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Abstract—RTL design complexity discouraged adoption of reconfig-
urable logic in general purpose systems, impeding opportunities for
performance and energy improvements [1]. Recent improvements to
HLS compilers simplify RTL design and are easing this barrier. A new
challenge will emerge: managing reconfigurable resources between
multiple applications with custom hardware designs.

In this paper, we propose a method to “shrink-fit” accelerators within
widely varying fabric budgets. Shrink-fit automatically shrinks existing
accelerator designs within small fabric budgets and grows designs to
increase performance when larger budgets are available. Our method
takes advantage of current accelerator design techniques and intro-
duces a novel architectural approach based on fine-grained virtualiza-
tion. We evaluate shrink-fit using a synthesized implementation of an
IDCT for decoding JPEGs and show the IDCT accelerator can shrink
by a factor of 16x with minimal performance and area overheads. Using
shrink-fit, application designers can achieve the benefits of hardware
acceleration with single RTL designs on FPGAs large and small.

1 INTRODUCTION

Hybrid processors containing general-purpose and FPGA cir-
cuits failed to gain popularity in mainstream computing due
to the complexity of RTL design. High level synthesis (HLS)
compilers are easing this problem, leading to a new reconfig-
urable logic resource management challenge: general purpose
computers run multiple applications at once, and each appli-
cation will want to program their accelerators on the system’s
reconfigurable fabric. Fitting all of these accelerators may not
be possible. In addition, resource budgets offered by today’s
FPGAs vary widely, and the range of resources will grow wider
with future technology improvements. Manually redesigning
accelerators for every possible resource budget is intractable,
so the solution must automatically satisfy a wide range of
reconfigurable resource budgets with a single design.

In this paper, we propose a novel method to automatically
shrink existing accelerator designs within small fabric budgets
and grow designs to increase performance when larger budgets
are available. We call this method shrink-fitting, named after
industrial methods to tightly combine parts after manufactur-
ing. Our shrink-fit approach allows the operating system to
fit accelerators onto an FPGA after implementing RTL. The
approach uses virtualization, a technique to reuse hardware for
multiple tasks. Shrink-fit differs from previous virtualization
techniques which virtualize an accelerator as a single unit [2],
[3]. Shrink-fitting works at a finer grain by virtualizing the
components that make up each accelerator. This finer grain
requires more flexibility and lower setup delays than the
DMA transfers used in previous approaches, so we extend the
“accelerator store” memory resource proposed in our previous
work [4] with new shrink-fit virtualization operations.

2 RESIZING ACCELERATORS WITH VIRTUALIZATION

Shrink-fitting takes advantage of the module-based design
style used to implement most accelerators. Designers typically
build hardware by reusing smaller “module” components, pro-
gramming additional copies of the same module for multiple
tasks [5]. A sampling of three popular OpenCores accelerators
from different domains [6], [7], [8] confirms that each replicate
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Fig. 1. 2D 8x8 IDCT accelerator data flow

modules, from 4x to 883x. Using shrink-fit virtualization, a
single copy of a module can be used for several tasks, reducing
FPGA resource demands.

As an example, we introduce a 2D IDCT accelerator. The
inverse discrete cosine transform (IDCT) is a signal processing
algorithm used for JPEG image processing, and was used in
previous work to demonstrate FPGA acceleration as part of a
JPEG decoder [3]. The 2D IDCT accelerator used in this paper
consists of sixteen copies of a 1D IDCT module (Figure 1).

Adding virtualization capabilities to a module allows a
single instance of that module to replace several. Virtualization
allows a module to impersonate other modules, so a virtualized
1D IDCT can act as any of the original sixteen found in the
2D IDCT. A single virtualized module can replace multiple
modules by impersonating each in rapid succession.

Keeping with standard virtualization terminology, we re-
fer to the virtualized modules programmed into the FPGA
as “physical modules (PMs)” and the original modules they
impersonate as “virtual modules (VMs).”

“Contexts” provide the link between PMs and VMs, telling
PMs how to act as each VM. A context includes information
about where to import and export data for processing, since
different VMs may process different data. Contexts may also
contain constant and dynamic data. When RTL designers use
copies of the same module, each copy may have different
constants or variable registers. By loading a context, a PM has
all the information necessary to act as a VM, and can load
another context, or “context switch,” to act as a different VM.
Note that PMs can only context switch to another VM of the
same kind; an IDCT PM can only act as an IDCT VM and not
as a Huffman encoder VM.

A virtualized accelerator can deploy multiple PMs to in-
crease performance, provided the number of PMs does not
exceed the number of VMs. The IDCT accelerator contains 16
VMs, therefore one to sixteen PMs can be programmed on the
FPGA.

