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Abstract—Recent high-level synthesis and accelerator-related
architecture papers show a great disparity in workload selection.
To improve standardization within the accelerator research com-
munity, we present MachSuite, a collection of 19 benchmarks for
evaluating high-level synthesis tools and accelerator-centric ar-
chitectures. MachSuite spans a broad application space, captures
a variety of different program behaviors, and provides imple-
mentations tailored towards the needs of accelerator designers
and researchers, including support for high-level synthesis. We
illustrate these aspects by characterizing each benchmark along
five different dimensions, highlighting trends and salient features.

I. INTRODUCTION

With the demise of Dennard scaling and inexorable ad-
vance of Moore’s Law, today’s architects are confronting chips
filled with more transistors than can be fully powered. This
phenomenon has spurred a flurry of research into new mecha-
nisms that promise to continue scaling performance while on a
budget. One direction showing promising efficiency gains are
hardware accelerators: fixed-function hardware blocks which
compute a specific task at a fraction of the cost of a general-
purpose processor. As a result, there is rising interest in meth-
ods for the design and integration of accelerator components.

Designing hardware accelerators in RTL languages like
Verilog or VHDL is widely acknowledged to be time-
consuming and complicated. To improve productivity, the CAD
community introduced High-Level Synthesis (HLS) tools,
which automatically synthesize RTL code from a high-level
language like C or C++. Modern HLS frameworks can produce
code with performance on par with hand-written RTL for some
workloads. However, as the field matures, it has faced new
challenges from more complicated, irregular applications.

The interest in hardware specialization has brought about
challenges at the architecture level as well. Fine-grained het-
erogeneity has appeared in processors, and the rising popular-
ity of systems-on-chip (SoCs) in the mobile domain is making
hardware accelerators commonplace. Architects now have to
contend with a much larger range of on-chip interactions, and
with so many different possible tactics and mechanisms, it is
a daunting task to choose the right design direction.

These trends are two sides of the same coin: advances
in accelerator-centric research have caught us unprepared to
quantitatively and objectively evaluate the relative strengths
and weaknesses of such a diverse collection of techniques.
Much of this can be ascribed to a simple lack of stan-
dardization. A survey of recent publications (Section II-A)
involving hardware accelerators revealed that of the 88 distinct
benchmarks used across 25 papers, 64 of them were only ever
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Fig. 1: The frequency distribution of benchmarks used in 25
papers. The vast majority appear only once.

used once, as shown in Figure 1. The most popular benchmarks
appeared in less than half of those. But the problem is
deeper than that. The wide variety of architectural approaches
taken by different researchers exacerbates this sensitivity to
algorithmic changes. Even the same kernel written using two
different algorithms, I.e., merge verses radix sort, can produce
substantially different behaviors (Section II-B). Furthermore,
benchmarks for accelerator designs, especially those used by
HLS tools, have different needs than those for traditional gen-
eral purpose processors. Implementation style, tool directives
and pragmas, and even basic code cleanliness can cause non-
trivial performance artifacts (Section II-C). We need a better
benchmark suite for standardization, commensurability, and
quantitative evaluation.

Consequently, we present MachSuite: a new accelerator-
centric benchmark suite tailored to the needs of both the
HLS and architecture communities. MachSuite is a set of 19
benchmarks spanning 12 different kernels, written to cover a
diverse set of application domains and to incorporate distinct
algorithmic choices. All the benchmarks in MachSuite are
HLS synthesizable, providing architecture researchers an easy
way to quickly generate a diverse set of hardware acceler-
ators. In this paper, we explain the rationale for our design
choices (Section III), provide a description for every bench-
mark (Section IV), demonstrate diverse workload behaviors
across benchmarks (Section V), and discuss its applicability
in accelerator-related research (Section VI.)



II. THE NEED FOR A NEW BENCHMARK SUITE

The motivation for MachSuite was derived from the ob-
served lack of standard, well-defined benchmarks for hardware
accelerators. In this section, we draw a distinction between
benchmark kernels, algorithms, and implementations and dis-
cuss the importance of standardization across each of them.
We then examine existing, related benchmarks and show why
they are unsuitable for accelerator-centric research.

A. The Need for Standard Kernels

When it comes to choosing benchmarks for quantitative
evaluation, researchers look for clear, effective demonstrations
of their contributions. Absent any established standard, they
choose the most appropriate solution given their situation.
Unfortunately, the wide variety of different approaches often
leads to divergence in the choice of benchmarks used. Without
the ability to make direct, objective comparisons, it becomes
increasingly difficult to understand where or when fundamental
advances are being made.

