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PIPELINED PARALLEL ARCHITECTURE FOR HIGH THROUGHPUT MAP DETECTORS

Ruwan Ratnayake, Gu-Yeon Wei and Aleksandar Kavčić

Division of Engineering and Applied Sciences
Harvard University, MA 02138, USA

ABSTRACT

A maximum a posteriori probability (MAP) detector based

on a forward only algorithm with high throughput is con-

sidered in this paper. MAP gives the optimal performance

and, with Turbo decoding, can achieve performance close to

the channel capacity limits. Deep pipelined architecture for

the forward only method is presented and compared with

the other throughput-increasing methods. Simulation re-

sults based on the iterative MAP-LDPC (low-density par-

ity check) system are shown. Hardware implementation is-

sues that exploit the regularities of the structure are also dis-

cussed.

1. INTRODUCTION

High-speed detectors are of interest in research as well as in

industry, particularly in magnetic recording where speeds

on the order of 1Gps are needed. Naturally, proposed meth-

ods that perform in the Gbps range use computationally less

intensive algorithms such as the Viterbi detector, which gen-

erate hard outputs [1]. Even though these detectors reach

the 1Gbps milestone in throughput, their inherent inability

to generate soft outputs make them less attractive for use

in iterative systems. Thus, algorithms that give soft out-

puts such as the soft output Viterbi algorithm (SOVA) are

attractive since they can exploit iterative detection for better

performance [2]. However, these are still suboptimal algo-

rithms in terms of bit error rate (BER) performance. Up to

now, maximum a posteriori (MAP) algorithms that give op-

timal performance have not been considered for high-speed

detectors due to their computational complexity. MAP de-

tectors have so far only targeted wireless communication

systems where data throughput requirements are much lower.

The MAP algorithm by Bahl, Cocke, Jelinek and Raviv

(BCJR), requires forward and backward computations (FB-

BCJR) [3]. This is in contrast to the Viterbi or SOVA algo-

rithms, which allow the computations to be performed only

in the forward direction. Once the input stream is fed into

Viterbi/SOVA detectors, the output is generated after a fixed

delay and retain the same order [4]. However, the a posteri-
ori probability (APP) output of the FB-BCJR algorithm can

only be evaluated after both forward and backward metrics

are computed. Inevitably, the outgoing symbols appear in a

permuted order relative to the incoming symbols.

There is a scheme that performs MAP with computa-

tions only in the forward direction [5]. We call this algo-

rithm forward-only BCJR (FOBCJR). The data flow of this

algorithm is similar to the Viterbi algorithm, where soft out-

puts are computed after a fixed delay relative to the incom-

ing symbols, resulting in ordered outputs. Similar to the

Viterbi algorithm, FOBCJR keeps track of soft survivors,

which are kept in a fixed-length sliding-window survivor

memory. A prominent feature of FOBCJR is its parallel

structure, where as FB-BCJR only allow sequential state

metric computations. Parallelism facilitates pipelining, re-

sulting in an increase in throughput. In terms of throughput

and input to output delay, FOBCJR with a deep pipelined

structure is superior to other methods for computing APPs.

This paper begins with an overview of the FOBCJR al-

gorithm. Afterwards in Section 3, we introduce three pos-

sible schemes to improve the throughput of the FOBCJR

algorithm. By making quantitative comparisons we show

that one of these methods, which is based on deep pipelined

computations, outperforms the other two in terms of through-

put and require less hardware. Section 4 presents the sim-

ulation results for these methods. Section 5 discusses some

implementation methods that can exploit the inherent prop-

erties of the FOBCJR algorithm. Finally, Section 6 con-

cludes the paper.

2. FORWARD ONLY BCJR

As implied by the name, FOBCJR computes state metrics

only in the forward direction. It performs 3 basic tasks,

namely extend, update and collect. This is similar to the

Viterbi algorithm which performs extend, update and select.

Extend and update are recursive operations. The extend op-

eration extends the state buffer by adding one new column

of state metrics based on the current received sample and

previous state metrics. The collect operation extracts the

APPs at the other end of the state buffer. The remaining

state metrics of the buffer are updated with the update op-

eration based on information on the same received sample.

A key feature of FOBCJR is that the all update operations
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are performed in parallel. This is in contrast to the sequen-

tial behavior of FB-BCJR. This parallelism enables update
to be pipelined. For brevity, we defer the reader to [5] for a

detailed discussion of the FOBCJR algorithm.

Extend, update and collect operations are essentially eval-

uating probabilities by combining probabilities of relevant

paths. Simply, these are sum-product operations. Since

computing products is expensive in terms of required com-

putational power and complexity, the algorithm is imple-

mented in log domain. Thus, a product is mapped to an

addition and an addition is mapped to a special operation

which is denoted by �. This special addition � is defined

as a� b = ln(ea + eb) = max(a, b)+ ln(1+ e−|a−b|). The

correction term, ln(1 + e−|a−b|), can be implemented as a

one dimensional look up table (LUT). The bottleneck of a

MAP algorithm is the state metric computation, consisting

of adders and � units, see Fig. 1. We call the unit in Fig. 1,

the add/compare/select/LUT/add (ACSLA) unit.

