Software-Assisted Hardware Reliability:
Abstracting Circuit-level Challenges to the Software Stack

Vijay Janapa Reddi, Meeta S. Gupta,
Michael D. Smith, Gu-yeon Wei, David Brooks
Harvard University
Cambridge, USA
{vj, meeta, smith, guyeon, dbrooks}@eecs.harvard.edu

ABSTRACT

Power constrained designs are becoming increasingly sensitive
to supply voltage noise. We propose a hardware-software col-
laborative approach to enable aggressive operating margins: a
checkpoint-recovery mechanism corrects margin violations, while
a run-time software layer reschedules the program’s instruction
stream to prevent recurring margin crossings at the same pro-
gram location. The run-time layer removes 60% of these events
with minimal overhead, thereby significantly improving overall
performance.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General—
Hardware/Software interfaces and System architectures.

General Terms

Performance, Reliability.
Keywords

Runtime Optimization, Hardware Software Co-Design.

1. INTRODUCTION

Power supply noise impacts the robustness and performance
of microprocessors. In order to meet power requirements, pro-
cessor designs are relying on ever lower supply voltages and ag-
gressive power management techniques such as clock gating that
can cause large current swings. These current swings when cou-
pled with the parasitic inductances in the power-delivery subsys-
tem can cause voltage fluctuations that violate the processor’s
operating margins—a significant drop in the voltage can lead
to timing-margin violations, due to slow logic paths. On the
other hand, significant overshoots in the voltage can also cause
long-term degradation in transistor characteristics. For reliable
and correct operation of the processor, large voltage swings, also
called voltage emergencies, should be avoided.

The traditional way of dealing with voltage emergencies has
been to over-design the system to accommodate the worst-case
voltage swing. A recent paper analyzing supply noise in a Power6
processor [15] shows the need for operating margins greater than
20% of the nominal voltage (200mV for a nominal voltage of
1.1V). Conservative processor designs with large timing margins
ensure robustness. However, conservative designs either lower
the operating frequency or sacrifice power efficiency.

Alternatively, researchers have proposed designing for the av-
erage case operating conditions while providing a “fail-safe” hard-
ware mechanism that guarantees correctness in the presence of
voltage emergencies. Such a fail-safe mechanism enables more ag-
gressive timing margins in order to maximize performance, but

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DAC’09, July 26-31, 2009, San Francisco, California, USA

Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

Simone Campanoni

Politecnico di Milano
Milano, ltaly
simone.campanoni@mail.polimi.it

[l Static program locations
6| [C] Dynamic emergency count

Log Scale
R
%o s

FFT RayTrace LU

Montecarlo Sor SparseMM Heapsort Method Sieve

Figure 1: Fewer than 100 static program addresses are respon-
sible for the large number of voltage emergencies. We assume a
4% operating margin, but this trend is the same across margins.

at the expense of some performance penalty. Architecture- and
circuit-level techniques either proactively take measures to pre-
vent a potentially impending voltage emergency [11, 16, 22, 23],
or operate reactively by recovering a correct processor state after
an emergency corrupts machine execution [13].

Traditional hardware techniques do not exploit the effect of
program structure on emergencies. Figure 1 shows the number
of unique static program addresses responsible for emergencies,!
and the total number of emergencies they contribute over the
lifetime of a program. The stacked log-scale distribution plot in-
dicates that on average fewer than 100 static program addresses
are responsible for several hundreds of thousands of emergen-
cies. Even an ideal oracle-based hardware technique will need
to activate its fail-safe mechanism once per emergency. Addi-
tionally, hardware-based schemes must ensure that performance
gains from operating at a reduced margin outweigh the fail-safe
penalties. They therefore rely on tuning the fail-safe mecha-
nism to the underlying processor and power delivery system
specifics [13]. When combined with implementation costs, po-
tential changes to traditional architectural structures, and chal-
lenges like response-time delays [13], design, testing, validation
and wide-scale retargetability all become increasingly difficult.

In this paper, we present a hardware-software collaborative
approach for dealing with voltage emergencies. Hazelwood and
Brooks et al. [14] suggest the potential for a collaborative scheme,
but we demonstrate and evaluate a full-system implementation
design. The collaborative approach relies on a general-purpose
fail-safe mechanism as infrequently as possible to handle emer-
gencies, by having a software layer dynamically smooth bursty
machine activity via code transformation to prevent frequently
occurring emergencies. Ideally, the fail-safe mechanism activates
only once per static emergency location, and therefore only a few
times in all, as shown in Figure 1.

