
From PDF to GDS: Designing the RoboBee SoC
Brandon Reagen, Xaun Zhang, Gu-Yeon Wei, David Brooks

Harvard University, Cambridge, MA, USA

I. INTRODUCTION

Developing the Robobee was a multi-discipline, 5-year project
funded by a National Science Foundation Expeditions in Com-
puting award with the goal of achieving autonomous flight with a
bee-sized micro-robot [2]. The intent of the research was to help
re-stabilize the declining bee population which researchers have
shown could have devastating effects on the earths ecosystem.

Bees are remarkably efficient; their skeleton weighs almost
nothing: requiring minimal lift to takeoff and sustain flight; their
brains are small: pre-programmed with a minimal set of instincts
necessary for the colonies survival. Their capabilities under such
stringent weight and compute limitations makes them a prime
target for pushing what modern robotics and computer systems
can do.

The weight and power limits require a custom System-on-
Chip (SoC) be built. Conventional off-chip voltage regulators
are heavy and bulky, and thus cannot fit under the weight and
form factor of the robotic bee. Commercial Off-The-Shelf parts
(COTS) micro-controllers consume too much power to perform
the required computation for autonomous flight. The solution is
to pack as much IP onto a single die. SoCs have been the trend of
all semi-conductor companies over the past decade from mobile
and embedded to server grade solutions.

In this paper we recount our experiences designing such a
chip. We highlight the major challenges faced when designing
for such a unique form factor, how designs and specifications
were set by each collaborating lab, the difficulties of integrating
a plethora of IP consisting of in-house digital and analog blocks,
and the design flows we used. We also discuss how invaluable
HLS was in reducing the engineering burden, focusing design
efforts at higher levels of abstraction, and an overall successful
tape-out.

II. WORKLOAD CHARACTERIZATION: HOW BEES FLY

Bees navigate using only optical information. Each wing flap
generates roll, pitch, and yaw movements to sustain flight and
move according to the objective. The magnitude of the force
applied to each degree of freedom is computed by analyzing
how the bees surroundings change over discrete, adjacent periods
of time. This method of motion estimation is known as optical
flow. Flying using only optical flow requires a lot of compute
power. To sustain flight, each force calculation must resolve at
a frequency the bee’s wings flap: 100Hz.

III. FROM SYSTEM-IN-A-LAB TO SYSTEM-ON-CHIP

Before the design of the brain SoC the Harvard Robotics lab
had prototyped a bee-scaled robot and demonstrated flight. What
the robot lacked in size the control system around it made up for.
The first flight demonstration was composed of a bee with 4 wire
tethers hanging off of it and a VICON system consisting of 4
high-definition cameras each aimed at the bee, which formed an

arena of sorts. The cameras tracked the nodes, feeding live video
streams into a powerful desktop computer running Simulink code
to analyze the differences between images. The computation
outputs power signals conveyed through wires tethered to the
bee where voltages contort the piezo-electric actuators that flap
the bee’s wings.

The challenge is to move this entire experimental setup– from
the HD-cameras to the desktop computer and power outlet–onto
the robotic bee. Two back-to-back vision sensors are required,
each facing outwards to gather enough data about the bees move-
ment to compute the three forces correctly. Weight limitations
only permit noisy, 8-bit, 128-by-128 pixel cameras. To meet the
performance requirements and fit within the power budget we
designed custom IP for any piece of the workload with enough
definition that a design specification could be drawn up.

IV. THE FRANKENSTEIN DESIGN PROCESS

One of the most difficult challenges faced when defining
the specification and implementing the brain SoC was figuring
out what was needed. Over the course of 3 years bi-weekly
meetings were held to communicate the necessary information
on achieving flight with wing-flapping micro-robots and the
power/performance trade-offs of chip designs.

Traditional design flows such as the waterfall model, agile
development, and general top-down verses bottom-up methods
do not work in this context. The design specification consisted
of PDFs of Simulink blocks, Latex documents describing basic
math and filter computations, and photographs of chalk board
sketches. Despite the specificity of the application, it is surpris-
ingly difficult to settle on specifications. The solution was to
not settle on perfectly precise, detailed specifications but rather
establish the necessary blocks and then implement them in a way
such that they are easily modified.

With all the parts known, project team members went out
and started building. Analog designers built the ADCs and
Integrated Voltage Regulator, digital designers built accelerators,
and architects focused on general purpose cores, AMBA buses,
and the memory system. For this reason, architecting an SoC
is more ad-hoc than the more traditional chip design process.
Where simulators and base designs are typically iterated on each
generation, the uniqueness and novelty of the SoC requires the
system be stitched together from a barrage of sources.

V. HIGH-PERFORMING, LOW-POWER, FLEXIBLE,
CONFIGURABLE, APPLICATION SPECIFIC HARDWARE

To meet the requirements, many iterations had to be made
to the hardware accelerators. The major accelerator blocks are
for Optical Flow, Convolution, and Linear Algebra. Here we
give examples of how the accelerators were refined to meet
requirements.



High-Performance: A common issue with hardware accelera-
tion is keeping them fed with data. The image processing needs
of the optical flow workload requires a lot of bandwidth and
data movement. To limit this, we carefully partition the image
SRAMs to overlap convolution and optical flow computations.
As data comes in from the camera, it is put into a partition of
one of the SRAMs. The convolution completes and writes results
to a different partition. There is a small controller which MUXs
addresses from the optical flow accelerator to always get the data
from where it was written, maximizing the performance of the
system by limiting the amount of data movement required.

