
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

DESIGN AND MODELING OF

POWER-EFFICIENT COMPUTER

ARCHITECTURES

DAVID BROOKS

A DISSERTATION

PRESENTED T O THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY TH E DEPARTMENT OF

ELECTRICAL ENGINEERING

November 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3021966

Copyright 2001 by
Brooks, David Michael

Ail rights reserved.

__ _A

UMI
UMI Microform 3021966

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright 2001 by DAVID BROOKS.

All rights reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Power dissipation and thermal issues are increasingly significant in modern processors.

As a result, it is crucial that power/performance tradeoffs be made more visible to

chip architects and compiler writers, in addition to circuit designers. Most traditional

power analysis tools achieve high accuracy by calculating power estimates for designs

only after the circuit design, layout, and floorplanning are complete. In addition to

being available only late in the design process, such tools are often quite slow, which

compounds the difficulty of running them for a large space of design possibilities.

This thesis presents a methodology for estimating power dissipation at a much

earlier stage in the design cycle and at a much higher level. VVattch and Power-

Timer are two working examples of the use of this methodology. Both tools provide

a framework for analyzing and optimizing microprocessor power dissipation at the

architecture-level. These tools are 1000X or more faster than existing layout-level

power tools, and yet maintain accuracy within 10% of their estimates as verified us­

ing industry tools on leading-edge designs. These tools can allow architects to explore

and cull the design space early on and opens up the field of power-efficient computing

to a wider range of researchers by providing a power evaluation methodology within

the portable and familiar SimpleScalar framework.

This thesis also considers several applications of architectural-level power modeling

to propose specific architectural-level power and temperature saving optimizations

- value-based clock gating and dynamic thermal management. Value-based clock

gating is a technique which exploits the dynamic bitwidth requirements of typical

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications to save power within arithmetic units and the memory hierarchy. We

have demonstrated that this technique can save roughly 50% of the power in the

integer execution units. With dynamic thermal management, temperature sensors

and throttling techniques are combined to adaptively slow down the CPU for extended

periods of particularly high-power code sequences. This allows the CPU package and

power delivery system to be designed for a much lower maximum power rating, with

minimal performance impact for typical applications.

The techniques presented in this thesis represent some of the first work in the area

of high-performance, low-power processor design at the architectural level. We hope

that this work, and the other research in the area of low-power architectural modeling

and design, will help future generations of processor architectures to meet the many

new challenges in this area.

iv

permission of the copyright owner. Further reproduction prohibited without permission

Acknowledgements

I would like to gratefully acknowledge the guidance of my advisor, Professor Margaret

Martonosi for all of the help during my four years at Princeton. I would also like

to acknowledge the other Computer Engineering and Computer Science faculty at

Princeton. Finally, I am very grateful to the other members of my reading committee:

Professor Doug Clark and Dr. Pradip Bose.

[would like to thank Dr. Vivek Tiwari at Intel Corporation and Dr. Pradip

Bose at IBM for being extremely supportive of my dissertation work at Princeton

and during internships at those companies.

I would like also like to thank my family, especially my parents, Morris and Chris­

tine Brooks, and my sister, Persephone Brooks-Bilson, for their support and encour­

agement over the years. Thanks also go to Pai-hui Iris Hsu for her friendship during

our years in graduate school.

This work has been supported by research funding from the National Science

Foundation, a donation from Intel Corp, and an IBM University Partnership award.

I would also like to thank the National Science Foundation for receiving an NSF

Graduate Fellowship, Princeton University for the Gordon VVu Fellowship.

v

with permission of the copyright owner. Further reproduction prohibited without permission

Contents

Abstract

Acknowledgements v

1 Introduction and Contributions 1

1.1 C ontributions... 2

1.1.1 Architectural-level Power M odeling .. 3

1.1.2 Techniques for Power-Aware D esign.. 4

1.2 Organization .. 4

2 Power Modeling - Wattch 6

2.1 Related W o rk .. 3

2.2 Wattch Power Modeling Methodology... 10

2.2.1 Detailed Power Modeling M ethodology...................................... 11

2.2.2 SimpleScalar In te r fa c e ... 19

2.3 Case Study .. 23

2.3.1 Simulation Model P a ra m e te rs .. 24

2.3.2 A Microarchitectural E xp lo ration .. 26

2.3.3 Power Analysis of Loop U nrolling.. 27

2.3.4 Memoing To Save P o w e r... 32

2.4 Chapter Summary ... 34

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 PowerTimer 36

3.1 PowerTimer. An Energy-Aware Performance Simulation Toolkit . . . 37

3.1.1 Energy Model C o n stru c tio n .. 38

3.1.2 Web-Based Interface and Power-Performance M e tr ic s 10

3.2 Power-Performance Evaluation Exam ples... 41

3.2.1 Base Microarchitecture M o d e l.. 41

3.2.2 Workloads Used in the Study ... 43

3.2.3 Data Cache Size and the Effect of Scaling Techniques 44

3.2.4 Number of Completion Buffers... 45

3.2.5 Ganged S izing... 46

3.3 Chapter Summary ... 47

4 Power Model Validation 49

4.1 Types of Modeling E r r o r .. 50

4.2 Model V a lid a tio n ... 51

4.2.1 Validation I: Model Capacitance vs. Physical Schematics . . . 52

4.2.2 Validation 2: Relative power consumption by structure 53

4.2.3 Validation 3: Max power consumption for three CPUs 56

4.3 Robustness of Relative Accuracy .. 58

4.3.1 Design C r i te r ia ... 58

4.3.2 W attch ... 60

4.3.3 Pow erT im er.. 79

4.4 Chapter Summary .. 86

5 Value Based Clock Gating 88

5.1 M otivation.. 90

5.1.1 Application B itw id th s ... 90

5.1.2 Observing and Optimizing Narrow Bitwidth Operands 91

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

5.1.3 Disadvantages of Static Compiler A n a ly sis 92

5.1.4 Related W o rk .. 94

5.2 Methodology ... 95

5.2.1 S im u la to r.. 96

5.2.2 Benchmark A pplications... 96

5.3 Proposal: Value Based Clock G a t in g ... 98

5.3.1 Clock G a t in g ... 98

5.3.2 Power Results: Overview.. 105

5.3.3 Selecting Gating B oundaries.. 108

5.3.4 Selecting the Number of Clock Gate B oundaries..................... 110

5.3.5 Value-based Clock Gating in Floating Point Benchmarks . . . 112

5.4 Speculative Approaches for Exploiting Narrow-Width Operands . . . 116

5.4.1 Replay Clock Gating for Arithmetic Operations with Varying

Operand S izes.. 117

5.4.2 Summary of Results ... 120

5.5 Value-Based Clock Gating in an Industry C o n te x t................................. 121

5.5.1 IA64 Bitwidth Analysis.. 121

5.5.2 Value Based Clock Gating Im plem entation............................... 123

5.5.3 Pervasive Value Gating: Wordline D is a b le 126

5.6 Chapter Summary ... 128

6 Dynamic Thermal Management 131

6.1 M otivation... 132

6.2 Dynamic Thermal Management: Overview and Strategies..................... 134

6.2.1 Overview and Terminology.. 135

6.2.2 Background and Related Work ... 138

6.3 Methodology ... 139

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.1 Power vs. Tem perature.. 139