Dynamic optimization systems [5] are well suited for scenarios
where “90% of the execution time is spent in 10% of the code”.
Figure 1 shows similar behavior with respect to emergencies.
A compiler-assisted scheme, in contrast to hardware techniques,
can exploit the fact that programs have so few static emergency-

1We use the event categorization algorithm described by Gupta et al. [12]
to identify the instruction that gives rise to an emergency.

788
Authorized licensed use limited to: Harvard Library. Downloaded on April 28,2022 at 14:15:34 UTC from IEEE Xplore. Restrictions apply.

45.3

Software

Profiler
Hotspot detection &
Event categorization

Compiler
NOP injection & [-+

Binary [* r -
: Code rescheduling

Event History Tracker

BTB and D-EAR performance counters |4 — .,
Execution i
Engine .
Emergency Deteclmj
L y Current or voltage sensing

Fail-safe Mechanism
Execution recovery maintaining correctness guarantees

Hardware

Figure 2: Workflow diagram of the proposed software-assisted
hardware-guaranteed approach to deal with emergencies.

prone hot spots. In our scheme, a dynamic compiler eliminates
a large fraction of the Dynamic emergency count. We demonstrate
a compiler-based issue rate staggering technique that reduces
emergencies by applying transformations such as code reschedul-
ing or injecting new code into the dynamic instruction stream of
a program. Our primary contributions are as follows:

1. Design and implementation of a dynamic compiler-based

system for suppressing recurring voltage emergencies.

2. An instruction rescheduling algorithm that prevents volt-
age emergencies by staggering the issue rate.

3. Demonstration and evaluation of general purpose checkpoint-

recovery hardware to handle voltage emergencies even at
aggressive operating margins with our software co-design.

The rest of the paper is organized as follows: Section 2 presents
an overview of the proposed hardware-software collaborative ap-
proach along with design details for the hardware and software
components. Section 3 discusses performance results, and Sec-
tion 4 concludes the paper.

2. A COLLABORATIVE SYSTEM

The benefits of a collaborative hardware-software approach
are twofold: First, recurring emergencies are avoidable via soft-
ware code transformation. Second, a collaborative scheme allows
hardware designers to relax worst-case timing margin require-
ments because of the reduced number of emergencies. The net
effect is better energy efficiency or improved performance. In
this section, we first present an overview of how our collabo-
rative architecture works and highlight the critical components.
Following that, we present details about each of the hardware
and software components.

2.1 Overview

Figure 2 illustrates the operational flow of our system. An
Emergency Detector continuously monitors execution. When it
detects an emergency, it activates the hardware’s Fail-safe Mech-
anism. We assume that a general-purpose checkpoint-recovery
mechanism restores execution to a previously known valid pro-
cessor state whenever an emergency is detected. After recovery,
the detector notifies the software layer of the voltage emergency.

The software operates in lazy mode; it waits for emergency no-
tifications from the hardware. Whenever a notification arrives,
the software’s Profiler extracts information about recent processor
activity from the Event History Tracker, which maintains informa-
tion about cache misses, pipeline flushes, and so on. The Profiler
uses this information to identify the code region corresponding
to an emergency. Subsequently, the Profiler calls a run-time Com-
piler to alter the code responsible for causing the emergency in
an attempt to prevent future emergencies at the same location.

789

2.2 Hardware Design

Emergency detector. To detect operating margin violations, we
rely on a voltage sensor. The detector invokes the fail-safe mech-
anism when it detects an emergency. After recovery, the detector
invokes the software layer for profiling and code transformation
to eliminate subsequent emergencies.

Fail-safe mechanism. Our scheme allows voltage emergencies
to occur in order to identify emergency-prone code regions for
software transformation. We therefore require a mechanism for
recovering from a corrupt processor state. We use a recovery
mechanism similar to that found in reactive techniques for pro-
cessor error detection and correction that have been proposed
for handling soft errors [1,26]. These are primarily based on
checkpoint and rollback. Checkpoints can be made either explic-
itly [2,17,18] or they can be saved implicitly [13]. We only evalu-
ate the explicit scheme since it is already shipping in production
systems [3,10] and does not require modifications to traditional
microarchitectural structures. The interval between checkpoints
is just tens of cycles.

Several researchers have proposed a variety of diverse appli-
cations using checkpoint-recovery hardware [17, 18,20, 24, 26].
Our use of checkpoint-recovery for handling inductive noise in
collaboration with software is another novel application of this
general-purpose hardware. However, explicit-checkpointing by
itself cannot be used to handle voltage emergencies because the
performance penalties are too large (as discussed in Section 3.2).