Low-Power: Floating point computation is abused, wasteful,
and ill-understood by non-computer architects. All the workload
specifications provided called for double-precision floating point
computation. This is impractical as a single multiplier can
consume more energy than the entire general purpose core.
We have standards for a reason; when we converted all the
computation to fixed-point no support was offered with respect
to the precision of the computations. For this reason, all the
accelerators emulate fixed-point by tracking it in software. The
linear algebra computations simply read in 32-bit integers and
complete the computation. When the core reads back the result
it knows how to shift the product appropriately to track the
decimal. While non-ideal, integer operation can save orders of
magnitude of energy verses double precision floating point.

Flexibility: Another design challenge with the accelerators was
not committing hardware to something that may turn out to be
useless. The Convolution accelerator can be programmed via
a memory mapped register to perform different computations.
The filter constants can be re-programmed to perform different
operations: parts of the image can be discarded: there is also
support to conduct vertical or horizontal convolutions on the
image data. In this way hardware accelerators were able to be
built without having the specifications as detailed as in an ideal
situation.

Configurable: Optical flow is a generic technique with many
different algorithms deriving from it. Since the bee had never
actually flown using 2 outward facing cameras it was unclear
which solution is best. To overcome this, there are multiple ver-
sions of optical flow supported by the accelerator. The accelerator
is configurable to return a 2D vector, a vector field, or a set of
vectors averaged over the images. It also supports two algorithms
for computing Optical flow. In addition, it is flexible to only
operate on part of the image and has both 1D and 2D operation
modes.

What we found was that our accelerators still provide the
magnitudes of performance and energy savings over general
purpose cores, they just need to be designed and reasoned
about differently. In [1] the authors demonstrated fixed-function
accelerators provide two orders of magnitude in performance and
energy compared to the cortex M0. When designing the accel-
erators for the RoboBee we were able to achieve comparable
improvements, up to 723⇥ dynamic energy reduction [3], by fo-
cusing on how flexibility and configurability were incorporated.
Looking forward, this is is how accelerators should be designed
as assuming perfect workload specification is unpractical, though
ideal to maximize efficiency.

VI. INSTRUMENTAL CAD TOOLS

All of the hardware accelerators were developed using Xil-
inxs Vivado High-Level Synthesis tool. The countless design
iterations, specifications that changed constantly, and amount
of testing required to insure the chips functionality would not
have been possible with the limited man-power and design time.
Developing accelerators in C makes adding and testing new
features a function of minutes to hours as opposed to days
to weeks. Moreover, HLS automatically generates test benches
and wave forms, the C implementations for accelerators are
compatible with GCC, simplifying the task of verify design
correctness at a high level.

While designing accelerators with HLS we found the HLS
Tax—the performance difference between RTL generated by
HLS and hand-coded RTL)— to be negligible compared to
the practical engineering benefits. Also, appropriately tuning
designs with directives helps eke out high-performing, efficient
designs from a high-level representation. Among the most useful
directives were the capabilities to interface with the system and
bus protocols. Vivado HLS supports the AMBA protocols and
has simple ways of setting up memory mapped registers for
external FSM control by general purpose cores.

Our experience with the HLS approach to accelerator design
was exceptionally positive. As system design becomes increas-
ingly more complex more innovations like HLS are necessary to
allow architects to focus their effort not on designing individual
pieces but how they are put together. Specifically, we see a
blatant gap in system-level optimization tools. The Frankenstein
design process is not a good one, but it works. Being able
to balance all the parts that go into an SoC would likely
expose inefficiencies in our design we are ignorant of. The
impact emergent properties from integrating SoC blocks have
on system performance is too complex to exhaustively evaluate.
Existing CAD tools, like HLS, are a first step in improving
and formalizing the SoC design process. However, architects are
still unequipped to handle the degree of optimization and design
space exploration necessary to holistically optimize SoCs with
levels of heterogeneity similar to the Robobee Brain SoC.

VII. CONCLUSION

The chip consists of 12 distinct SRAM blocks, used by
both the accelerators and the general purpose cores. There are
two general purpose cores: a simple ARM M0 micro-controller
and the Intel SiskiyouPeak. There are hardware blocks for the
optical flow and convolution functionality which consume a
considerable amount of the total die area. In addition, 3 of the
signal processing/linear algebra blocks are included to assist the
general purpose cores with handling common operations. More
details are measurements are included in the presentation and
can be found in the conference paper published in VLSI 2015
[3].

REFERENCES

[1]B. Reagen, Y. Shao, G.-Y. Wei, and D. Brooks. Quantifying acceleration:
Power/performance trade-offs of application kernels in hardware. In ISLPED,
2013.

[2]R. Wood, R. Nagpal, and G.-Y. Wei. Controlled flight of a biologically
inspired, insect-scale robot. In Science, 2013.

[3]X. Zhang, M. Lok, T. Tong, S. Chaput, S. Lee, B. Reagen, H. Lee, D. Brooks,
and G.-Y. Wei. A Multi-Chip System Optimized for Insect-Scale Flapping-
Wing Robots. In VLSI, 2015.