6.4 Dynamic Thermal Management: Trigger M echanism s........................ 140

6.4.1 Trigger Mechanisms.. 140

6.4.2 Thermal Trigger and Emergency Settings.................................. 142

6.5 Dynamic Thermal Management: Response M echanism s..................... 144

6.5.1 Response Mechanism Results ... 146

6.5.2 Thermal Trigger and Emergency Settings.................................. 150

6.6 Dynamic Thermal Management: Initiation M echanism s..................... 153

6.6.1 Hardware Support for Initiating Responses............................... 153

6.6.2 Policy and Thermal Window Effects on Voltage/Frequencv Scal­

ing ... 154

6.7 Method for Identifying DTM Responses ... 157

6.8 Chapter Summary .. 159

7 Conclusions 161

7.1 C ontribu tions.. 162

7.2 Future D irections.. 163

7.3 S u m m a ry .. 166

Bibliography 167

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction and Contributions

Power-aware computing has traditionally been the primary focus of designers of

portable and battery-powered computing systems and has in the past largely been

considered a low-level circuit design issue. In the past several years, we have seen two

major shifts in the focus of power-aware computing that have greatly increased the

amount of research interest in this field.

First, the need for power-efficient designs is no longer solely associated with

portable computing systems. Power dissipation has rapidly become a first-order de­

sign constraint in virtually every type of computing system including hand-held de­

vices, set-top entertainment systems, desktop computers, and the most performance-

hungry compute servers. As clock rates and die sizes increase, power dissipation is

predicted to soon become the key limiting factor on the performance of single-chip

microprocessors [41; 89]. Already, current high-end microprocessors are beginning to

reach the limits of conventional air cooling techniques. In addition to battery life

and cooling concerns the difficulties of delivering large and highly-varying amounts

of current onto the chip are also significant.

The second major shift is that researchers in power-aware design have begun to

focus on power and energy savings at higher levels in the design hierarchy including the

logic design [90], microarchitecture [40; 52; 59; 87], software controlled voltage scaling

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction and Contributions 2

[72; 92], and the compiler [32], Specialized circuit techniques have been the main

strategies for low-power design in the past, and these will continue to be important

areas in the future. Unfortunately, these techniques alone are not sufficient; higher-

level strategies for reducing power consumption are increasingly crucial. Architectural

and software techniques—in addition to lower-level circuit techniques—must play a

major role in creating power-efficient computer systems.

1.1 Contributions

These two major shifts have greatly increased the amount of research interest and the

potential for reducing power and energy consumption in computer systems. However,

when we consider the importance of power-aware computing in more complex systems,

as well as power savings techniques at the architectural and software levels, power

modeling becomes a significant challenge. Because of this, my thesis research has had

two major contributions.

• First, we have addressed the problem of architectural-level power modeling by

developing methodologies for estimating power on top of architectural perfor­

mance simulators. This work has led to the development of two tools: Wattch

[21], a publicly available tool based on SimpleScalar [24], and PowerTimer [22],

a tool used within IBM Research.

• Second, my research has utilized these modeling tools to develop techniques for

reducing power in high-performance computing systems. These techniques have

focused on reducing both average power and maximum power.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction and Contributions 3

1.1.1 Architectural-level Power Modeling

Estimating the power dissipation of a computing system generally requires transistor-

level circuit schematics and a detailed circuit simulation environment such as SPICE

[55]. This poses two major problems for modeling power at the architectural level.

First, circuit-level simulation is extremely slow, requiring orders of magnitude more

time per instruction than architectural-level performance simulation. Second, archi­

tectural level studies are generally performed in the planning stages of the design

before the circuit and RTL designs have begun to take shape.

To overcome these problems, intelligent abstractions must be developed. In this

research, we developed analytical power models for common hardware structures that

are present in typical microprocessors. These structures include register files, caches,

content-addressable memories, and interconnect. These power models are param-

eterizable, allowing structures with various sizes and attributes to be instantiated.

Finally, the power models are tightly integrated into a traditional architectural-level

performance simulator. Cycle-level activity and utilization statistics from the per­

formance simulator are combined with the power models of the hardware structures

to provide power estimates. This framework provides accurate power estimates on a

per-cycle basis with approximately a 30% simulation time overhead over performance

simulation alone. I have also developed a similar framework using industrial simula­

tors and power models extracted from a commercial microprocessor at IBM. Finally,

my research has focused on the validation of both of these frameworks and will con­

tinue to do so as improvements are made to the modeling methodology. Establishing

a solid power modeling methodology is critical for allowing architects to rapidly ex­

plore large design spaces and to consider methods to reduce power dissipation in the

planning stage of the design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction and Contributions 4

1.1.2 Techniques for Power-Aware Design

A primary goal of developing accurate and efficient power modeling methodologies

is to assist in the development of techniques for power-efficient design. In this the­

sis, I will describe several techniques including value-based clock gating and dynamic

thermal management. Value-based clock gating seeks to disable the upper portion

of functional units based on dynamic information gathered about the values being

executed. This technique capitalizes on the disparity between the bitwidth require­

ments of address and data calculations. This disparity increases when considering

processors with wide datapaths, and we demonstrated that in 64-bit processors this

technique can reduce the power dissipation of the functional units by over 50%, which

can lead to full chip power savings of roughly 5-10%. I have investigated practical

implementations of this technique as well as extensions into the memory hierarchy.

We have also investigated the benefits of dynamic thermal management. This

is a method to reduce the cost of thermal packaging of microprocessors by reducing

the effective maximum power dissipation of the processors. This technique is based

on the observation that the maximum chip power dissipation is achieved only under

extreme circumstances that do not typically occur in most applications. With the

use of on-chip thermal sensors, the operating system or microarchitecture can use

various techniques to dynamically trade small amounts of performance for reduced

power dissipation when these unusual circumstances occur. We demonstrate that for

many applications the thermal packaging requirements can be reduced substantially

while maintaining performance.

1.2 Organization

Chapter 2 will discuss a methodology for architectural-level power modeling and the

energy models in the context of the Wattch tool. Chapter 3 describes the PowerTimer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction and Contributions 5

tool that uses this methodology in the context of industrial simulators and energy

models. Chapter 4 discusses the model validation of these two tools. This chapter

also seeks to quantify the robustness of the relative accuracy of these models. Chapter

5 discusses value-based clock gating, a technique targeting average power dissipation.

Chapter 6 discusses dynamic thermal management, a technique targeting maximum

power dissipation in high-performance microprocessors. Chapter 7 will summarize

the major contributions of this thesis, discuss areas of future research, and offers

conclusions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Power Modeling - Wattch

Research in the area of high-performance, power-efficient computer architectures is

still in the preliminary stages. A major obstacle for such research has been the lack

of infrastructure that analyzes and quantifies the power ramifications of different

architectural choices. Creating such infrastructure requires balancing the need for

low-level detail and accuracy against the need for higher-level abstractions offering

simulator speed and portability.

This chapter will present Wattch, a framework for analyzing and optimizing mi­

croprocessor power dissipation at the architectural-level. Wattch’s power estimates

are based on a suite of parameterizable power models for different hardware struc­

tures and on per-cycle resource usage counts generated through cycle-level simula­

tion. In Chapter 3, I will also discuss PowerTimer, a tool that uses a a similar core

methodology, although its energy models are derived from circuits used in an existing

commercial, high-performance microprocessor design.