Event history tracker. The software layer requires pertinent in-
formation to locate the instruction sequence responsible for an
emergency in order to do code transformation. For this purpose,
we require the processor to maintain two circular structures sim-
ilar to those already found in existing architectures. The first is
a branch trace buffer (BTB), which maintains information about
the most recent branch instructions, their predictions, and their
resolved targets. The second is a data event address register (D-
FEAR), which tracks recent memory instruction addresses and
their corresponding effective addresses for all cache and TLB
misses. The software extracts this information whenever it re-
ceives a notification about an emergency.

2.3 Software Design

Profiler. The profiler is notified whenever an emergency occurs.
The profiler identifies emergency-prone program locations for
the compiler to optimize. It records the time and frequency of
emergency occurrences in addition to recent microarchitectural
event activity extracted from the performance counters. Using
this information the profiler locates the instruction responsible
for an emergency using an event categorization algorithm [12].
We refer to this problematic instruction as the root-cause in-
struction. Event categorization identifies root-cause instructions
based on the understanding that microarchitectural events along
with long-latency operations can give rise to pipeline stalls. A
burst of activity following the stall can cause the voltage to drop
below the minimum operating margin due to a sudden increase
in current draw. Such a violation of the minimum voltage margin
is by definition a voltage emergency.

Figure 3(a) illustrates a scenario where a data dependence on
a long-latency operation stalls all processor activity. When the
operation completes, issue rate increases rapidly as several de-
pendent instructions are successively allocated to different execu-
tion units. This gives rise to a voltage emergency because of the
sudden increase in current draw. The categorization algorithm
associates the long-latency operation as the root cause since it
caused the burst of activity that gave rise to an emergency. The
algorithm also takes into account other processor activity such
as cache and TLB misses and branch mispredictions, as they can
also cause emergencies.

Authorized licensed use limited to: Harvard Library. Downloaded on April 28,2022 at 14:15:34 UTC from IEEE Xplore. Restrictions apply.

Before Software Optimization

After Software Optimization

= TLB TLB
[
o Cacher -4 Cachef 4
‘g Longlat|- 4 Longlat- B
2 Data dependence on a long latency operation
8 Flush- \ causes all pipeline activity to stall 1 Flushr 7
o | L L L L L .
480 49& 500 510 520 530 480 490 500 510 520 530
10 T 10
) 8- 1 8 1
& 6F 1 6 g
5 4r — 4
E 2 F 2 - .
f Rapid issue rate causes steep dI/dt . , i .
480 490 500 510 520 530 480 490 500 510 521 530
30 30 Softward optimization reduces issue
E 20 2 rate, thereby causing a smaller dl/dt
3 10f 10 /
| . | |
480 490 500 510 520 530 480 490 500 510 520 530
1.04 T T 1.04 T T
Steep dl/dt causes voltage to Smaller di/dt prevents
o 1.021 drop below the minimum margin | 1.028 the voltage emergency
= oesf 4 08
0.9 | | h | 0.9 | | | |
?80 490 500 510 520 530 280 490 500 510 520 530

Figure 3: Snapshot of benchmark Sieve showing the impact of a pipeline stall due to data dependency. An operating margin of 4%
is assumed (i.e., max. of 1.04V and min. of 0.96V). (a) Before Software Optimization shows how a stall triggers an emergency as the issue
rate ramps up quickly once the long-latency operation completes. (b) After Software Optimization demonstrates how compiler-assisted code
rescheduling slows the issue rate to prevent the emergency illustrated in (a).

Compiler. Figure 3(a) illustrates that voltage emergencies are
dependent on the issue rate of the machine. Therefore, slow-
ing the issue rate at the appropriate point can prevent voltage
emergencies. Hardware-based solutions have been proposed that
prevent emergencies by altering machine behavior via execution
throttling [11,16,22,23] or staggering the issue rate [21,22]. But
as high issue rate alone is insufficient to cause emergencies, throt-
tling in all cases can penalize performance unnecessarily.

Alternatively, Toburen [25] and Yun and Kim [27] demonstrate
static compiler techniques that target voltage emergencies. How-
ever, emergencies are the result of complex interactions between
the application, the execution engine, and the power delivery
subsystem. Therefore, these static optimizations are not easily
retargetable across different combinations of platform and appli-
cation. In other words, the emergency-prone static program loca-
tions discussed in Figure 1 differ depending on platform specifics.