Through virtualization, an operating system can shrink-fit
accelerators by increasing or decreasing the number of PMs
programmed on the FPGA. The PM count is a trade-off: adding
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additional PMs improves performance but requires additional
reconfigurable logic. Implemented efficiently, this trade-off is
linear: increasing the PM count 2x should also improve perfor-
mance by 2x.

3 MODULE VIRTUALIZATION DESIGN

The system’s architectural support for module virtualization
must perform two functions: storing contexts and transferring
data between VMs. We use the accelerator store (AS) to perform
both of these tasks. The AS is a shared memory resource for ac-
celerators, an alternative to private memories commonly found
inside accelerators. Random access (RA) and FIFO memories
in the AS are allocated to accelerators as needed at runtime.

We use RA memory in the AS to store contexts, and use
AS FIFOs to transmit data between VMs. The AS exposes
these memories to all PMs in the system via direct connection
(Figure 2), so accesses to AS memory are usually satisfied
within a few cycles. This prevents virtualization overheads
from significantly affecting performance.

The AS uses handles to represent RA and FIFO memories.
Each handle corresponds to a single RA or FIFO memory
in the same way file handles represent data on a disk. PMs
can access these handles by sending handle requests to the AS.
Every handle request contains a handle ID (HID) number, which
identifies a specific handle.

Sending data between virtual modules relies on the AS’s
support for FIFOs. In an unvirtualized accelerator, modules
may physically connect their inputs and outputs to transmit
data. A VM cannot use direct connections, because the VM is
only active for short periods of time. To send data directly
between virtual modules, both would need to be active at
the same time. Instead, VMs share FIFO handles to transmit
data and avoid this scheduling complexity. When the first VM
completes an operation, it puts the result in a FIFO, and when
the second VM becomes active, it gets the data from the same
FIFO. As explained in our previous work [4], the accelerator
store requires low area and power overheads, and performance
overheads are less than 1%. The AS will not cause FPGA
clock slowdowns since the AS supports 1 GHz+ clocks when
synthesized by Design Compiler for a popular commercial
40nm technology. Using AS FIFOs, VMs can send data to
each other even if they are not active at the same time without
significant overheads.

Virtual modules also depend on the AS to store contexts.
Each set of PMs copied from the same RTL design, or “module
kind,” maintains contexts for all of its VMs in a random access
context handle. For example, the AS stores one context handle
that contains contexts for all sixteen 1D IDCT VMs.

Each module kind is free to define the format of its context
handle, but we propose a format suitable for most (Figure 3).
We store each VM’s context in a data record containing I/O
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Fig. 3. Context handle format The handle contains HIDs for input and
output FIFO handles, constants, and dynamic data.
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handle IDs, constants, and modifiable data. The first words of
the context handle form a table listing pointers to the context
records; this allows for variable-length contexts. These records
are loaded into the PM before performing computation.

Each PM loads contexts from its context handle. The PM first
claims a context, ensuring two PMs never act as the same VM
at the same time. This prevents PMs from scrambling input
and output ordering. To claim a context, PMs swap the first
context pointer in the context handle with null (zero). The swap
will return a pointer to the context record from which the PM
will load a context. The swap operation is necessary to prevent
other PMs from loading the same context at the same time. If
another PM tries to load the same context, it will load null
and know the context is already in use. The PM will then try
claiming the next context by swapping with the next context
pointer in the context handle.

When a PM finishes acting as a VM, it writes back any
changes to the context record. The PM then releases the context
by writing the original context pointer back. Other PMs can
load that context again.

To add virtualization capabilities to module designs, we
introduce the physical module wrapper (PMW). The PMW adds
virtualization features to modules by communicating with the
AS store. PMWs can be added to non-virtualized modules with
little or no modification from the original design. The PMW,
implemented in Verilog RTL, implements the state machine
shown in Figure 4:

Once each module is virtualized, we identify the flow of
data between VMs within the accelerator, as shown for the
IDCT in Figure 1. We represent data flow as edges in a directed
graph, linking VMs that produce data to those that consume
the results. As previously discussed, we implement each link
as a FIFO handle. VMs are connected by storing a common
FIFO HID in both VMs’s contexts.

Finally, the operating system programs as many PMs as will
fit within FPGA fabric budgets.

Most accelerators divide or combine workloads for parallel
processing. To ensure data ordering is correctly maintained, we
first ensure every FIFO handle has only one source VM and one
destination VM, preventing multiple PMs from accessing the
same FIFO in a nondeterministic order. Second, we implement
special distributor modules, inspired by StreamIt programming
language primitives [9], to deterministically divide or combine
data streams. The 2D IDCT uses distributors in two modes:
split to divide one FIFO into several, and join to combine data
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FPGA Design DSPs Fabric util. DSP util.