Wattch is 1000X or more faster than existing layout-level power tools, and yet

maintains accuracy within 10% of their estimates as verified using industry tools on

leading-edge designs. We have performed a validation study on Wattch and Power­

Timer. This analysis is presented in Chapter 4 where we present several validations

of Wattch’s accuracy and discuss the robustness of these simulators to error.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 7

Wattch is intended to be a complement to existing lower-level tools; it allows

architects to explore and cull the design space early on, using faster, higher-level

tools. It also opens up the field of power-efficient computing to a wider range of

researchers by providing a power evaluation methodology within the portable and

familiar SimpleScalar framework.

Binary Binary I B inar

* <~on ~ Common ConfigConfig 1 Config 2

W attch W attch

Binary 1 Binary 2

Common Config

W attch W attch

Watts-1

Scenario A:

Walts-2
T

W atts-1

Scenario B:
Watts-2

Microarchitectural tradeoffs Compiler Optimizations

Wattch

Config I

W attch

Binary

Array
Structure?

Custom
Structure?

Use Current
Models

Additional Hardware?

Estimate Power
of Structure

Watts-2Watts-I

Scenario C:
Hardware Optimisations

Figure 2.1: Three scenarios for using architectural-level power analysis.

Figure 2.1 shows three possible usage flows for Wattch. Scenario A applies to

cases where the user is interested in comparing several design configurations that

are achievable simply by varying parameters for hardware structures that we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 8

modeled. Scenario B is for software or compiler development, where a single hardware

configuration is used and several programs are simulated and compared. The third

usage scenario highlights Wattch’s modularity. Additional hardware modules can be

added to the simulator. In some cases, these hardware models follow the template

of a hardware structure we already handle. For these cases (i.e., array structures)

the user can simply add a new instantiation of the model into the simulator. For

other types of new hardware, the model will not fit any already developed, but it is

relatively easy to plug new models into the Wattch framework. In Section 2.3, we

demonstrate case studies in which the power simulator can be used to perform these

three types of power analysis.

2.1 Related Work

Related research falls into two categories. First, we touch on some relevant work on

architectural-level techniques for reducing power consumption, and second, we discuss

related strategies for estimating power consumption at the architectural level.

Prior work in architectural-level techniques for power reduction has mainly focused

on caches [7; 50; 52; 87]. This focus can be attributed to two factors. First, embedded

microprocessors, historically the main focus of low-power design, frequently devote a

large portion of their power budget to caches, in some cases up to 40% [62]. Second,

since caches are regular structures, they are somewhat easier to model than other

units, and thus, it can be easier to quantify power savings in caches.

Some work on architectural-level power reduction has addressed other areas of the

processor. For example, Manne et al. showed how branch prediction confidence esti­

mators can be used to control branch speculation in order to reduce power consump­

tion [59]. This work presents results in terms of the amount of needless speculative

work saved per pipeline stage, as an indicator of power savings. Other prior work has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 9

discussed the power benefits of value-based clock gating in integer ALUs [17] which

will be discussed in Chapter 4. In both of these prior papers, a simple measure of

the proposed strategy’s power effectiveness can be offered by quantifying some type

of work that is “saved” . In one case, for example, this is the number of fruitless spec­

ulative cycles that were saved; in the other case, it is the number of result bits that

need not be computed. While such work-saved measures are accurate and very use­

ful for individual techniques, apples-to-apples comparisons of different power-saving

techniques require a single common power metric. This is our motivation for creating

an architectural-level power simulator.

There has also been related work in architectural-level power estimation tools

developed about the same time as Wattch and PowerTimer. Published at ISCA in

2000 simultaneously with Wattch, SimplePower [94] is a tool in which capacitance

data was generated from switch-level simulation of the functional unit designs; thus,

the models are not easily parameterizable. This simulator is primarily focused on

single-issue embedded microprocessors, and does not model out-of-order hardware,

so it is difficult for us to compare the speed or accuracy of our approach with this

related work.

Cai et al. in 1999 and 2000 have proposed two models for architectural power-

estimation based on SimpleScalar. First, the Cai-Lim model [27], proposes power-

density based estimates which are combined with activity factors observed within

SimpleScalar. The second model, Tempest [33], introduces mixed-mode simulation

which can either use power-density based estimates or analytical estimates.

Zyuban et al. in 2000 have also proposed a SimpleScalar based model which uses

analytical estimates to and explore multi-clustered architectures for power-performance

efficiency [99; 101].

Numerous low-power research studies, as well as next-generation power/performance

modeling efforts including the PowerAnalyzer project at the University of Michigan

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 10

and the University of Colorado and the Liberty/MESCAL project at Princeton have

used portions of the above simulators in their code base.

Lower-level power tools such as PowerMill [88] and QuickPower [61] operate on

the circuit and Verilog level. While providing excellent accuracy, these types of tools

are not especially useful for making architectural decisions. First, architects typically

make decisions in the planning phase before the design has begun, but both of these

tools require complete HDL or circuit designs. Second, the simulation runtime cost

for these tools is unacceptably high for architecture studies, in which the tradeoffs

between many hardware configurations must be considered. The point of our work is

not to compete with these lower-level tools, but rather to expose the basics of power

modeling at a higher-level to architects and compiler writers. In a manner analogous

to the development of tools for cycle-level architectural performance simulation, tools

for architectural-level power simulation will help open the power problem to a wider

audience.

Section 2.2 provides a detailed description of our power modeling methodology.

An in-depth description of our validation strategy is described in Chapter 4. Section

2.3 provides three case studies detailing how Wattch can be used to perform microar-

chitectural tradeoff studies for low-power designs, compiler tradeoffs for power, and

hardware optimizations for low-power. In Section 2.4 we discuss future possibilities

for research in the area of power-efficient architectures and provide conclusions.

2.2 Wattch Power Modeling Methodology

The foundations for our power modeling infrastructure are parameterized power mod­

els of common structures present in modern superscalar microprocessors. These power

models can be integrated into a range of architectural simulators to provide power

estimates. In this work we have integrated these power models into the SimpleScalar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 11

Figure 2.2: Overall Structure of Wattch.

architectural simulator [24].

Figure 2.2 illustrates the overall structure of Wattch and the interface between the

performance simulator and the power models. In the following section we describe the

power models in detail. We have performed both low-level and high-level validations

of these models; we present these validation results in Section 4.2.

2.2.1 Detailed Power Modeling Methodology

The main processor units that we model fall into four categories:

• Array Structures: Data and instruction caches, cache tag arrays, all register

files, register alias table, branch predictors, and large portions of the instruction

window and load/store queue.

• Fully Associative Content-Addressable Memories: Instruction window/reorder

buffer wakeup logic, load/store order checks, and TLBs, for example.

• Combinational Logic and Wires: Functional Units, instruction window selection

logic, dependency check logic, and result buses.

• Clocking: Clock buffers, clock wires, and capacitive loads.

In CMOS microprocessors, dynamic power consumption (Pd) is the main source of

power consumption, and is defined as: P<j as CVdda/ . Here, C is the load capacitance,

Vdd is the supply voltage, and / is the clock frequency. The activity factor, a, is a

fraction between 0 and 1 indicating how often clock ticks lead to switching activity

on average. Our model estimates C based on the circuit and the transistor sizings as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 12

described below. Vdd and / depend on the assumed process technology. In this work,

we use the .35um process technology parameters from [69].