To understand the state of the accelerator community,
we surveyed 25 publications from top architecture and CAD
conferences over the last several years. We found that of the 88
different benchmarks used, only 24 appear in more than one
paper. Figure 1 shows the distribution of the benchmarks we
collected, with citations to the publications in Table I. While
commonalities exist, even the three most frequent benchmarks
(GEMM, stencil, and FFT) showed up in less than a third of
the papers surveyed. A result suggesting that even though the
community continues to improve accelerator design tools and
architectures, only a small subset of results can be quantita-
tively compared.

B. The Need For Standard Algorithms

A more subtle issue is differences between which algo-
rithms are used to solve a particular kernel. A program that
uses a blocked, in-place method instead of a recursive, out-
of-place one will behave very differently, even when solving
the same problem. We do not want to discourage the use of
different approaches. It is important for the community to be
able to study and compare different algorithms, but we need
transparency.

A recent case study evaluating k-means clustering on
an FPGA using HLS demonstrates this discrepancy [51].
The authors wrote C code for two different algorithms and
synthesized RTL for each. While these programs solved the
same problem with the same inputs, the performance gap was
1.6×–12.8× between them. While this should not come as a
surprise to experienced developers, it reinforces the fact that
without agreement on a common algorithm, it is easy to mask
fundamental distinctions between research results.

C. The Need For Standard Implementations

In a similar vein, differences in coding style and implemen-
tation can cause significantly different results. For instance,
writing a vector of structures instead of a structure of vectors
has consequences on locality. While this effect shows up in
benchmarks for conventional platforms, accelerators are more

Research Area Publications

Acc-Centric [11], [12], [13], [14], [15], [16], [21]
Architectures [22], [34], [37], [40], [41], [43], [46]
HLS Optimizations [4], [6], [7], [17], [20], [23], [31], [32], [33], [35], [48]

TABLE I: List of papers used to construct Figure 1.

sensitive to these changes, especially designs produced using
HLS tools.

One recent example involved a parametric sweep over
a space of implementations of the same kernel and algo-
rithm [43]. The authors showed that by changing only the
organization of the inner loop of a parallel scan code, the
Pareto-optimal points for power and performance can vary
by an order of magnitude, even when given similar hardware
resources, memory bandwidth, and parallelism.

D. Existing HLS Benchmark Suites are Unsuitable

To the best of our knowledge, CHStone [24] is the only
existing HLS benchmark suite. Designed to be an evaluation
mechanism for HLS tools, CHStone focuses on a small number
of low-level computations. While useful for evaluating the
capabilities of older HLS frameworks, it falls short when put
in the context of the complex designs handled by modern
CAD toolchains and the expansive system designs that many
architects are contemplating and constructing.

CHStone is comprised of 12 benchmarks: 4 arithmetic op-
erators, 3 cryptographic functions, 4 multimedia components,
and a simplified MIPS processor. While these benchmarks go a
small way to providing proxies for some accelerator domains,
the suite as a whole misses many quintessential themes. For
instance, the three most prominent benchmarks found in the
literature survey (GEMM, stencil, and FFT) do not appear in
CHStone. Moreover, CHStone really only captures two classes
of kernels: cryptography and media processing. We believe
more diverse workloads are needed.

E. Existing GPU Benchmark Suites are Unsuitable

Many high-quality benchmarks have emerged from the
GPGPU community in the last several years [9], [18], [44].
These suites offer a wide variety of benchmarks designed to
exercise the myriad architectural features found on modern
graphics cards. However, GPUs have a very specific design
envelope.

Large numbers of vector processing units argue for a
data parallel programming paradigm; a deep, complicated
memory hierarchy demands attention at the algorithm level;
the split main memory system strains application writers. Most
GPU benchmarks do an admirable job of contending with
these constraints, but accelerator-centric architectures have a
completely different design space, one characterized by many
more degrees of freedom. Control flow can either be a non-
issue or a challenge; memory can either be incredibly fast
and cheap (via custom scratchpad structures) or complicated
and expensive (if many accelerators are sharing a coherent
cache); system integration can be anywhere from inside a
larger processor pipeline to attached to an on-chip network
to a fully independent, heterogeneous collection. While GPU
benchmarks satisfy a particular application space, HLS users



and architects studying accelerators need a separate set of
benchmarks tailored for their needs.

III. THE DESIGN OF THE MACHSUITE BENCHMARKS

To address these gaps, we created MachSuite, a set of 19
benchmarks covering 12 different application kernels. In this
section we present an overview of MachSuite’s features and
how we arrived at the design decisions we made.