Arria 1D IDCT No 601 (2.4%) —
Arria 2D IDCT No 9616 (38.0%) —
Arria 1D IDCT Yes 74 (0.3%) 4 (1.3%)
Arria 2D IDCT Yes 1184 (4.7%) 64 (20.5%)
Cyclone 1D IDCT No 901 (6.3%) —
Cyclone 2D IDCT No 14416 (100.01%) —

TABLE 1
FPGA resource utilization for synthesized IDCT

from multiple FIFOs into one.
Many PMs may make AS requests at once, and the AS may

not be able to handle all simultaneously. We use channels to
indicate AS bandwidth: the number of channels corresponds
to the number of handle requests an AS can accept per cycle.
Systems with larger FPGAs can fit more PMs and will require
an AS with additional channels. Further details and evaluation
of AS configurations can be found in our previous work [4].

4 SHRINK-FIT EVALUATION

This section describes our experience adding shrink-fit support
to an existing 2D 8x8 IDCT. We demonstrate a near-ideal
performance-to-area ratio: shrinking an accelerator to half of
its original size roughly halves its performance. We show
shrink-fit has low area overheads as well, always less than
1% of system area. For the evaluation, we assume the shrink-
fit system will utilize a hybrid processor containing general
purpose and FPGA cores, such as the Intel E600C processor.
The E600C consists of a fabricated “hard” Atom core and a
“mid-range” sized Altera Arria II GX FPGA core.

We started by building a 2D 8x8 IDCT without shrink-fit
support. 1D IDCT modules were implemented in C and com-
piled to Verilog RTL using AutoPilot. The resulting 1D IDCT
requires 275 cycles to perform one operation. Fully pipelined
and parallelized, the 2D 8x8 IDCT is capable of processing one
2D 8x8 IDCT every 275 cycles as well.

To evaluate different classes of FPGA cores, we synthesized
the IDCT (in Quartus II 10.1) for the “mid-range” Arria II
GX FPGA used by the Intel E600C processor and for the
“low-cost” Cyclone IV GX FPGA processor. Table 1 shows the
resources consumed on both FPGAs. The low-cost Cyclone
cannot fit the 2D IDCT without the help of shrink-fitting. The
Arria, however, can fit the full IDCT but requires a significant
portion of resources (20.51% of DSPs or 38.01% of ALMs). A
hybrid processor running multiple applications with hardware
accelerators would require shrink-fitting to run the accelerators
simultaneously. In both cases, shrink-fitting allows one 2D
IDCT design to utilize a range of FPGA resources with varying
workload requirements.

We then implemented system support for module virtualiza-
tion (the AS, distributor, and PMW) directly in Verilog. Early in
the design phase, we decided these architectural components
should be hard implementations not programmed into FPGA
fabric. These components offer common functionality to all
PMs and hard fabrication will reduce logic area costs. The
downside to hard fabrication is reduced flexibility, however
results presented in Section 4 suggest these virtualization
components can be intelligently provisioned in advance with
abilities proportional to FPGA resources. This provisioning is
primarily achieved by configuring two parameters: channel
count and PM-to-AS connections. We sweep these parameters
in the following section to evaluate our shrink-fit solution.

First, we investigate how the number of PMs in the system
and the choice of channel count affects performance overheads.
Second, we investigate how these two parameters affect the

Fig. 5. Shrink-fit 2D 8x8 IDCT performance sweep: The red line illus-
trates the ideal inverse relation between shrink factor and performance
(2x shrinking results in half of the performance).

area overhead incurred to support shrink-fit. As a result, a
system designer could intelligently weigh performance and
area overheads to decide the number of channels to provision
in their hybrid processor’s AS.

All measurements are obtained from Verilog RTL and use
test vectors generated using the IJG JPEG decoder. We run
Design Compiler at ultra effort for a popular commercial 40nm
process, the same technology generation as mid-range FPGAs
found in the E600C hybrid GPCPU+FPGA processor (Arria II).
We scale 40nm figures up to 60nm to match the low-cost FPGAs
Cyclone IV.

4.1 Shrink-fit performance overhead

In an ideal system, a shrink-fit accelerator’s performance is
inversely related to the resource reduction. If the 2D IDCT
were shrink-fitted by 2x from sixteen PMs to eight PMs, the
ideal system’s performance would be reduced by half. Figure 5
compares the ideal performance (red line) of a shrink-fit 2D
IDCT to our actual performance using ASes provisioned with
varying amounts of channels (bandwidth).

Additional channels are necessary to keep pace with increas-
ing numbers of PMs. A single channel AS achieves near-ideal
performance for three to four 1D IDCT PMs, and three channels
can support near-ideal performance for up to eight PMs. This
observation motivates the need for different AS configurations
to go with different classes of hybrid GPCPU+FPGAs. Low-cost
processors contain less reprogrammable fabric, have room for
fewer PMs, and one to three channels is sufficient. The larger
number of PMs that fit on a mid-range FPGA necessitate an AS
configuration of three to five channels. Using this classification,
the relative area overheads of the AS remain low, since smaller
processors will require a smaller AS.