The activity factor is related to the benchmark programs being executed. For

circuits that pre-charge and discharge on every cycle (i.e., double-ended array bitlines)

an a of 1 is used. The activity factors for certain critical subcircuits (i.e., single-ended

array bitlines) are measured from the benchmark programs using the architectural

simulator. The vast majority of the nodes that have a large contribution to the

power dissipation fall under one of these two categories. For subcircuits in which we

are unable to measure activity factors with the simulator (such as the internal nodes

of the decoder) we assume a base activity factor of .5 (random switching activity).

Finally, our higher-level power modeling selectively clock-gates unneeded units on

each clock cycle, effectively lowering the activity factor.

The power consumption of the units modeled depends very much on the particular

implementation, particularly on the internal capacitances for the circuits that make

up the processor. VVe model these capacitances using assumptions that are similar

to those made by Wilton and Jouppi [96] and Palacharla, Jouppi, and Smith [69] in

which the authors performed delay analysis on many of the units listed above. In

both of the above works, the authors reduced each of the above units into stages and

formed RC circuits for each stage. This allowed them to estimate the delay for each

stage, and by summing these, the delay for the entire unit.

For our power analysis we perform similar steps, but with two key differences.

First, we are only interested in the capacitance of each stage, rather than both R

and C. Second, in our power analysis the power consumption of all paths must be

analyzed and summed together. In contrast, when performing delay analysis, only the

expected critical path is of interest. Table 2.1 summarizes our capacitance formulas,

and the descriptions below elaborate on our approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 13

Array Structures Our array structure power model is parameterized based on

the number of rows (entries), columns (width of each entry), and the number of

read/write ports. These parameters affect the size and number of decoders, the

number of wordlines, and the number of bitlines. In addition, we use these parameters

to estimate the length of the pre-decode wires as well as the lengths of the array’s

wordlines and bitlines.

For the array structures we model the power consumption on the following stages:

decoder, wordline drive, bitline discharge, and output drive (or sense amplifier). Here

we only discuss in detail the wordline drive and bitline discharge. These two com­

ponents form the bulk of the power consumption in the array structures. Figure 2.3

shows a schematic of the wordlines and bitlines in the array structure.

Node Capacitance Equation
Regfile Wordline
Capacitance =

Cdiff(lVordLine Driver)
+ Cgate(C ell Access) * NumBitlines
+ Cmetai * WordLineLength

Regfile Bitline
Capacitance =

Cdifj (PreCharge)
+ Cdif/{CellAccess) * NumW dlines
+ Cmetai * BLLength

CAM Tagline
Capacitance =

Cgate(CompareEn) * NumberTags
+ Cdiff{CompareDriver)
-F Cmetai * T LLength

CAM Matchline
Capacitance =

2 * Cdiff{CompareEn) * TagSize
+ Cdiff(MatchPreCharge)
+ Cdiff{MatchOR)
+ Cmetai* M L Length

ResultBus
Capacitance =

.5 * Cmetai * N uttiALU * ALU Height)
+ Cmetai * [RegfileHeight)

Table 2.1: Capacitance equations of critical nodes.

Modeling the power consumption of the wordlines and bitlines requires estimating

the total capacitance on both of these lines. The capacitance of the wordlines include

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 14

piechaijerHI

Wordline Driver
Bit

from Decoder

Bit’

Cell Access
Tramisiojs

Cell

Number of
Billines

Cell

*

«
Number of
Wonllines

Cell M

lo sense amps

I T U Cell

to sense amps

Figure 2.3: Schematic of wordlines and bitlines in array structure.

three main components. These three components are the diffusion capacitance of the

wordline driver, the gate capacitance of the cell access transistor times the number

of bitlines, and the capacitance of the wordline’s metal wire.

The bitline capacitance is computed similarly. The total capacitance is equal

to the diffusion capacitance of the pre-charge transistor, the diffusion capacitance

of the cell access transistor multiplied by the number of word lines, and the metal

capacitance of the bitline. The models that we have created provide the option to use

single-ended or double-ended bitlines. In this work we assume that register file array

structures use single-ended bitlines and that cache array structures use double-ended

bitlines. Equations for the wordline and bitline capacitance are shown in Table 2.1.

Multiple ports on the array structure will increase the power consumption in

three ways. First, there will be more capacitance on the wordlines because each

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 15

additional port requires an additional transistor connection. Second, each addi­

tional port requires up to two additional bitlines (bit and bit'), each of which must

precharge/evaluate on every cycle. Finally, each core cell becomes larger which leads

to longer word and bitlines, incurring additional wire capacitance.

Transistor sizing plays an important role in the amount of capacitance within the

various structures. We use the transistor sizings of [69; 96] wherever sizes are noted.

Generally, transistors in array structures are kept relatively small to reduce the area.

In our model, certain critical transistors are automatically sized based on the model

parameters to achieve reasonable delays. For example, the wordline driver transistor

is critical for driving the wordline high in a short amount of time. The width of this

transistor is scaled based on the amount of capacitance on the wordlines. Because of

the length of the word and bitlines, the internal wiring capacitance of these structures

is significant.

Our analysis is similar to Wilton and Jouppi’s study of cache array structures [96].

That work analyzes the access and cycle times for on-chip caches. We modify the

analysis to take into account multi-ported array structures such as the register alias

table, register file, etc. In addition, Kamble and Ghose developed power models for

cache arrays to study power optimizations within caches [50] and Zyuban and Kogge

studied low-power circuit techniques for register file structures [100].

The physical implementation of some array structures may be very different from

the logical structure. For example, caches may be banked in order to provide rea­

sonable delays. In this work we estimate the physical implementations for cache

structures using the help of the Cacti tool [96]. Cacti is a tool developed to deter­

mine delay-optimal cache hardware configurations given cache parameters such as

size, block size, and associativity. We perform similar analysis on branch prediction

structures to make them as square as possible in the physical implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 16

CAM Structures Our analysis of the CAM structures is very similar to that for

array structures. However, in the CAM structure we model taglines and matchlines

instead of bitlines and wordlines. Equations for the CAM tagline and matchline

capacitance are shown in Table 2.1. Again we use a parameterized model which can

be extended to the various CAM structures in the processor. We take into account

the number of rows (number of tags), columns (number of bits per tag to match),

and ports on the CAM. The analysis is similar to that for the array structures and

follows the methodology taken in [69].

T»|VP Tqfl [)«l» Ram Dil* T « |l ' r* ,W '
_ CtIL

prectuff*

tl

2l

Wl-down
1 S i a t k

OR » ReaJy

Figure 2.4: Core cell of wakeup logic modeled as a CAM.

As an example, Figure 2.4 depicts the core cell of the instruction wakeup logic

which we model in our CPU as a form of the CAM structure. As described above, the

key sizing parameters in this CAM are: (i) the issue/commit width of the machine

(number of match or tag lines in each core cell, depicted by the parameter W in the

figure), (ii) the instruction window size (which impacts the CAM’s overall height)

and (iii) the physical register tag size which equals logarithm base 2 of instruction

window size (which impacts the CAM’s width). Vertically, each core cell is replicated

InstructionWindowSize times. Horizontally, the number of cells will equal the number

of bits in the physical register tag; they share a common wide-OR for the final match

which signals that the instruction is ready to issue. We also model the wordlines

which are used to write new tag values into the CAM structure; for simplicity, these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 17

lines are omitted from the figure.