A. Kernel Selection

The MachSuite workloads were chosen to satisfy two basic
criteria: diversity and coverage. Diversity is a measure of the
similarity of kernels to each other; we would like to ensure
that each kernel brings something new to the table. Coverage
is a measure of representativeness with respect to the field; we
would like at least one kernel to be similar to any application
a given user has.

To achieve diversity, we used a battery of workload char-
acterization metrics to judge whether any two programs had
overly similar execution behavior. We present a quantitative
characterization of each benchmark in Section V to evaluate
workload diversity.

To achieve coverage, we first looked at our literature
survey. Directly including every code in that list would be
prohibitive, but we can match each benchmark published more
than once with a similar one of our benchmarks, ensuring
that the behavior of MachSuite encompasses workloads the
community cares most about. This only determines coverage
of research that has already been done. We augmented our
set of kernels to include additional programming patterns
that provide new targets for accelerator designers and system
architects to evaluate against. In Table II, each benchmark is
described and assigned to an application pattern to show, at a
high level, the application space covered by MachSuite.

B. Algorithm Selection

For each kernel, we select an algorithm representative
of the tactics commonly used to solve it. While we could
have chosen cutting-edge methods and invested heavily in
heuristics for our benchmarks, we elected to favor simplic-
ity over optimality for two reasons. First, optimality is not
portable, and an algorithm which performs well given one
set of assumptions may flop when run in another context.
Codes with this “sometimes-optimal” flavor are rarely useful
as benchmarks. Secondly, simplicity is a virtue for experimen-
tation. Benchmark suites are continually used and abused in
ways their designers never predicted. MachSuite embraces this
spirit of creativity, we expect our codes will be examined and
enhanced to address new challenges.

For some kernels, there are several common algorithms in
use, and we feel this is an opportunity. For 7 of our kernels,
we provide two distinct algorithms which solve effectively the
same problem in different ways or with different characteris-
tics. This not only serves to provide better diversity in program
behavior but it also has the interesting side effect of allowing
direct comparison at the algorithm level. This provides insight
into which types of methods a particular research tool or
technique is more amenable to.

Kernel/Algorithm Description Berkeley Dwarf [5]
AES/AES AES encryption Combinational logic
BACKPROP/BACKPROP Neural network training Unstructured grids
BFS/BULK Breadth-first search Graph traversal
BFS/QUEUE Breadth-first search Graph traversal
FFT/STRIDED Fast Fourier transform Spectral methods
FFT/TRANSPOSE Fast Fourier transform Spectral methods
GEMM/NCUBED Matrix multiplication Dense linear algebra
GEMM/BLOCKED Matrix multiplication Dense linear algebra
KMP/KMP String matching Finite state machines
MD/KNN Molecular dynamics N-body methods
MD/GRID Molecular dynamics N-body methods
NW/NW DNA alignment Dynamic programming
SORT/MERGE Sorting Map reduce
SORT/RADIX Sorting Map reduce
SPMV/CRS Sparse matrix/vector multiplication Sparse linear algebra
SPMV/ELLPACK Sparse matrix/vector multiplication Sparse linear algebra
STENCIL/STENCIL2D Stencil computation Structured grids
STENCIL/STENCIL3D Stencil computation Structured grids
VITERBI/VITERBI Hidden Markov model estimation Graphical models

TABLE II: The MachSuite benchmarks.

C. Inputs Values and Size

Benchmark inputs are an oft-overlooked feature. Like most
packages, MachSuite includes standard inputs and reference
outputs for each benchmark, including simple code to auto-
matically verify correctness. Unlike many other packages, we
also recognize the importance of realistic input data for certain
types of algorithms. For regular, compute-driven programs,
randomized inputs suffice as the execution behavior is invariant
with respect to the input values. For data-driven algorithms like
BFS/QUEUE and SPMV/CRS, the shape and structure of the
input can actually dictate runtime characteristics like locality
and branch behavior. MachSuite provides input generators for
these programs and tunes parameters to reflect more realistic
inputs.

We also recognize that input size matters, not only for
ease of use but for accurate results. If a researcher is running
two benchmarks with memory footprints of 1KB and 1GB,
there is little hope that a meaningful conclusion can be drawn
by comparing the two. We strive for a reasonable degree of
homogeneity amongst all 19 of our benchmarks. To achieve
this, we attempt to control the input and algorithmic parameters
of each code such that the maximum memory footprint is
around 32KB—an estimate of the average size of an L1 cache.