In addition to reducing performance, contention can also
increase bandwidth requirements. Contention reduces VM
throughput, which leads to increased context switching, thus
increasing bandwidth requirements even further. Fewer larger
modules would result in larger step sizes, whereas more
smaller modules would raise context switching overheads
and reduce performance. The IDCT’s range of one to sixteen
modules achieves a good balance by fitting in flexible 6.25%
increments.

FIFO handles can be sized as low as 64 bytes with no
additional performance impact. The minimum size required
by 1D IDCTs is 32 bytes, the minimum size of a 1D IDCT
dataset. Under the minimum size configuration, performance
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Fig. 6. Shrink-fit AS area sweep: The sweep shows absolute and
relative AS area overheads for a low-cost 25mm2 processor fabricated
at 60nm and a mid-range 100mm2 processor fabricated at 40nm.

suffers since each PM is required to context switch after every
operation. The 2D IDCT requires 36 handles: one for each link
in Figure 1 and one context handle for the 1D IDCT module
class. An additional 1.125 KB to increase FIFO handles to 64
bytes is a worthwhile price for near-ideal performance.

4.2 Shrink-fit area overhead

If shrink-fit area overheads are low, multiple shrink-fit accel-
erators may be able to use more FPGA resources than fewer
non-fitting accelerators. We compare AS area implemented
as a hard core in two processor configurations: a standard
100mm2 die size representing a mid-range processor and a
25mm2 die for a low cost processor. In accordance with existing
FPGA processor resources and the results of our performance
evaluation, we assume low-cost hybrid processors will use 1-
3 channels and a 60nm technology; mid-range processors will
use 3-5 channels and a 40nm technology. Shrink-fit overheads
can be kept to less 1% of chip area as discussed below.

For AS configurations ranging from one to five channels of
bandwidth and supporting up to 128 PMs, the system needs
AS interfaces for 6-21 PMs to support the 2D IDCT. We sweep
up to 128 PMs to show the AS can scale to support multiple
shrink-fit accelerators running simultaneously.

Area overheads for both low-cost and mid-range processors
remains below 1% for all configurations (Figure 6). The low-
cost processor can scale to 32 PMs and 3 channels with less than
1% of chip area. FPGA synthesis results of the IDCT suggest
support for additional PMs is unnecessary. The mid-range AS
with five channels can support up to 128 PMs using less than
0.4% of chip area, which synthesis results suggest is sufficient.

The distributor and physical module wrapper are both too
small to significantly affect chip area. Each distributor mea-
sures 0.0034mm2 at 60nm and 0.0017mm2 at 40nm. Each PMW
measures 0.0023mm2 at 60nm and 0.0011mm2 at 40nm.

5 RELATED WORK

Previous work proposed management of reconfigurable re-
sources for hybrid GPCPU+FPGA processors, but used soft-
ware execution to handle accelerators that did not fit on FPGA
fabric instead of shrink-fitting [10].

C-Cores introduced an approach for ASIC designs that
automates software-hardware codesign using virtualization-
like state management for isolated accelerators [11]. C-Cores

targeted isolated accelerators rather than the finer-grained
module approach necessary for accelerator resizing.

Prior work has investigated maximizing performance when
FPGA resources are not known at design time. To improve the
selection of accelerators to program at runtime, several works
statically profiled accelerators [12], [13]. These approaches
increase the pool of available accelerators by using HLS opti-
mizations to create multiple versions of each accelerator. These
approaches depend on significant computation to synthesize
and profile hundreds of accelerator variations, memory to
store each accelerator variation’s bitfile, and accelerators which
can be reliably profiled. As accelerators design complexity
increases, their behavior will be less predictable and reduce
profiling efficacy.

A related approach [14] performs profiling at runtime and
periodically reprograms FPGA fabric to use different acceler-
ators as workloads change. This requires dynamic reprogram-
ming, which is known to require minimum delays of tens of
milliseconds, and several seconds if reprogramming the entire
FPGA [15].

Shrink-fit does not require synthesizing or profiling nu-
merous accelerator variations before or during runtime, and
predictable performance leads to less, if any, dynamic repro-
gramming. But if desired, shrink-fit can complement existing
techniques for even greater benefit.

6 CONCLUSION

We introduced a new method to shrink-fit accelerators within
reconfigurable fabric budgets. Our approach, based on fine-
grained virtualization, leverages the accelerator store architec-
ture and current module-based RTL design. We introduced a
synthesized system containing an IDCT for accelerating JPEG
decoding that can be shrunk down to one-sixteenth of its orig-
inal size, and demonstrated performance and area overheads
were low. These early results show shrink-fitting is a feasible
path toward resolving future FPGA resource management
challenges in mainstream computing.
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