Complex Logic Blocks Two of the larger complex logic blocks that we consider

are the instruction selection logic (in the instruction window) and the dependency

check logic (in the register renaming unit). We model circuit structures based on the

selection logic described in [69] and the dependency check logic in [12].

We model the power consumption of result buses by estimating the length of the

result buses using the same assumptions about functional unit height made in [70].

These lengths are multiplied by the metal capacitance per unit length. This equation

is shown in Table 2.1.

Modeling the power consumption of the functional units (ALUs) at this high level

would be difficult. Previous work has investigated the power consumption of various

functional units [13; 98]. We scale the power numbers from these combinational

structures for process and frequency in order to estimate the power consumption of

the functional units.

Clocking The clocking network on high performance microprocessors can be the

most significant source of power consumption. We consider three sources of clock

power consumption:

• Global Clock Metal Lines: Long metal lines route the clock throughout the

processor. We model a modified H-tree network in which the global clock signal

is routed to all portions of the chip using equivalent length metal wires and

buffers in order to reduce clock skew. This is similar to that used in the Alpha

21264 [36].

• Global Clock Buffers: Very large transistors are used to drive the clock through­

out the processor in a timely manner. We estimate the size and number of these

transistors from [15; 36] which describes the methodology used in the Alpha

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 18

21164 and 21264 for designing the global clock buffers.

• Clock Loading: We consider both explicit and implicit clock loading. Explicit

clock loads are the values of the gate capacitances of pre-charge transistors

and other nodes that are directly connected to the clock within the units that

we model. Implicit clock loads include the load on the clock network due to

pipeline registers. Here we use the number of pipeline stages in the machine

and estimate the number of registers required per pipestage.

The models described above were implemented as a C program using the cacti

tool [96] as a starting point. These models use SimpleScalar’s hardware configuration

parameters as inputs to compute the power consumption values for the various units

in the processor. A summary of major hardware structures and the type of model

used for each is given in Table 2.2.

Hardware Structure Model Type
Instruction Cache
Wakeup Logic
Issue Selection Logic
Instruction window
Branch Predictor
Register File
Translation Lookaside Buffer
Load/Store Queue
Data Cache
Integer Functional Units
FP Functional Units
Global Clock

Cache Arrav (2x bitlines)
CAM
Complex combinational
Array/CAM
Cache Array (2x bitlines)
Array (lx bitlines)
Array/CAM
Array/CAM
Cache Array (2x bitlines)
Complex combinational
Complex combinational
Clock

Table 2.2: Common CPU hardware structures and the model type used by Wattch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 19

2.2.2 SimpleScalar Interface

The power models are interfaced with SimpleScalar, which keeps track of which units

are accessed per cycle and records the total energy consumed for an application. We

use a modified version of SimpleScalar’s sim-outorder to collect results.

SimpleScalar provides a simulation environment for modern out-of-order proces­

sors with 5-stage pipelines: fetch, decode, issue, writeback, and commit. Speculative

execution is also supported. The simulated processor contains a unified active instruc­

tion list, issue queue, and rename register file in one unit called the reservation update

unit (RUU) [84]. Separate banks of 32 integer and floating point registers make up

the architected register file and are only written on commit. We have extended Sim­

pleScalar to provide for a variable number of additional pipestages between fetch and

issue bringing the number of pipestages more in line with current microprocessors. In

this study, we assume three additional pipestages between fetch and issue, and seven

cycles of mispredict penalty.

One Cycle: Power/Performance Simulation

Fetch Dispatch Issue/Execute Writeback/Commit

Performance ♦CadieHit?
.Bpred
Lookup?

♦Inst Window
Fun?

.Oapandanaas
Satbtiad?
.Rasaurcas?

.Commit Bandwidth?

Power
(Units
Accessed
Counters)

♦l-cacha
.Bprad

♦Ranama TaMa
.mn-WMow
.Rag. File

.Inal. Window

.RagFila

.ALU

.O-Cacfta
♦Load'S! Q

.Raault Bus

.Rag. Fila

.Bptad

Compute Power
Estimate

Power Models

Figure 2.5: One Cycle in Wattch.

Our power-oriented modifications track which units are accessed on each cycle

and how. For example, if a particular cycle involves reading the instruction cache,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 20

selecting some ready instructions from the RUU, reading on two ports of the register

file, and performing two integer additions, then counters in the simulator will record

these events and a power estimate for each of these structures will be recorded on each

cycle of the simulation. This is illustrated in Figure 2.5. Some of the power models

vary the estimated power based on the number of ports used, as described in Section

2.2.2. As with most simulation frameworks, we hope that broader distribution of the

framework will lead users to create an even richer variety of power modeling modules

over time.

Section 2.3.1 describes further details of the baseline hardware parameters selected

and the benchmarks we use.

Conditional Clocking Styles

One key issue that arises in estimating power concerns how to scale power consump­

tion for multi-ported hardware units. Current CPU designs increasingly use condi­

tional clocking to disable all or part of a hardware unit to reduce power consumption

when it is not needed. In this work we consider three different options for clock gating

to disable unused resources in multi-ported hardware. (More options can clearly be

developed later; we give these as initial examples.)

The first and simplest clock gating style assumes the full modeled power will

be consumed if any accesses occur in a given cycle, and zero power consumption

otherwise. For example, a multi-ported register file would be modeled as drawing full

power even if only one port is used. This assumption is realistic for many current

CPUs that choose not to use aggressive conditional clocking. The second possibility

assumes that if only a portion of a unit’s ports are accessed, the power is scaled

linearly. For example, if two ports of a 4-port register file are used in a given cycle,

the power estimate returned will be one-half of the power compared to if four ports

are used. Wattch tracks how many ports are used on each hardware structure per

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 21

cycle and scales power numbers accordingly. In practice, it may be impossible to

totally shut off the power to a unit or port when it is not needed, so a small fraction

of its total power may still be active. With this in mind, we also present a third

option in which power is scaled linearly with port or unit usage, except that unused

units dissipate 10% of their maximum power, rather than drawing zero power. This

number was chosen as it represents a typical turnoff figure for industrial clock-gated

circuits.

50 i ■ All or Nothing Clk Gating
□ Linear Clk Gating w / 10%
□ Linear Clk Gating

30 i

Figure 2.6: Power consumption of benchmarks with conditional clocking on multi­
ported hardware. The first bar assumes simple clock gating where a unit is fully on
if any of its ports are accessed on that cycle, or fully off otherwise. The second bar
assumes clock gating where the power scales linearly with port usage, and disabled
ports consume 10% of their maximum power. The third bar assumes ideal clock
gating where the power scales linearly with port usage as in the second bar, but
disabled units are entirely shut off.