In contrast, our software approach prevents emergencies by
altering the program code that gives rise to emergencies at exe-
cution time and does so without slowing down the machine. The
compiler tries to exploit pipeline delays by rescheduling instruc-
tions to decrease the issue rate close to the root-cause instruc-
tion. Pipeline delays exist because of NOP instructions or read-
after-write (RAW), write-after-read (WAR), or write-after-write
(WAW) dependencies between instructions. Hardware optimiza-
tion techniques like register renaming in superscalar machines
can optimize away WAR and WAW dependencies, so a RAW de-
pendence is the only kind that forces the hardware to execute in
sequential order. The compiler tries to exploit RAW dependen-
cies that already exist in the program to slow the issue rate by
placing the dependent instructions close to one another.

NOP injection. The compiler can slow down pipeline activity
by inserting NOP instructions specified in the instruction set
architecture into the dynamic instruction stream of a program.
However, modern processors discard NOP instructions at the de-
code stage. Therefore, the instruction does not affect the issue
rate of the machine. Instead of real NOPs, the compiler can gen-
erate a sequence of instructions containing RAW dependencies
that have no effect. But since these pseudo-NOP instructions
perform no real work, this approach degrades performance.

790

Code rescheduling. A better way reduce processor activity is
to exploit RAW dependencies already existing in the original
control flow graph (CFG) of the program. The compiler attempts
to relocate RAW dependencies to a point following the root cause
of an emergency, thereby constraining the burst of activity after
the stall and consequently preventing the emergency.

Whether the compiler can successfully move instructions to
create a sequence of RAW dependencies depends on if moving the
code violates either control dependencies or data dependencies.
The compiler’s instruction scheduler does not break data depen-
dencies, but it works around control dependencies by cloning
the required instructions and moving them around the control
flow graph carefully such that the original program semantics
are still maintained. Aggressive cloning can potentially impact
the performance of a program by increasing the total number of
instructions executed at run time. For this reason, our scheduler
does not migrate instructions if the estimated instruction count
of the program is likely to increase from cloning.

For illustrative purposes, we present in Figure 4(a) a simpli-
fied sketch of the code corresponding to the activity shown in
Figure 3(a). The long-latency operation illustrated in Figure 3
corresponds to the divide instruction shown in basic block 4 of
Figure 4. An emergency repeatedly occurs in basic block 3 along
the dotted loop backedge path 4 — 1 — 2 — 3. The categoriza-
tion algorithm identifies the divide instruction corresponding to
C — A / B in basic block 4 as the root-cause instruction. The
compiler identifies the control flow path using the branch history
information extracted by the profiler from the BTB counters,
and recognizes that moving instruction A < B from basic block
1 to 2 will constrain the issue rate of the machine because of a
tighter sequence of RAW dependencies. But the compiler also
recognizes that the result of A < B is live along edge 1 — 3, so
it clones the instruction into a new basic block (basic block 5)
along that edge to ensure correctness.

The resulting effect (on the more complex actual code se-
quence) after rescheduling is illustrated in Figure 3(b). The
slight change in current activity between cycles 490 and 500 is
a result of code rescheduling. After dependent instructions are
packed close to one another in basic block 2, the issue rate in
Figure 3(b) does not spike as high as it does in Figure 3(a) once

Authorized licensed use limited to: Harvard Library. Downloaded on April 28,2022 at 14:15:34 UTC from IEEE Xplore. Restrictions apply.

Loopback edge

(a) Before. (b) After.

Figure 4: Effect of code rescheduling on an emergency-prone
loop from benchmark Sieve. (a) Emergencies consistently occur in
basic block 3 along the dotted loop backedge path 4—1—2—3. (b)
Moving instruction A — B from block 1 to block 2 puts dependent
instructions closer together, thereby constraining the issue rate.
This prevents all subsequent emergencies in basic block 3.
pipeline activity resumes after the stall.

Code rescheduling alters the current and voltage profile. There-
fore, the scheduler must be careful not to simply displace emer-
gencies from one location to another by arbitrarily moving code
from far away regions. To retain the original activity, the code
rescheduling algorithm searches for RAW dependencies start-
ing with the basic block containing the root-cause instruction.
As the program is running, the profiler tracks the instructions
that are giving rise to voltage emergencies. Using this infor-
mation, the compiler computes a set of program instructions,
P, for rescheduling. For each instruction in P, the scheduler
searches for RAW dependencies starting from the root-cause in-
struction. The scheduler enlarges its search window iteratively
over the CFG until it finds a RAW dependence to exploit or it
reaches the scope of a function body, at which point it gives up.