While we realize this number is somewhat arbitrary (choos-
ing half or twice that amount would not change the flavor of
our benchmark suite), it is important to pick some number as
a target. For benchmarks with little to no working sets (I.e.
AES/AES), we don’t artificially try to inflate this number. It
is reasonable to ask whether constraining our benchmarks to
KB instead of MB or GB is limiting. MachSuite’s behavior
will not accurately reflect memory characteristics at these
scales, but we also believe that if researchers are interested
in building scalable accelerator-centric systems, MachSuite’s
kernels supply a practical evaluation of the innermost build-
ing blocks. While the design and characterization challenges
associated with building a composable, scalable system are
intriguing, they also fall outside of the scope of the MachSuite
benchmarks, and we leave that problem open for future work.



D. Code Considerations

We made two complementary design choices with respect
to programming style: first, we use clean, readable, and modi-
fiable code, and second, MachSuite is amenable to HLS. Clean
code is an enabling factor. Many accelerator researchers study,
dissect, and extend programs as a matter of course, whether
it is through restructuring, annotation, or static analysis. As
a result, code written in an accessible style becomes a non-
negligible advantage in terms of time-to-solution.

Additionally, since HLS users constitute an important com-
ponent of MachSuite’s target audience, it is critical that our
benchmarks work seamlessly with HLS workflows. We achieve
this by using a constrained subset of C and by supplying
HLS directives to enable RTL synthesis. None of the data
structures in MachSuite are heap allocated, we remove non-
array pointer arithmetic, we avoid recursive function calls, and
when possible, we prefer finite upper bounds on parameters.
These concessions are reflections of the practical realities of
hardware programming; while some HLS tools may be able
to handle these cases, the resulting synthesized RTL is often
a worst-case estimate and unrealistic.

Directives are a cornerstone of many HLS tools [36]. In
MachSuite, we label each loop and provide scripts so users
can generate a particular configuration or explore the space
of possible solutions. While we make a reasonable attempt to
craft directives which will produce efficient hardware, we don’t
claim they are optimal. Performance is dependent on many
external factors, including system-level assumptions, choice of
HLS tool, and underlying hardware components, so the dream
of a single, perfect set of directives is unrealistic.

E. Limitations

MachSuite is not without limitations. As noted in III-C, the
size of the inputs to the benchmarks is small. Users looking to
stress memory hierarchies and design more complex systems
may find the current set of inputs too small to provoke interest-
ing interactions. This version of MachSuite was developed for
datapath design and only looks at the first level of the memory
hierarchy; we are currently working on scaling MachSuite’s
input sets to larger scales such that a wider range of researchers
will find them useful. Additionally, while we have made an
attempt to capture diversity in both application domains and
code characteristics, we do not provide an absolute metric
of benchmark similarly. Our characterization (Section V) is
a start, but we have not yet carried out the deeper scrutiny
afforded to mature benchmark suites like SPEC [38] or Rodinia
[10].

IV. BENCHMARK DESCRIPTIONS

AES/AES
The Advanced Encryption Standard [39] is an iterated block
cipher designed in 1998 as a replacement for the DES
algorithm. The core computation is a series of alternating
substitution and permutation phases on a 16-byte state matrix.
AES tends to be amenable to both hardware and software
implementations, largely due to its parallelizability, use of
byte-oriented arithmetic operators, and transformations small
enough for lookup tables. MachSuite’s implementation of AES

is adapted from Ilya Levin [29] and provides a lookup table
optimization for the primary S-box.

BACKPROP/BACKPROP
Neural networks are a widely used machine learning technique,
with applications including classification, pattern recognition,
and control theory. Based on a mathematical model similar
to their biological counterparts, neural nets are multi-layered,
feed-forward networks with variable weights on every depen-
dence edge. Using a neural network to perform a specific task
is usually computationally simple: input is simply fed through
the network and outputs observed. Training a neural net is
more expensive, involving iteratively tuning a large number
of parameters to fit a given training set. Backpropagation is a
common training algorithm which takes differences between
the output of an untrained net and the desired output and
pushes them backwards through the network, updating node
weights proportionally as it goes.

BFS/BULK
Breadth-first search is a fundamental building block for many
graph algorithms, including path finding, network flow, and
community detection. Usually expressed as a sequence of
expanding “horizons” or “frontiers” of nodes, BFS is notable
for being memory intensive and having irregular-but-plentiful
parallelism. The BFS/BULK code uses a brute-force, data
parallel method [26], [25] which is typically used on SIMD
and vector architectures. Additionally, the execution behavior
of BFS is heavily dependent on the structure of its input
graph, and mesh or Erdös-Rényi graphs often underestimate
memory hot-spotting and overestimate typical graph diameter.
MachSuite provides a low-diameter, scale-free graph using the
R-MAT algorithm [8].

