area and by the memory 
bandwidth required to deliver the weights to the datapath. In 
practice, the memory bandwidth limitation is the most severe. 

B. Data Reuse 
An interesting side-effect of increasing the parallelism is 

that we see a benefit in terms of operand reuse. Operand reuse 
refers to the situation where we are able to load an operand 
from (local) memory and use it in more than one consecutive 
computation. In FC layers, there is no reuse in the weights at 
all, which are loaded, used once and then discarded.  
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Fig. 1. Illustration of a hardware accelerator for the FC-DNN algorithm, 
which processes sensor data to generate a classification result. The topology 
and weights for the FC-DNN are programmable, which allows the design to 

be used for arbitrary classification tasks at run-time. 

 

However, the activation data can be loaded and reused across 
all the parallel neurons in a given layer. This leads to 
significant savings in memory bandwidth, which ultimately 
result in energy savings. Although beyond the scope of this 
paper, CNNs exhibit reuse in both activations and weights, and 
hence 2D systolic array architectures are popular as they allow 
reuse of both of the MAC operands, rather than just one. 

C. Sparse Data 
Both weights and activations typically contain a large 

number of zero and small non-zero values. Since we are 
implementing a sum-of-products kernel, if either of the 
operands are close to zero, the resulting accumulator update 
will be negligible. Therefore, it is not necessary to perform 
operations associated with small operands, and we can skip 
them entirely. We exploit this property to reduce the compute 
requirement and memory bandwidth, without impacting the 
classification accuracy of the trained model. 

In this work, we demonstrate dynamic activation pruning, 
which does not impose any new constraints on the DNN 
training procedure. The general approach is to threshold 
activation data as it is generated, and then only store 
significant activations that are larger than a pre-determined 
threshold. Subsequently, when calculating the next layer, we 
then only load the significant activations that were stored in 
the preceding layer. Operations and storage associated with 
small activations is pruned entirely, significantly reducing the 
memory bandwidth and also the compute. 

D. Small Data Types 
The optimal data type used in neural networks is the 

subject of significant research effort [7]. However, it is clear 
that for inference, it is possible to use quite small fixed-point 
types, without impacting classification accuracy. The 
bitwidths that can be safely used to represent the weights are 
typically in the range of 4-16 bits, and depend on the exact 
network that is being executed. In order to provide flexibility 
while also increasing efficiency, we support both 16-bit and 8-
bit weights, with a number of programmable rounding modes, 
all of which are configurable on a per-layer basis for 
maximum flexibility. 
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Fig. 2. Simplified micro-architecture of the DNN ENGINE, showing the 
pipeline stages and the interfacing. 
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Fig. 3. Block diagram of the 28nm SoC test chip. 

E. Noise Tolerance 
Neural networks are inherently noise tolerant, and this can 

be exploited in a number of ways. The use of small datatypes, 
discussed previously, is an example of this. In this work, we 
also implement a light-weight Razor error detection scheme, 
which allows us to remove worst-case timing margins which 
account for process, voltage and temperature (PVT) variations. 
Razor is an approach that provisions for the occurrence of 
timing violations in order to detect and track changes in the 
PVT operating point [9]. Unlike previous work, even if timing 
errors are detected, it is not necessary to implement an 
expensive error correction mechanism, since DNNs can 
intrinsically tolerate noise arising from intermittent bit errors. 
A number of similar approaches have been previously studied 
for DSP algorithms, following either the Razor approach [10–
12], or the earlier algorithmic noise tolerance (ANT) approach 
[13] pioneered by Shanbhag et al. 

F. Weight Storage 
Embedded devices typically have very limited access to 

bulk storage. When the system design does include off-chip 
flash or SRAM memory devices, it is typically very expensive 
to access them. This presents a challenge to the 
implementation of DNNs, since for inference, it is necessary 
to access the model weights, which tend to be of the order of 
hundreds of KBs for small classification problems. Accessing 
this through off-chip storage would lead to excessive energy 
consumption. Therefore, we implement an on-chip 1MB 
SRAM to store the weights, thereby eliminating off-chip 
access once the SRAM has been populated. 