Figure 2.6 shows the power dissipation for the eight SPECint95 and four of the

SPECfp95 benchmarks for the three styles of conditional clocking. The maximum

power for this configuration (similar to the 21264) was 58.4W. Future processors

are likely to move towards the more aggressive style to reduce the average power

dissipation. We expect that there will be more variability in the power consumption of

the benchmarks when more clock gating is used. This assumption is supported by this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 22

figure: for the simple clock gating style, the maximum variation of the benchmarks

from the average is 36%. The variations for the more advanced clock gating techniques

are 54% and 66%. The amount of clock gating in current processors falls somewhere

between the styles that we consider.

Simulation Speed

Wattch is intended to run with overheads only moderately larger than other Sim­

pleScalar simulators. It first computes the base power dissipation for each unit at

program startup, which is a one-time cost. These base power costs are then scaled

with per-unit access counts. For arithmetic units, we only charge power for the units

that would be used each cycle; a cycle that performs two integer additions will not

be charged for the multiply unit. In addition to the access counts, the simulator also

scales power estimates for multi-ported hardware based on the style of clock gating

chosen from the options given in Section 2.2.2.

Our simulation speed measurements are for our modified version of SimpleScalar/AXP’s

sim-outorder running on a Pentium-II 450MHz PC using RedHat Linux version 6.0.

The simulation speed of sim-outorder without power modeling was approximately

105K instructions per second. With our current methodology which updates the

power statistics every cycle according to access counts, we see roughly a 30% over­

head on average compared to performance simulation alone. That is, our simulation

speed drops to roughly 80K instructions per second. Given the ability to gauge power

at a fairly high level, we feel this overhead is quite tolerable. It can be further re­

duced, however, by updating power statistics every few cycles. This would require

loosening the accuracy of the port count statistics and the statistics on the usage of

different functional units.

As a comparison to lower level tools, running PowerMill on a 64-bit adder for 100

test vectors takes approximately one hour. In the same amount of time, Wattch can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 23

simulate a full CPU running roughly 280M SimpleScalar instructions and generate

both power and performance estimates.

2.3 Case Study

In this section, we provide three case studies that demonstrate how Wattch can be

used to perform architectural or compiler research. When performing power studies,

a variety of metrics are important depending on the goals. Our simulator provides

results for several of these metrics:

• Power: The average and maximum per-cycle power consumption of the proces­

sor are important because power translates directly into heat. With on-chip

thermal sensors, techniques such as instruction cache throttling can be used to

reduce the number of cycles in which the power consumption is significantly

above the average [78]. Large cycle-by-cycle swings in the power dissipation

(i.e., power glitches) are also important because they cause reliability problems.

Our cycle-level power simulator is capable of analyzing these types of problems.

• Performance: The performance ramifications of an architectural proposal, whether

positive or negative, are important for any architecture study. With Wattch,

performance is measured in terms of number of cycles for program execution.

• Energy: The overall energy consumption of a program is equal to power dissipa­

tion multiplied by the execution time. Overall energy consumption is important

for portable and embedded processors, where battery life is a key concern.

• Energy-Delay Product: The energy-delay product, proposed by Gonzalez and

Horowitz [40], multiplies energy consumption and overall delay into a single

metric. This produces a metric that does not give unwarranted preference to

solutions that are either (1) very low-energy but very slow, or (2) very fast but

very high power.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 24

In the following subsections we present three case studies which demonstrate how

the simulator infrastructure can be used for architecture and compiler research stud­

ies. The case studies illustrate the three possibilities shown in Figure 2.1. The main

point of these case studies is to demonstrate the methodology for rapid exploration

of these ideas, rather than to give details on each of the examples themselves. Be­

fore getting into the case studies, we explain our baseline hardware configuration and

benchmarks.

2.3.1 Simulation Model Parameters

Unless stated otherwise, our results in this chapter, as well as for the rest of this

thesis, model a processor with the configuration parameters shown in Table 2.3. These

baseline configuration parameters roughly match those of the Alpha 21264 processor.

The main difference is that the 21264 has a separate active list, issue queue, and

rename register file while the SimpleScalar simulator uses a unified instruction window

called an RUU. For technology parameters, we use the process parameters for a .35um

process at 600MHz. In this section, we use Section 2.2.2’s aggressive clock gating style

(linear scaling with number of active ports) for all results.

Benchmark Applications

We chose to evaluate our ideas on programs from the SPECint95 and SPECfp95

benchmark suites. SPEG95 programs are representative of a wide mix of current

integer and floating-point codes. We have compiled the benchmarks for the Alpha

instruction set using the Compaq Alpha cc compiler with the following optimization

options as specified by the SPEC Makefile: -migrate -stdl -05 -ifo -non_shared.

For each program, we simulate 200M instructions. We select a 200M instruction

window not at the beginning of the program by using warmup periods as discussed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch

Parameter Value
Processor Core

RUU size
LSQ size
Fetch Queue Size
Fetch width
Decode width
Issue width
Commit width
Functional Units

80 instructions
40 instructions
8 instructions
4 instructions/cycle
4 instructions/cycle
4 instructions/cycle (out-of-order)
4 instructions/cycle (in-order)
4 Integer ALUs
1 integer multiply/divide
1 FP add, 1 FP multiply
1 FP divide/sqrt

Branch Prediction
Branch Predictor

BTB
Return-address stack
Mispredict penalty

Combined, Bimodal 4K table
2-Level IK table, lObit history
4K chooser
1024-entry, 2-way
32-entry
7 cycles

Memory Hierarchy
LI data-cache

LI instruction-cache

L2

Memory
TLBs

64K, 2-way (LRU)
32B blocks, 1 cycle latency
64K, 2-way (LRU)
32B blocks, 1 cycle latency
Unified, 2M, 4-way (LRU)
32B blocks, 12-cycle latency
100 cycles
128 entry, fully associative
30-cycle miss latency

Table 2.3: Baseline Configuration of Simulated Processor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 26

in [81].

2.3.2 A Microarchitectural Exploration

One important application of Wattch is for microarchitectural tradeoff studies that

account for both performance and power. For example, users may be interested

in evaluating sizing tradeoffs between different hardware structures. Clearly, the

architectural decisions made when power is considered may differ from those based

solely on performance. One possible study which we consider in this section is to

evaluate size tradeoffs between the RUU and data cache. This example demonstrates

Scenario A from Figure 2.1. The baseline processor configuration is that from Table

2.3 and our simulations vary the sizes of the RUU and D-cache. For all simulations,

the Load/Store Queue is set to half the size of the RUU. We have collected these

results for the SPECint95 and several of the SPECfp95 benchmarks. As we will

discuss below, the results typically fall into two main categories of behavior, and we

present results for one representative benchmark from each category: qcc and turb3d.

Figures 2.7, 2.8 and 2.9 show the results for the gcc benchmark. The three graphs

show performance (in instructions per cycle), average power dissipation, and energy-

delay product for the benchmark. Similarly, Figures 2.10, 2.11 and 2.12 show the

same results for the tnrb3d benchmark.

The IPC graphs show that gcc gets significant performance benefit from increasing

the data cache size. It only begins to level off at roughly 64KB. In contrast, turb3d

gets relatively little performance benefit from increasing the data cache size, but is

highly sensitive to increases in the RUU size.

Although the performance contours are fairly different for these two benchmarks,

the power contours shown in Figures 2.8 and 2.11 are quite similar. Both show steady

increases in average power as the size of either unit is increased.