+ +

-

LUT

+

S
t-1,i

(1,0)S
t-1,i

(1,0)

St,i (1,0)

BM(1,0)BM(0,0)

a b

c
c

a b

Fig. 1. ACSLA state metric computation unit for log MAP.

3. INCREASING THROUGHPUT

In this section, we investigate three different schemes to in-

crease the throughput of the system. First, we can speed up

the ACSLA unit by re-ordering operations. Second, we can

unroll the trellis, which results in an increase in the delay of

the critical path, but also increases throughput. Finally, we

propose a simplified extend operation and deep pipelined

update operation version of the algorithm and compare its

merits to the other two methods.

3.1. Compare Select Add LUT Add (CSALA)

Lee et al. show that the critical path in the Viterbi algorithm

can be increased by reorganizing the add/compare /select

(ACS) unit to a compare/select/add (CSA) unit [6]. Simi-

larly, the ACSLA unit for an APP algorithm can be reor-

ganized such that addition and comparison are performed

in parallel and is illustrated in Fig.2. This is referred to as a

compare/select /add/LUT/add (CSALA) unit. If both extend
and update operations are based on CSALA, then the delay

in the critical path of the system is reduced by the delay for

one addition operation.

+ + - + +

LUT

+ +
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BM
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(0,0) BM
t+1

(0,1)

Fig. 2. CSALA extend, update computation unit

3.2. Radix 4-Sum2

Another approach is to unroll the trellis to increase through-

put. We consider a radix-4 system where two observation

samples are considered within one cycle. The aim is that

time taken for the state updates with this method would be

less than twice the time taken for state updates in a radix-2

system. This method has been exploited to increase through-

put in Viterbi systems [7]. However, this scheme is not very

attractive for MAP since four paths must be combined to-

gether instead of merely obtaining the maximum of four

paths as in Viterbi. Combining four paths requires a three-

ACSLA-unit tree with two levels and the delay through the

critical path is only one addition less than twice the delay

for ACSLA.

+ ++ +

Logic1

- - - - - -

Logic2

LUT

+

S
t-1,i

(0,0) S
t-1,i

(1,0) S
t-1,i

(2,0) S
t-1,i

(3,0)

BM t(3,0)BM t(0,0) BM t(1,0) BM t(2,0)

St,i(0,0)

Fig. 3. Radix4 Sum2 extend, update computation unit

The combining of 4 paths in radix-4 is given by a � b �
c � d = max(a, b, c, d) + ∆ where the correction term, ∆,

is not as simple an expression for implementation. How-

ever, if the two most significant paths are combined instead

of all four paths, then the state update becomes simpler. As-

sume mx1 and mx2 are the first two maximums among the

four paths, then metric update becomes, mx1 � mx2 =
max(mx1, mx2) + ln(1 + e−|mx1−mx2|). This computa-

tion is similar to radix-2 state updates. This new scheme

is shown in Fig.3 (for a 4-state trellis system) and called

radix4-sum2 since it is based on radix-4 and effectively com-
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bines two paths. There are six possible comparisons for four

values. Logic1 and Logic2 compute the maximum value and

the difference of the first two maximum values based on the

six comparisons, respectively.

The delay of this new scheme would be only moder-

ately larger than the radix 2 system (due to the logic oper-

ation) and since two symbols are decoded within one cycle

the throughput is increased compared to ACSLA. The ef-

fect of combining two paths instead of four paths on BER

performance is discussed in Section 4 and is shown to be

marginal.

3.3. CSA-Extend and Deep Pipelined Update

There is yet another method to increase the throughput. Fig.4

illustrates the data flow for extend and update operations in

the FOBCJR algorithm. Extend is a feed back loop. In other

words, the value of the state register for a particular time

instance depends on the value of the same register in the

previous time instance. This prevents one from pipeling the

extend operation. On the other hand, all states pertaining

to the update operation are performed in parallel and can

be pipelined. Therefore, the extend operation is the critical

path. Reducing this delay and using shorter pipe-stage de-

lays in the update part can increase the overall throughput.

In order to reduce the extend delay, we can make a sim-

plification by ignoring the correction term, ln(1 + e−|a−b|),
when combining two paths. This effectively reduces the ex-
tend operation to a simple ACS operation. We can further

reduce the delay of extend by reordering the ACS operation

to a CSA operation. The update part is a deep pipelined

ACSLA operation. Thus, we can increase throughput by re-

ducing the extend delay and reducing the delay of each pipe

stage in the update part at the expense of adding more pipe

stages. The effect of using a simplified extend operation on

BER is discussed in Section 4 and shown to be marginal.

Reg.
S t-1,t-1 (*,*)

update

extend

Reg.
St-1,t-2 (*,*)

Reg.
S t-1,t-3 (*,*)update Reg.