Out-of-order execution complicates instruction rescheduling,
as the machine can bypass the RAW dependence chain gener-
ated by the compiler if there is enough other code available for
execution in the hardware’s scheduling window. The scheduler
handles this by choosing a RAW candidate from a set C; of can-
didates by computing the subset Cy C C; such that each element
of C2 has the longest RAW dependence chain after moving the
instructions to the required location. By targeting long RAW
dependence chains, the compiler causes the machine’s scheduling
window to fill up with dependent code that reduces the issue rate.
Otherwise, the compiler must generate multiple sets of smaller
RAW dependence chains. But the more code the compiler moves
around, the higher the chances that it will render optimization
ineffective because of statically unpredictable interactions among
the dependence chains.

3. RESULTS

Evaluation of our system demonstrates the effectiveness of the

compiler at reducing voltage emergencies and shows the impact
of its code changes on performance. After showing in Section 3.1
that the compiler can reduce over 60% of emergencies, we present
a performance study in Section 3.2 showing that our software-
assisted scheme overcomes the challenges of existing hardware
techniques effectively.
Hardware simulator. We use SimpleScalar/x86 to simulate a
Pentium 4 with the characteristics shown in Table 1. The mod-
ified 8-way superscalar 86 SimpleScalar gathers detailed cycle-
accurate current profiles using Wattch [7]. Voltage variations are
calculated by convolving the simulated current profiles with an
impulse response of the power delivery subsystem [16,23]. In this
work, we focus on a power delivery subsystem model based on
the characteristics of the Pentium 4 package [4], which exhibits
a mid-frequency resonance at 100MHz with a peak impedance of
5mS2. Finally, we assume peak current swings of 16-50A.

791

Clock Rate 3.0 GHz RAS 64 Entries
Inst. Window | 128-ROB, 64-LSQ Branch Penalty 10 cycles
Functional 8 Int ALU, 4 FP ALU, Branch 64-KB bimodal
Units 2 Int Mul/Div, Predictor gshare/chooser
2 FP Mul/Div BTB 1K Entries
Fetch Width 8 Instructions Decode Width 8 Instructions
L1 D-Cache 64 KB 2-way L1 I-Cache 64 KB 2-way
L2 I/D-Cache 2MB 4-way, Main Memory 300 cycle
16 cycle latency latency

Table 1: Architecture parameters for SimpleScalar.

Software infrastructure. We use the ILDJIT [9] CIL compiler
as our framework for optimizing emergencies at run time. The
compiler dynamically generates native 86 code from CIL byte
code, which it then executes directly on the simulator. We ex-
tended the ILDJIT compiler to include the code injection and
scheduling algorithms described in Section 2.3. The compiler
has access to metadata such as the complete control flow graph
and data flow graph, all of which is utilized at run time for op-
timization. The C# benchmarks evaluated in this paper come
from the Java Grande benchmark suite [8,19).

Due to space constraints, we omit discussion about the negli-
gible overheads of run-time code transformation. Figure 1 shows
that the number of static emergency-prone program locations
(root-cause instructions) is fewer than a hundred. Therefore,
our compiler is rarely invoked during execution to transform the
code. When combined with the fact that the ILDJIT compiler
does its profiling and code transformation in a separate thread
on a separate core, performance overhead on the original pro-
gram is negligible. Also, in our experiments we observe that the
fraction of emergencies encountered during ILDJIT’s own execu-
tion is around 1% across all benchmarks. Since ILDJIT cannot
recompile itself, we incur rollback penalties during the compiler’s
execution. But because the fraction of emergencies is so small,
the rollback overhead is insignificant.

3.1 Compiler Efficiency

The goal of our software-based voltage emergency elimination
is to: (1) reduce the number of voltage emergencies, and (2)
ensure that performance does not suffer as a result of our code
transformations. In the next section, we factor in all costs to
evaluate full-system performance. In this section, we evaluate
the effectiveness of NOP injection and code rescheduling. The
main observations are that (1) the choice of transformation af-
fects performance, and that (2) the transformation itself can in-
troduce new emergencies if the scheduler is not careful.

NOP injection. In this transformation, the compiler modifies
the original program to contain new instructions that simulate
a NOP instruction immediately following the root-cause instruc-
tion. The effectiveness of the transformation is shown by the left
bar in Figure 5(a). The bar shows the fraction of emergencies
remaining after the compiler has attempted to prevent emergen-
cies by injecting pseudo-NOP code. The number of emergen-
cies is reduced by ~50% in benchmarks FFT, RayTrace, Method,
Sieve, and Heapsort, which shows that the transformation can
be effective. However, the transformation is ineffective across
the remaining benchmarks LU, Montecarlo, Sor and SparseMM.