BFS/QUEUE
BFS can also be computed using a work queue algorithm
which dynamically tracks the current horizon. Queue-based
codes typically trade off lower memory bandwidth require-
ments for increased bookkeeping. The BFS/QUEUE variant
produces an identical solution to BFS/BULK but exhibits a
different node traversal order, and, by extension, notably
different computational characteristics.

FFT/STRIDED
The Fast Fourier Transform is a ubiquitous kernel with applica-
tions in almost every field. It is the most commonly used kernel
in the literature we surveyed. The canonical Cooley-Tukey
“butterfly” method we use is characterized by a wide range of
strided access patterns and nested, triangular loop structures.
We provide a straightforward, iterative implementation of a
1024-point, complex FFT.

FFT/TRANSPOSE
Due to the nonuniform memory costs of most modern archi-
tectures, a common optimization for the FFT is to compute
a series of small-radix FFTs interleaved with transpose opera-
tions. This technique trades off data manipulation overhead for
improved locality and the opportunity to optimize for a single,
fixed-size FFT. MachSuite provides a 512-point, complex FFT
that uses an 8-point small-radix FFT, adapted from the inner
loop of a well-tuned GPU code [47].

GEMM/NCUBED
Matrix multiplication is likely the most re-used building block



in numerical software and a cornerstone of any linear alge-
bra package. Sporting high computational density, extremely
regular behavior, and an easily manipulated mathematical
structure, it is a common target for automatic- and hand-tuning.
GEMM/NCUBED is a naive, O(N3) implementation provided
as a well-understood reference point.

GEMM/BLOCKED
Matrix multiply is more commonly computed using a blocked
loop structure. Commuting the arithmetic to reuse all of the el-
ements in one block before moving onto the next dramatically
improves memory locality. MachSuite’s version uses a fixed
blocking factor of 8 and is based on the algorithm proposed
in [28].

KMP/KMP
String matching finds applications in everything from packet
filters to scientific codes to desktop applications. The Knuth-
Morris-Pratt algorithm is a fast string matching technique
which appeared in the late 1970s [27]. The key improvement
in KMP was a small, precomputed data structure enabling the
algorithm to skip ahead in the input string when a mismatch
is discovered. KMP/KMP implements both the matching and
precomputation steps, and we supply an English-text input
array which matches a short pattern with low frequency.

MD/KNN
Molecular dynamics simulations are a class of n-body prob-
lems which underpin most computational chemistry packages.
While most MD codes include a variety of iterated equations,
the dominant component is normally the calculation of long-
distance forces, which is order O(n2). Our two MD bench-
marks both compute Lennard-Jones potentials, a common
approximation to the van der Waals interactions between all
pairs of atoms. Since the strength of these interactions die
out as a sixth-order polynomial function of distance, most
simulations further approximate the force calculation by only
considering nearby pairs of points. MD/KNN (short for k-
nearest neighbors) uses explicit, fixed-length neighbor lists to
track the relevant molecular interactions. The code itself is
adapted from the SHOC implementation [18].

MD/GRID
Another variant of MD, used by many scalable computational
chemistry packages [2], [3], replaces explicit neighbor lists
with a three-dimensional grid. Force calculations are instead
computed on all particles in the current and adjacent grid cells.
This technique pays a price in bookkeeping overhead to track
and iterate over grid cells, but it improves memory locality
and enables memory partitioning. MachSuite’s MD/GRID and
MD/KNN codes use the same input set and agree within 0.1%.

NW/NW
The Needleman-Wunsch algorithm is DNA alignment tech-
nique first introduced in 1970. The method is a canonical
dynamic programming problem that optimizes a similarity
score between two strings. Our implementation is a wavefront
computation that populates a square similarity matrix as it
executes. Materializing the score matrix, while expensive,
allows reconstruction of the optimal alignment.

SORT/MERGE
Sorting, while a useful kernel in its own right, also serves
as a building block for many other algorithms. Merge sort

is an out-of-place algorithm which tends to be popular on
parallel platforms due to its simple structure and fewer data
dependencies. MachSuite includes an iterative implementation
of a 4096 integer sort.