Despite the similarity in the average power graph, the two benchmarks do have

permission of the copyright owner. Further reproduction prohibited without permission

Chapter 2: Power Modeling - Wattch 27

strikingly different energy characteristics, as shown in Figures 2.9 and 2.12. The

energy-delay product combines performance and power consumption into a single

metric in which lower values are considered better both from a power and performance

standpoint. The energy-delay product curve for gcc reaches its optimal point for

moderate (64KB) caches and small RUUs. This indicates that although large caches

continue to offer gcc small performance improvements, their contribution to increased

power begins to outweigh the performance increase. RUU size offers little benefit to

gcc from either a performance or energy-delay standpoint.

For turb3d, energy-delay increases monotonically with cache size, reflecting the fact

that larger caches draw more power and yet offer this benchmark little performance

improvement in return. Moderate-sized RUU’s offer the optimal energy-delay for

turb3d, but the valley in the graph is not as pronounced as for gcc.

Overall, the point of this case study is to demonstrate how the power simulator

and the resulting graphs shown can help explore tradeoff points taking into account

both power and performance related metrics.

2.3.3 Power Analysis of Loop Unrolling

This section gives an example of how a high-level power simulation can be of use

to compiler writers as well. We consider a simple case study which examines the

effects of loop unrolling on processor power dissipation. Loop unrolling is a well-

known compiler technique that extends the size of loop bodies by replicating the

body n times, where n is the unrolling factor. The loop exit condition is adjusted

accordingly. In this section, we consider a simple matrix multiply benchmark with

200x200 entry matrices. VVe have used the Compaq Alpha cc compiler to unroll the

main loops in the benchmark, and we consider several unrolling factors.

Figures 2.13 shows the results for the execution time and power/energy results

for loop unrolling. As one would hope, the execution time and the number of total

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 28

rau l28
ruu96

W " niu64
f ruu48
mu32128KB

Figure 2.7: IPC for gcc when varying RUU and Data Cache size.

ruul28

Figure 2.8: Power for gcc when varying RUU and Data Cache size.

Figure 2.9: Energy-Delay Product for gcc when varying RUU and Data Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 29

M6KB ,,|KB

Figure 2.10: IPC for turb3d when varying RUU and Data Cache size.

Figure 2.11: Power for turb3d when varying RUU and Data Cache size

Figure 2.12: Energy-Delay Product for turb3d varying RUU and Data Cache size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch

0.9

0.8

9 0.7

0.6ec
f t 0.5

0.4

0.3

852 4
Unroll Factor

Figure 2.13: The effects of loop unrolling
on performance and power. Note that the
branch prediction direction accuracy de­
creases from 99.5% for no unrolling to 95.1%
when unrolling 8 times.
1.1 • — —

S 0.5

0.3 X

1 2 4 5 8

Unroll Factor

Figure 2.14: Detailed Breakdown of Power
Dissipation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 31

instructions committed decreases. This is because loop unrolling reduces loop over­

head and address calculation instructions. The power results are more complicated,

however, which makes the tradeoffs interesting in a power-aware compiler.

Figure 2.14 shows a breakdown of the power dissipation of individual processor

units normalized to the case with no unrolling. There are two important side-effects

of loop unrolling. First, loop unrolling leads to decreased branch predictor accuracy,

because the branch predictor has fewer branch accesses to “warm-up” the predictors

and because mispredicting the final fall-through branch represents a larger fraction

of total predictions.

Another side-effect of loop unrolling is that removing branches leads to a more

efficient front-end. The fetch unit is able to fetch large basic blocks without being

interrupted by taken branches. This, in turn, provides more work for the renaming

unit and fills up the RUU faster. In fact, with this example the RUU becomes full

for an average of 85% of the execution cycles after we move from an unrolling factor

of 2 to 4. The fetch queue, which connects the fetch unit to the renaming hardware

is also affected, and is full for an average of 73% of the cycles at an unrolling factor

of 4.

Thus, the average fetch unit power dissipation decreases for two reasons. First,

because the branch prediction accuracy has decreased, there are more misprediction

stall cycles in which no instructions are fetched. The second reason is that at larger

unrolling factors, the fetch unit is stalled during cycles when the instruction queue and

RUU are full. The reduced number of branch instructions also significantly reduces

the power dissipation of the branch prediction hardware. (Note that these stall cycles

would increase the total energy required to run the full program, but this graph shows

average power.)

The renaming hardware, on the other hand, shows a small increase in power

dissipation at an unrolling factor of two. This is because the front-end is operating at

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 2: Power Modeling - Wattch 32

full-tilt, sending more instructions to the renamer per cycle. As the fetch unit starts

to experience more stalls with unrolling factors of 4 and beyond, the renamer unit

also begins to remain idle more frequently, leading to lower power dissipation.

While the varied power trends in each unit are somewhat complicated, the over­

all picture is best seen in Figure 2.13. The total instruction count for the program

continues to decrease steadily for larger unrolling factors, even though the execution

time tends to level out after unrolling by four. The combined effect of this is that

energy-delay product continues to decrease slightly for larger unrolling factors, even

though execution time does not. Thus, a power-aware compiler might unroll more ag­

gressively than other compilers. This simple example is intended to highlight the fact

that design choices are slightly different when power metrics are taken into account;

Wattch is intended to help explore these tradeoffs.

2.3.4 Memoing To Save Power

Another important application for the Wattch infrastructure is in evaluating the po­

tential hardware benefits of hardware optimizations. In this section, we consider result

memoing, a technique that has been previously explored for performance benefits [30;

83]. Memoing is the idea of storing the inputs and outputs of long-latency operations

and re-using the output if the same inputs are encountered again. The memo table is

looked up in parallel with the first cycle of computation, and the computation halts

if a hit is encountered. Thus memoing can reduce multi-cycle operations to one-cycle

when there is a hit in the memo table.

We consider the power and performance benefits of this technique. Power con­

sumption in the floating point units is reduced during memo table hits. On the

other hand, the memo tables dissipate additional power. We base our analysis on

[30], which showed that a small 32-entrv, 4-way set associative table is capable of

achieving reasonable hit rates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 33

Azam et al. have investigated a similar technique for saving power within integer

multipliers [6]. Their work did not model the additional power dissipation of reads

and writes to the cache structure (only the tag comparison logic) and concentrated

on integer and multimedia benchmarks. The point of this section is to demonstrate

the methodology for using Wattch to perform such a study.

We have inserted memo tables in parallel with the floating-point and integer mul­

tipliers (4 cycles), the floating point adder (4 cycles), and the floating point-divider

(16-cycles, unpipelined). Citron’s study examined the SPECfp95, Perfect, and a se­

lection of multimedia and DSP applications finding that the multimedia applications

have the lowest local entropy in result values and hence the highest hit rates. Since

Citron’s multimedia benchmarks were not readily available, we have examined a se­

lection of benchmarks from the SPECfp95 suite. As in Citron’s work, we do not enter

“trivial” operations such as multiply/divide by 0/1 into the table, because we assume

that simpler hardware could recognize and capitalize on these opportunities.

The modifications to the power simulator infrastructure for the new hardware

were not complex. The behavior of the memo tables was implemented and memo-

table-lookup and memo-table-write routines were inserted in the simulator pipeline.

Both of these routines also serve as the access counters for the memo tables. The

memo tables were modeled as simple cache array structures using the same power

models that the other arrav structures use.