Analysis reveals that pseudo-NOP injection does reduce the
original program’s emergencies, but the transformation itself gives
rise to new emergencies. The compiler might occasionally have to
spill and fill registers to generate pseudo-NOP code. This has the
adverse effect of not only increasing the number of instructions
needed to simulate the NOP, but also potentially causing archi-
tectural events like cache misses (from the spill and fill code) that
dramatically alter the current and voltage profile. These side ef-
fects depend on the number of registers available for use, the
properties of the original instruction schedule, and other condi-
tions. It is hard to predict what current and voltage activity will
result from injecting new code, so it may give rise to new emer-
gencies. That is what we observe with the poorly performing

Authorized licensed use limited to: Harvard Library. Downloaded on April 28,2022 at 14:15:34 UTC from IEEE Xplore. Restrictions apply.

w

Fraction of
Emergencies Remaining

% Relative Performance
(w/o emergency penalties)

FFT

RayTrace LU Montecarlo

(b)

T T T T T T T
INOP injection Baseline
[ICode rescheduling

21 .
— I
FFT RayTrace LU Montecarlo Sor SparseMM Heapsort ~ Method Sieve
(a)

400 — T T T T T T T
IlNOP injection Baseline
[ICode rescheduling i

Sor SparseMM Heapsort ~ Method Sieve

Figure 5: (a) Fraction of emergencies remaining after code transformation. (b) Code performance after transformation. The cost for

handling emergencies is not shown in this plot to isolate the effect of code transformation on the run-time performance.

Section 3.2

evaluates overall performance after factoring in code performance costs, along with penalties for handling emergencies.

benchmarks LU, Montecarlo, Sor, and SparseMM.

Additionally, the run-time performance of the original program
suffers with the injection of pseudo-NOP code, as the new code
does not serve the original program’s purpose. The left bar in
Figure 5(b) shows execution performance of the program with
the injected code. The data indicates that the effect of simply
adding new code to prevent emergencies can be severely detri-
mental to performance. In the case of benchmarks Heapsort and
Sieve performance degrades by as much as 300%. Large execu-
tion overheads indicate that while a transformation can be very
effective at reducing voltage emergencies (e.g., benchmark Sieve
has fewer than 10 emergencies remaining), the compiler must be
sensitive to its run-time performance implications.

Code rescheduling. A compiler approach that relocates RAW
dependencies following the root-cause instruction does not suffer
from the severely unpredictable behavior of injecting code to pre-
vent emergencies. Code rescheduling is superior to simple NOP
injection for the following reasons. First, it successfully reduces
more emergencies across all the benchmarks (illustrated by the
bars on the right in Figure 5(a)). Second, it does so without dra-
matically increasing the execution time of a program (as shown
in Figure 5(b)). Our analysis also shows that it does not intro-
duce new emergencies, as the compiler does not inject new code
that significantly alters the current and voltage profile.

For instance, consider benchmark FFT. The NOP injection
transformation and the code rescheduling transformation elimi-
nate approximately the same number of emergencies. However,
the effect on performance between the two transformations is
substantially different. The NOP injection transformation causes
the original program to take twice as long to execute, whereas
code rescheduling has a negligible effect on the original program’s
performance. That is because the NOP code wastes processor
cycles, while the rescheduled instructions are real program code
that is simply restructured to prevent emergencies.

Overall, changes in the run-time performance of the resched-
uled code are negligible across all the benchmarks, and the re-
duction in emergencies averages ~61%. Reductions are smaller
over benchmarks LU, Sor and SparseMM (around 30%) because
the compiler could not find enough RAW dependencies that it
could relocate to slow the issue rate at the frequently occurring
root-cause locations.

3.2 Full-System Performance Evaluation

Reducing operating voltage margins allows for frequency im-
provements or improved energy efficiency. However, there are
fail-safe mechanism penalties associated with handling voltage

emergencies at tighter margins. In this section, we demonstrate
that by using our dynamic compilation strategy, it is possible to
leverage general-purpose checkpoint-recovery for voltage emer-
gencies at very aggressive margins. Performance gains for our
collaborative approach are within 4 percentage points of an oracle-
based throttling scheme. Results are presented in Table 2.
Bowman et al. show that removing a 10% operating voltage
margin leads to a 15% improvement in clock frequency [6]. This
indicates a scaling factor of 1.5 from operating voltage margin
to clock frequency. We assume an aggressive operating margin
of 4% in our experiments as compared to a 18% worst-case mar-
gin?. Based on the 1.5x scaling factor, the 4% operating voltage
margin assumed in this paper corresponds to a 6% loss in fre-
quency. Similarly, a conservative voltage margin of 18%, suffi-
cient to cover the worst-case drops observed, leads to 27% lower
frequency. If we take this conservative margin as the baseline for
comparisons and the 18% margin can reduce to 4% while avoid-
ing voltage emergencies, the resulting clock frequency increase
could be ~29%. This sets the upper bound on frequency gains
achievable. We make the simplifying assumption that frequency
improvements translate to higher overall system performance.