SORT/RADIX
Radix sort is a typical non-comparison-based sort, often used
when handling input sets with small value ranges and in
parallel contexts. Non-comparison sorts exploit properties of
the value domain (bit-pattern regularity, in the case of radix
sort) to lower computational complexity. Most radix sort codes
utilize a highly tuned, fixed-size inner loop which aligns with
convenient hardware performance breakpoints. MachSuite’s
version is adapted from a radix-4 integer sort [18].

SPMV/CRS
Sparse methods leverage the annihilating property of zeroes in
linear systems to omit irrelevant computation. Sparse matrices
often appear when solving systems of dependent equations
or computing properties on high-diameter graphs. The core
calculation of sparse matrix/vector multiplication is identical
to the dense version, but organizing and tracking the nonzero
elements dramatically changes the computational characteris-
tics. SPMV/CRS uses compressed row storage format for the
nonzero elements [30]. Since sparse matrix operations often
depend heavily on the structure and density of the input
matrix, we provide an electrical admittance matrix from the
classic Harwell-Boeing matrix collection [1] as a proxy for
the behavior of an iterative solver.

SPMV/ELLPACK
Ellpack is an alternative to contiguous nonzero packing,
originally introduced as an external storage format [49] but
recently rediscovered for vector architectures [45]. Ellpack
trades off increased storage overhead for regularity in access
pattern, padding out nonzero arrays to a fixed length to enable
sequential access.

STENCIL/STENCIL2D
Stencil codes are a core component of many computer vision
applications and scientific simulations. The inner loop of a
stencil code is a fixed-size computational template which is
moved across a large input grid. The size and shape of the
stencil itself varies across applications. The majority of codes
use a stride-1 motion across the data. MachSuite contains a
basic, 9-point, 2D stencil [18].

STENCIL/STENCIL3D
Stencils generalize to different grid configurations and di-
mensions. However, as the grid changes, so do the execution
characteristics. To demonstrate the difference between surface
and volume stencils, we also provide a 7-point, 3D stencil. The
STENCIL/3D benchmark is based on the algorithm proposed in
[19].

VITERBI/VITERBI
Hidden Markov models are a widely used stochastic model
with applications ranging from information coding to speech
recognition to bioinformatics. The Viterbi algorithm is a dy-
namic programming method which computes the most likely
Markov chain based on a set of observations and a pair
of probability matrices. In contrast to Needleman-Wunsch,
another dynamic programming code, Viterbi exhibits higher
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Fig. 2: Instruction Mix

computational density– dense transition matrices induce com-
binatorial update steps.

V. CHARACTERIZATION

To demonstrate the wide variety of behaviors in MachSuite,
we subject it to a battery of quantitative characterizations.
These tests, ranging from operation counts to memory pattern
analysis to entropy calculations, are intended to provide insight
into the overall properties of the MachSuite benchmarks, but
also into the way those properties interact with specialized
hardware.

MachSuite is targeted for fixed-function accelerator
design– a compute paradigm in which no ISA exists. To
circumvent this, we use Workload ISA-Independent Charac-
terization (WIICA) [42], a framework targeted for custom
architecture, to characterize the behavior of MachSuite. WI-
ICA instruments the program to emit a dynamic instruction
trace with program runtime information, such as memory
reference addresses and branch decisions. After the dynamic
trace profiling, WIICA applies a set of workload analysis. To
demonstrate MachSuite’s amenability to HLS, we synthesize
each benchmark by running it through Vivado HLS.

A. Instruction Mix

Breaking down a program into compute, memory, and
control flow instructions (Figure 2) is a good first-order
measure of a program’s leanings. While memory instructions
are relatively consistent, 20–30% of MachSuite’s operations,
control flow displays much more variance. The extreme exam-
ples (KMP/KMP, BFS/BULK, and BFS/QUEUE) are all heavily
conditional-laden.

The differences in SPMV/CRS and SPMV/ELLPACK memory
and branch instruction percentages reflect the differences in
the two algorithms. SPMV/CRS requires less memory oper-
ations but more branching while SPMV/ELLPACK pads the
compressed matrix with zeros, lowering control overhead at
the expense of more memory traffic.
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With respect to hardware accelerators, ideal workloads
are typically comprised mostly of compute instructions. High
percentages of branch instructions may or may not be bene-
ficial, depending on the branch patterns. High predictability
means control is easily transformed to fixed data paths in
hardware, eliminating overhead and bloat. Low predictability
results in multiple execution paths and explicit logic to handle
control, demanding more design effort to understand and im-
plementation trade-offs such as predicated execution. (Branch
predictability is investigated further in Section V-D.)