IV. DNN ENGINE 

A. Design 
The DNN ENGINE is a specialized hardware accelerator 

for efficiently performing FC-DNN inference for energy-
constrained applications. The accelerator is programmable to 
allow processing FC-DNNs of various sizes for different 
application tasks and accuracy goals. The accelerator is 
controlled by a driver running on the host CPU, which 
configures the parameters of the target network, and stores the 
input data into a scratch pad memory. An address pointer is 
also provided for the network weights. The accelerator then 
processes the network one layer at a time, working on 8 
neurons in parallel. After the output layer has been calculated, 
the accelerator sends an interrupt to the host CPU, which can 
retrieve the output data. 

Fig. 2 is a simplified block diagram of the DNN ENGINE 
micro-architecture. The pipeline is arranged in five stages and 
incorporates all the optimizations described in section 3. The 
design is essentially based around a simple single-instruction 
multiple-data (SIMD) template. Hence, the datapath includes 
an 8-way MAC unit that calculates 8 neuron accumulations in 
parallel. The MAC datapath is fed with weight and activation 
operands from SRAM. The weights are stored in a 1MB 
SRAM on the SoC (outside the accelerator), while the 
activations are relatively small and stored in SRAM inside the 
accelerator itself. The activation stage adds a bias term and 
applies the ReLU activation function. It also applies a threshold 
function to test for sparse activations. Non-sparse activations 
are written back to XBUF for use in the following layer, while 
small activations are ignored. XBUF stores activation data, and 
is double-buffered to allow data for layer k to be read, while 
writing data for use in layer k+1. The DMA stage contains 
address generation logic used to sequence weights into the 
datapath in the correct order. Due to the sparse nature of the 
compute graph, the weight load sequences are not sequential 
and are derived from the contents of NBUF, which is a list of 
active nodes in the current layer and previous layers.  

B. Implementation 
 The DNN ENGINE accelerator was implemented in a 
28nm SoC test chip (Fig. 3). The SoC is based around an ARM 
M0 microcontroller, with associated peripherals and I/O 
blocks. The accelerator subsystem includes the DNN ENGINE 
macro, a 1MB SRAM block and a digitally controlled 
oscillator (DCO) to generate fast on-chip clocks. Various 
power domains are included to allow for a variety of voltage 
and clock frequency scaling experiments. Fig. 4 gives a 
summary and photo annotated with the floorplan for the SoC. 

V. RESULTS 
Measured results for the DNN ENGINE demonstrate that 

on aggregate, the various optimizations result in an 
improvement in energy per inference at 667MHz, from 3.28uJ 
(0.9V, 16-bit), down to 0.36uJ (715mV, 8-bit, Razor, sparsity) 
– an improvement of nearly 10X. These results are for the 
MNIST dataset at 98.5% accuracy. 
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Fig. 4. Test chip summary table and die photograph. 

 

 
Fig. 5. Comparison of low-power hardware accelerators with published 

MNIST results. For the DNN ENGINE (this work), we present five different 
DNN topologies that cover a range of accuracy/energy points. 

 

For energy constrained applications, there are a number of 
competing neural network models, namely DNN, SNN and 
CNN. Although SNNs have been strongly motivated as an 
energy efficient solution [4–5], it seems that they are best 
suited to moderate accuracy regimes, and even then, do not 
compete on energy with our optimized DNN implementation 
(Fig. 5). The DNN ENGINE demonstrates more than an order 
of magnitude improvement in energy efficiency. CNNs excel 
at image recognition tasks such as MNIST. Therefore, 
accuracy achieved is high. However, most CNN accelerators 
published to date are fairly powerful designs that are not well 
suited to energy-constrained devices. For example, they 
typically use off-chip memory which is not included in power 
measurements [1–3]. Hence, energy per prediction is higher. 

VI. CONCLUSION 
In this paper, we discussed the optimization of hardware 

accelerators for FC-DNN workloads. We described six areas 
for optimization, viz. parallelism, data reuse, sparse data, small 

data types, noise tolerance and weight storage. By exploiting 
these optimization opportunities, we implemented an 
accelerator architecture for energy constrained platforms. The 
accelerator is implemented in a 28nm SoC test chip, based 
around a microcontroller and associated peripherals. 
Measurement results demonstrate a reduction of nearly 10X in 
energy per inference due to the optimizations described. 
Compared to previously published spiking neural network 
hardware, the energy efficiency achieved is more than an 
order of magnitude higher. 
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