Fail-safe mechanism. An explicit-checkpointing scheme recov-
ers from an emergency by rolling back execution. The explicit-
checkpoint scheme suffers from the penalty of rolling back useful
work done whenever a voltage emergency occurs. The restart
penalty is a direct function of the sensor delay in the system,
i.e., the time required to detect a margin violation. An explicit-
checkpoint scheme incurs additional overhead associated with
restoring the registers (assumed to be 8 cycles, for 32 registers
with 4 write ports) and memory state (when volatile lines are
flushed, additional misses can occur at the time of rollback).

Assuming a 50-cycle rollback penalty per recovery, an explicit-
checkpoint scheme incurs an average increase of 25% in CPI over
the set of benchmarks evaluated in Figure 5. Performance gains
from scaling the operating margin down to 4% are negligible at
only 3%. This minimal improvement in performance implies that
explicit-checkpointing by itself cannot handle voltage emergen-
cies successfully at aggressive margins.

Fail-safe mechanism with code rescheduling. While the per-
formance gains using only explicit-checkpointing are minimal,
the gains are larger when the fail-safe mechanism is combined
with a software counterpart (as proposed in Section 2 and illus-
trated in Figure 2). Of the two compiler transformations dis-
cussed in Section 2.3 we evaluate the code rescheduling transfor-

2The worst voltage drop we observe for our power delivery package is 18%.

792
Authorized licensed use limited to: Harvard Library. Downloaded on April 28,2022 at 14:15:34 UTC from IEEE Xplore. Restrictions apply.

Scheme CPI Overhead | Performance Gain
Fail-safe mechanism 25.0% 3.0%
Fail-safe mechanism with code rescheduling 7.6% 19.8%
Oracle-based throttling 4.0% 23.8%

Table 2: Increase in CPI to handle voltage emergencies, and net
performance improvement after scaling the operating margin and
factoring in the overheads. The upper bound on performance im-
provement is 29% assuming the margin is scaled from 18% to 4%.
These results are the average measured across all benchmarks.

mation only, since its changes effectively reduce the number of
emergencies (as discussed in Section 3.1), but are not detrimental
to program performance.

The profiler identifies root-cause instructions as the fail-safe
checkpoint scheme initiates rollbacks. So there is some amount of
rollback penalty associated with initially discovering root-cause
instructions for transformation. Thereafter, however, the com-
piler optimizes the root-cause instructions to prevent subsequent
occurrences of emergencies at the same program location. If
the rescheduling algorithm is ineffective at fixing certain emer-
gency points, rollback penalties may still arise at those points
(as shown in Figure 5(a) and discussed in Section 3.1). Com-
bining explicit checkpointing with compiler assistance reduces
checkpointing overhead substantially, from 25% to 7.6%. This
translates to a net performance gain of ~20%.

Comparison to other schemes. Several researchers have pro-
posed mechanisms that spread out a sudden increase in current
via execution throttling. Several kinds of throttling have been
proposed [11,16,22,23]. For evaluation purposes, we compare the
performance of our scheme against a frequency throttling mech-
anism that quickly reduces current load. The frequency of the
system is halved whenever throttling is turned on, which results
in performance loss.

We compare against an oracle-based throttling scheme, which
throttles once per emergency and always successfully prevents
the emergency. As a result, an oracle scheme does not suffer
from rollback costs, nor does it suffer from performance loss
due to throttles that cannot prevent emergencies. Oracle-based
throttling enables ~24% improvement in performance for tight-
ened margins, which is just 4 percentage points better than our
scheme. Of course, our scheme represents a practical design.

While an oracle-based scheme always successfully prevents emer-
gencies, it is important to remember that realistic sensor-based
implementations suffer from a tight feedback loop that involves
detecting an imminent emergency and then activating the throt-
tling mechanism in a timely manner to avoid the emergency. The
detectors are either current sensors or voltage sensors that trigger
when a certain threshold is crossed, indicating that a violation
is likely to occur. Unfortunately, the delay required to achieve
acceptable sensor accuracy inherently limits the effectiveness of
these feedback-loop schemes, and operating margins must remain
large enough to allow time for the loop to respond [13].

In contrast, our collaborative approach does not suffer from the
limitations of sensor-based schemes. It leverages general-purpose
checkpointing hardware that is already shipping in production
systems [3, 10] to reduce voltage emergencies at very aggressive
margins that enable significant performance gains.