B. Memory Footprint

Memory footprint (Figure 3) is a measure of the total num-
ber of unique bytes a benchmark addresses. Most programs fit
within 16 KB and 64 KB, close to the established 32 KB
target in Section III-C. AES/AES is an obvious exceptions, as
it requires almost no state storage nor input data. Another
exception, MD/GRID, is actually caused by its algorithmic
counterpart, MD/KNN. In order to enable direct comparisons,
we use the same input and force calculations on both molecular
dynamics codes, and since MD/KNN has a large auxiliary stor-
age array, we reduce the input grid on both versions until the
latter fits in a reasonable size. The end result is that MD/GRID
has a much smaller footprint. At the other end of the spectrum,
NW/NW utilizes over 80 KB of space as a result of the O(n2)
array which stores its wavefront computation. Shrinking the
DNA input strings could have alleviated this, but it might also
have biased the input characteristics unrealistically.

One interesting point of comparison in the memory foot-
print plot is the difference in behavior between SPMV/CRS and
SPMV/ELLPACK. SPMV/ELLPACK has over twice the number
of memory accesses as its counterpart, despite computing the
same solution. Inspecting the code reveals that this is a result
of the algorithm, not an artifact. In order to vectorize its inputs,
SPMV/ELLPACK pads out each row of its nonzero matrix to the
maximum length of any row. While this provides very good
regularity and stride access pattern, it also pays a price in
having to store additional zeros.
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C. Spatial Locality

Spatial locality (Figure 4a) measures where a program’s
memory accesses occur in relation to each other. This property
is important for accelerator design as it can enable optimiza-
tions like prefetching and burst transfers. To summarize the
spatial locality across MachSuite, we use a simple metric
defined by Weinberg et al. [50]:

Lspatial =
stride<∞∑
stride=1

P (stride)
stride

The intuition behind this plot can be explained by two
phenomenon. First, programs with large amounts of stride-one
code have very high spatial locality. This is an expected result.
The second, slightly more subtle, contributing factor is that the
primary datatype radically affects this metric. Byte-oriented
programs (KMP/KMP and NW/NW) have tightly packed arrays
which they iterate over. Programs using double-precision float-
ing point numbers (e.g., FFT/STRIDED and MD/KNN) can only
achieve a minimum stride distance of 8 bytes.

To better understand the relationship between algorithms
and spatial locality, we look at the cumulative fraction
of memory references which occur at a given stride for
GEMM/BLOCKED and GEMM/NCUBED, shown in Figure 4b.
The initial jump in both benchmarks at 4 bytes is a result
of stride-one accesses of 32-bit integers from a matrix row
in the innermost loop. In these inner loops, both benchmarks
have two memory references: GEMM/NCUBED reads two ele-
ments from the input matrices, and GEMM/BLOCKED reads
one element from an input matrix (the other resides in a
temporary variable) and writes one element to a temporary
output block. The larger percentage of local references in
GEMM/BLOCKED shown in the plot is due to the fact that
the input matrix and output matrix are both being accessed
with stride-one. In GEMM/NCUBED, only the row elements are
read consecutively—the column elements are 256 bytes apart.
As a result, only half as many of GEMM/NCUBED’s memory

references are captured by small strides. The second jump at
a stride of 256 accounts for this in GEMM/NCUBED. Likewise,
in GEMM/BLOCKED, each block is 256 bytes of data, so the
second jump is a result of a middle loop moving on to the
next block.

D. Temporal Locality

Temporal locality (Figure 5a) measures the number of
memory accesses that occur before any given address is
repeated. It is a measure of re-use, and it is typically exploited
in hardware by adding registers or caches to store data nearby
so it can be cheaply re-fetched. Weinberg et al.[50] introduce
a summary metric for temporal locality:

Ltemporal =
i<log2(N)∑

i=0

((dist2(i+1) − dist2i) ∗ (log2 (N)− i))
log2 (N)

Benchmarks with lower temporal locality typically either
stream elements of a data structure, accessing them only once
(i.e. KMP/KMP) or exhibit irregular accesses that have low
probability of reuse (i.e. BFS/BULK).