S t-1,t-4 (*,*)update

BM t(*,*) BMt(*,*) BM t(*,*)

Fig. 4. Block diagram of data flow of FOBCJR

3.4. Comparison of the Schemes

Table 1 presents a comparison of these three methods in

terms of the approximate number of computational units

and storage devices. The values are derived based on a 16

state E2PR4 channel with a sliding window length of 24.

All units are 7-bit wide computing elements. Delay of the

sequential operation through the critical path is also shown

Table 1. Comparison of proposed schemes
Method Add MUX LUT Reg. Delay - ThruPut

7bit Critical Path (norm)

CSALA∗ 4600 1570 1570 1540 2DA + DLUT 1

Rdx4- 8600 1550 1500 770 3DA + DLogic 1.11

Sum2∗ +DLUT + DS

CSA-Deep Pipe∗ 3200 850 820 1000 DA + DMUX 1.66

FB-BCJR 520 130 130 7500 3DA + DLUT 1.07

DA : Delay of a adder, DLUT : Delay of LUT, DS : Delay of a MUX

* FOBCJR

for each method. The normalized throughput (CSALA nor-

malized to 1) is based on the assumption that delay through

an adder is twice the delay through a multiplexer (MUX) or

a LUT.

For comparison purposes, a high-throughput version of

the FB-BCJR is included. This FB-BCJR has two forward

and two backward metric calculation units that run in paral-

lel. The effective throughput with this setting is 3/2 times

the rate of these state updates.

Even though the CSALA and radix-4-sum2 methods im-

prove throughput compared to a ACSLA-based FOBCJR,

they require significantly more computational units com-

pared to other methods. Among the three FOBCJR meth-

ods, CSA-extend-deep pipelined-update requires less hard-

ware and enables higher throughput.

It is evident that FOBCJR base on CSA-extend deep

pipelined-update is computationally intensive compared to

FB-BCJR. On the other hand, FB-BCJR is more storage

intensive and has lower throughput. Moreover, FB-BCJR

needs complex control mechanisms to control the forward,

backward computational units and to combine their results

appropriately.

4. SIMULATION RESULTS

BER performance for the proposed methods, namely radix-

4-sum2 and CSA-extend deep pipelined-update method for

FOBCJR are shown in Fig. 5. The system consists of com-

bining a FOBCJR detector combined with a low-density

parity check (LDPC) decoder for iterative decoding. The

detector targets an E2PR4 channel model with 16 states.

The FOBCJR takes in 7-bit soft inputs and outputs 7-bit ex-

trinsic information. Frame length of 5120 bits with code

rate of 0.8 and window length of 24 are considered. The

BER results are for 20 LDPC iterations, where for every 5

LDPC iterations detector performs one iteration.

With these parameters, maxlogMAP, which is a subop-

timal FB-BCJR algorithm, has about 0.15dB degradation in

performance relative to logMAP at BER 10−4. The two pro-

posed methods to increase throughput for FOBCJR, radix4-

sum2 and CSA-extend-deep pipelined-update, have negligi-

ble difference in BER performance compared to logMAP.
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Fig. 5. BER results for logMAP, MaxlogMAP, Radix4-

Sum2 and CSA-extend deep pipelined-update methods.

5. IMPLEMENTATION ISSUES

Fig 6 illustrates the proposed CSA-extend deep pipelined-

update method for FOBCJR for a system with 2 states. It

is evident that the entire updating part has a very regular

structure. This regularity in the structure makes it possible

to design a single basic block with embedded connections

and replicate it as required by the window length.
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Fig. 6. CSA-extend deep pipelined-update FOBCJR

One of the issues with large numbers of states in the

trellis is that the vertical height of the layout can be consid-

erably large. Moreover, in a typical trellis structure, large

numbers of wires crisscross when connecting the required

states. In general, for a trellis with M states there are M −
1 crisscrosses. Wiring in this manner would require sig-

nificant area. Fig. 7(a) shows trellis connections for a 4

state system. It is possible to reduce the vertical height

and the number of crisscrosses with efforts to connect more

states with horizontal wires by modifying the ordering of

the states. Fig. 7(b) illustrates this ordering for the same

system. State registers laid out according to this manner

would greatly reduce wiring area of the chip when imple-

menting FOBCJR.
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Fig. 7. Reordering of states in the trellis.

6. CONCLUSION

This paper compared three methods to increase the through-

put of forward only BCJR(FOBCJR), which is an optimal

MAP algorithm. We propose a FOBCJR algorithm with

simplified extend part and deep pipelined update part that

can increase throughput with less hardware requirements

compared to other methods. Simulation results show that

simplification on the extend part has negligible effect on

BER performance. We showed how embedded wiring and

replication can be used to implement this algorithm. The

FOBCJR algorithm with simplified extend and deep pipelined

update is currently under design and will be fabricated in a

0.13µm CMOS technology.
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