4. CONCLUSION

The primary contribution of this work is a full system imple-
mentation design for a hardware-software collaborative approach
to handle voltage emergencies. The collaborative approach re-
duces hardware penalties associated with handling voltage emer-
gencies by having the software (a dynamic compiler) permanently
fix the code region responsible for emergencies. The hardware
provides fail-safe guarantees via a checkpoint-recovery mecha-
nism, while the software layer identifies the emergency-prone
code regions and reschedules that code to prevent further emer-
gencies. The compiler eliminates over 60% of the emergencies on

793

average, and therefore dramatically reduces the recurring over-
head of the fail-safe mechanism. We show that by scaling the
operating margin down from a conservative 18% to an aggressive
4% setting, we can achieve ~20% higher performance, which is
within 4 percentage points of an oracle-based throttling scheme.

Acknowledgments

We are grateful to Glenn Holloway and the anonymous reviewers
for their comments and suggestions. This work is supported by
gifts from Intel Corporation, National Science Foundation grants
CCF-0429782 and CSR-0720566 and in part by ST Microelec-
tronics and the European Commission under Framework Pro-
gramme 7 (the OpenMedia Platform project).

5[: REFERENCES

S. Agarwal et al. Adaptive incremental checkpointing for massively
parallel systems. In ICS, 2004.

[2] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and
recovery: Towards scalable large instruction window processors. In
MICRO-36, 2003.

[3] H. Ando and et al. A 1.3 GHz Fifth-Generation SPARC64
Microprocessor. In Design Automation Conference, 2003.

[4] K. Aygun et al. Power delivery for high-performance
microprocessors. Intel Technology Journal, 9, 2005.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In PLDI, 2000.

[6] K. A. Bowman et al. Energy-efficient and metastability-immune
timing-error detection and instruction replay-based recovery circuits
for dynamic variation tolerance. In ISSCC, 2008.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In ISCA-27,

2000.

M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey.

Benchmarking java grande applications. In The Practical

Applications of Java, 2000.

[9] S. Campanoni, G. Agosta, and S. C. Reghizzi. A parallel dynamic
compiler for cil bytecode. SIGPLAN Not., 2008.

[10] S. et al. Ibm’s s/390 g5 microprocessor design. Micro, IEEE, 1999.

[11] E. Grochowski et al. Microarchitectural simulation and control of
di/dt-induced power supply voltage variation. In HPCA-8, 2002.

[12] M. S. Gupta et al. Towards a software approach to mitigate voltage
emergencies. In ISLPED, 2007.

[13] M. S. Gupta et al. DeCoR: A delayed commit and rollback
mechanism for handling inductive noise in processors. In HPCA-14,
2008.

[14] K. Hazelwood and D. Brooks. Eliminating Voltage Emergencies via
Microarchitectural Voltage Control Feedback and Dynamic
Optimization. In ISPLED, 2004.

[15] N. James et al. Comparison of split-versus connected-core supplies in
the POWERG microprocessor. In ISSCC, 2007.

[16] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to
eliminate voltage emergencies in high performance processors. In
HPCA-9, 2003.

[17] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez.
Checkpointed early load retirement. In HPCA-11, 2005.

[18] J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. Cherry: Checkpointed early resource recycling in
out-of-order microprocessors. In MICRO-35, 2002.

[19] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and
development of java grande benchmarks. In Java Grande
Conference, 1999.

[20] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging.
In ISCA, 2005.

[21] M. D. Pant et al. An architectural solution for the inductive noise
problem due to clock-gating. In ISLPED, 1999.

[22] M. D. Powell and T. N. Vijaykumar. Pipeline muffling and a priori
current ramping: architectural techniques to reduce high-frequency
inductive noise. In ISLPED, 2003.

[23] M. D. Powell and T. N. Vijaykumar. Exploiting resonant behavior to
reduce inductive noise. In ISCA-28, 2004.

[24] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and
T. Austin. Ultra Low-Cost Defect Protection for Microprocessor
Pipelines. In ASPLOS, 2006.

[25] M. Toburen. Power Analysis and Instruction Scheduling for Reduced
di/dt in the Execution Core of High-Performance Microprocessors.
Master’s thesis, NC State University, USA, 1999.

[26] N. J. Wang and S. J. Patel. ReStore: Symptom-based soft error
detection in microprocessors. T'DSC., 2006.

[27] H.-S. Yun and J. Kim. Power-aware Modulo Scheduling for
High-Performance VLIW Processors. In ISLPED, 2001.

[8

Authorized licensed use limited to: Harvard Library. Downloaded on April 28,2022 at 14:15:34 UTC from IEEE Xplore. Restrictions apply.