The STENCIL/STENCIL2D and STENCIL/STENCIL3D algo-
rithms present an interesting contrast. STENCIL/STENCIL2D
applies a 3×3 filter to a large input array. Of the 9 data
elements loaded for each computation, 6 are reused in the next
loop iteration, and in combination with the 9 reused elements
of the filter, are reused approximately 80% of the memory
references every time we shift the stencil over. The jump after
1024 comes from wrapping around—each row is 256 integers,
or 1024B. If we contrast this pattern with the 3D stencil, we
see a similar structure. STENCIL/STENCIL3D uses a 7-point,
star-shaped filter, but the filter parameters are inlined, not held
in a temporary array. This difference, plus a rearranged filter
order, accounts for the pair of plateaus at reuse intervals of 4
and 16. We can also clearly see both the row- and column-
wraparound at 128 and 4096, respectively. Due to the shape
of the stencil, the bump at 65536 is actually the “reuse” of the
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Fig. 6: Branch Entropy

last filter element with the initialization of the array. Neither
stencil code is computed in-place, so the output arrays (which
have no temporal reuse) cause both to saturate around 85%.

E. Branch Entropy

Branch entropy [52] is a measure of control flow regu-
larity. It works by computing the information content con-
tained in all 16-long sequences of branching decisions made
by the program. Figure 6 shows the branch entropy of
each MachSuite workload. Algorithms with long, fixed trip
counts (SPMV/ELLPACK, STENCIL/STENCIL2D) have almost
no entropy, while irregular control flow (SPMV/CRS) and
data-dependent branching (NW/NW, SORT/MERGE) result in a
higher branch entropy.

To understand how different benchmark’s entropy scores

reflect their behavior, we consider SORT/MERGE and
SORT/RADIX. SORT/MERGE has over 3 bits more entropy than
SORT/RADIX, implying that its control regularity has much
more randomness. SORT/RADIX has no dependencies on input
data. It bins inputs, then rearranges the input based on the
cardinality of each resulting bucket. In contrast, SORT/MERGE
has a control flow almost exclusively driven by input values.
While the divide-and-conquer approach is regular, the recon-
struction of the array branches at every step conditioned on
the input’s value.

Where SORT/RADIX trumps SORT/MERGE in regularity of
control structure SORT/MERGE beats SORT/RADIX in perfor-
mance (Figure 7). Trade-offs like this enable designers and
researchers to explore and optimize algorithms to best match
their design target.

F. Synthesis Results

To demonstrate that MachSuite’s benchmarks are synthe-
sizable, each is run through Vivado HLS. FPGA resource
requirements including flip-flops (FF), look-up-tables (LUT),
and digital-signal-processor slices (DSP) are shown in Fig-
ure 7. We also report performance results including cycle
counts and execution time. For synthesis, no optimizations or
directives were applied.

FFT/TRANSPOSE is a prime candidate for optimization.
Within each benchmark exists a vast design space MachSuite
users can explore and optimize. Without guidance, Vivado
synthesizes distinct logic each time a function is invoked.
However, FFT/TRANSPOSE has distinct program phases, alter-
nating between the execution of smaller FFTs and reorganizing
inputs and partial products by shuffling arrays that are then
the inputs to the same small FFT computations. Having non-
overlapping phases ensures the FFT and shuffling logic can be
shared, reducing the number of required instantiations of these
functions without affecting performance.

In Figure 7 the variance of execution times of different
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benchmarks is immediately obvious. The relationships be-
tween GEMM/BLOCKED and GEMM/NCUBED is more subtle.
GEMM/BLOCKED takes longer to execute than its naive, triple
nested loop counterpart. This is an artifact of HLS.

The blocked version is more complex (with more nested
loops) and requires directives to be efficient. Additionally,
blocking is meant to increase locality and reduce memory
contention, increasing parallelism and reducing memory costs.
Without any directives for pipelining or parallelization, the
optimizations that GEMM/BLOCKED is meant to exploit never
materialize. Only one SRAM is allocated, so GEMM/BLOCKED
ends up paying the price of its code structure without reaping
the rewards. This type of experimentation with HLS tools,
optimization, and hardware techniques is exactly the kind of
scenario that MachSuite is meant to support.

VI. CONCLUSION

MachSuite provides a clean, HLS synthesizable code base
to enable standardization and commensurability in accelerator-
centric research. It lessens the burden of manually implement-
ing hardware accelerators with ad-hoc benchmark selection
and smooths the way for architecture researchers to access
a diverse set of hardware accelerators. Moreover, the diverse
characteristics of the benchmarks in MachSuite pose chal-
lenges to explore customization strategies in memory hierarchy
and system integration. MachSuite also supplies the HLS
community with a common ground on which to compare
results; HLS tool developers can use MachSuite to exercise

their new optimizations to handle more complex program
behaviors and architects can use MachSuite to stress test their
proposed solutions in a more rigorous, scientific manner.
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