□ tMTtJ-Dtfey I

i
applu (pppp hydro 2d mgrid turt>3d

Figure 2.15: Performance and Power Effects of Memoing Technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 34

Figure 2.15 shows the performance and power results for the memoing technique.

The benchmarks showed an average speedup of 1.7% and an average power improve­

ment of 5.4%. The larger power benefits of the memoing techniques are most likely

due to the dynamically scheduled out-of-order execution core of the simulated pro­

cessor. In an out-of-order processor, the delay of long-latencv operations can often

be hidden by finding other instructions to execute, thus the performance benefits of

removing long-latency operations are not too large. However, stopping these opera­

tions after one cycle of execution can have a significant impact on power dissipation.

This is most apparent in mgrid, which shows almost no performance benefit, but just

over an 8% power benefit.

2.4 Chapter Summary

This chapter has described Wattch, a simulator framework that can be used to eval­

uate a wide range of architectural and compiler techniques. Wattch has the benefit

of low-level validation against industry circuits, while opening up power modeling to

researchers at abstraction levels above circuits and schematics. In addition, because

of the fully parameterizable power models that have been developed, Wattch is ideally

suited for exploring entirely brand new microarchitectures.

Wattch still has room for improvement and we hope that exposure and distribution

to the architectural community will lead to the development of additional modules.

Additional accuracy validations are important, and we plan to compare the models

against lower-level tools on more designs. Speed-accuracy tradeoffs for signal activity

factors are another area we will consider in the future.

Extensions to the simulator infrastructure and the creation of additional mod­

ules are topics of future research. The simulator infrastructure could be extended

to consider different hardware organization styles. Additional power modules could

permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Power Modeling - Wattch 35

be developed with different circuit-implementation styles targeting different power-

performance targets. Modeling off-chip communication is also an important module

to be developed. Additional work can also focus on more automatic transistor sizing

and the effects of future process technologies, including leakage power dissipation.

We see a wide range of power studies that can be performed with Wattch. First,

many old techniques may take on a new light when power is considered as a metric.

The memoing case study described in Section 2.3.4 is one example of this. Other

interesting techniques to study with power as a metric would be value-prediction

[37] and instruction pre-processing [48]. The effects of the compiler techniques and

operating system control on power dissipation, including the use of power dissipa­

tion as feedback in a profiling compiler, are another possible research area. Finally,

Wattch can be used in power studies which explore techniques that focus on micro-

architectural solutions to lower-level power problems. One example of this is dynamic

thermal management techniques to reduce power dissipation when thermal emergen­

cies occur due to high-power sections of applications. An evaluation of this technique

using Wattch will be discussed in Chapter 6. Another example would be the evalu­

ation and development of solutions for large, short-term, current spikes due to clock

gating, which can cause problems with chip reliability.

Exploring these classes of ideas in the power domain will open up new research

possibilities for architects. The Wattch simulator infrastructure described in this

chapter offers a starting point for such research efforts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

PowerTimer

The Wattch framework presented in Chapter 2 was one of the first tools to link

a traditional architectural performance simulator with energy models. This link is

accomplished by sending both static information describing the simulated inicroarchi-

tecture and dynamic information about the run-time characteristics of applications

to the energy models. This chapter describes the PowerTimer infrastructure [22], an

effort to apply the Wattch methodology to industrial performance simulators with

energy models developed from circuits built for a high-performance commercial mi­

croprocessor.

PowerTimer is an ongoing project within IBM Research to develop a power-

performance modeling toolkit, developed to aid in the evaluation and definition of

future power-efficient, PowerPC™ processors. The power-performance modeling

methodology described in the previous sections of this chapter is adapted for use

within the modeling framework of a real, server-class processor development project.

The key new contributions in this power-performance modeling tool are:

• Energy models that are derived from real, circuit-level power simulation data,

but are then driven by microarchitecture-level parameters of interest. These

higher-level abstractions are suitable for conducting power-performance tradeoff

studies to define the follow-on design points within a given product family.

36

permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 37

PovkerTiiner

power
estimatecircuit/tech

parameters

Energy Models

Figure 3.1: Block Diagram of PowerTimer.

Technology parameters and scaling equations are additional inputs to the model.

• A web-based graphical user interface, which allows one to quickly characterize

the fundamental tradeoffs between performance growth and power-related cost,

based on prior, one-time simulation data collected in a spreadsheet database.

Using this new modeling toolkit, we evaluate a current generation, high-end Pow­

erPC processor design point from the viewpoint of power-performance efficiency. As

part of this evaluation, we examine the sensitivity of such efficiency metrics with re­

spect to individual (and combinations of) microarchitecture-level parameters: cache

size and geometry parameters, queue/buffer sizes, number of ports to various storage

resources, various other bandwidth parameters, etc.

3.1 PowerTimer: An Energy-Aware Performance

Simulation Toolkit

Figure 3.1 shows the high-level block diagram of PowerTimer, our energv-model-

enabled performance simulator. The basic methodology is similar to earlier models

like Wattch [21].

The energy models are derived from circuit-level power simulation data, collected

on a detailed, macro-by-macro basis. These models are controlled by two sets of

parameters: (a) technology/circuit parameters, which allow appropriate scaling from

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 38

one CMOS generation to the next; and (b) microarchitecture-level parameters: vari­

ous queue/buffer sizes, pipe latencies and bandwidth values. These latter parameters

also drive the base performance simulator in the usual manner. The energy models

can be used in two different modes. First, the performance simulator can be used

standalone, to produce detailed CPI and resource utilization statistics. These can

then be processed through the energy models to generate average, unit-wise power

numbers. Second, the energy models can be embedded in the actual simulation code,

so that they are “looked up” as needed on a cycle-by-cycle basis. This mode allows

one to view the cycle-by-cycle energy characteristics in more detail; but the average

statistics at the end of the run would obviously be the same as in the first mode.

3.1.1 Energy Model Construction

In the Wattch simulator [21], and in other similar toolkits [94; 99], analytical ca­

pacitance models were developed for various high-level block-types, such as RAMs,

CAMs and other array structures, latches, buses, caches, and ALUs. While some of

the characterizing parameters are gross length and width values which a logic-level

designer or microarchitect can relate to, others are at a much lower (circuit or physical

design) level. In the PowerTimer work, the goal is to form unit-specific energy models

controlled by parameters familiar to a high-level designer or microarchitect. Thus, for

example, once a characterizing equation has been formed for one of the issue queues,

one is able to play “what-if” games in PowerTimer, by simply varying the queue size

as normally done in microarchitectural performance simulation. The major difference

between PowerTimer and Wattch is in the formation of energy models. PowerTimer’s

energy models are formed from empirical data collected from an existing, commercial

microprocessor. In Wattch, low-level analytical capacitance equations are generated

for major nodes within common hardware structures. Thus Wattch takes a top-down

approach using analytically derived capacitance equations from known structures of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 3: PowerTimer 39

specific modules. PowerTimer is more of a bottom-up approach which uses existing,

low-level circuit macros to generate higher-level energy models for microarchitectural

units.

Powtr Ettknalt

Figure 3.2: PowerTimer Energy Models.

Figure 3.2 depicts the derivation of the energy models in more detail. The energy

models are based on circuit-level power analysis that has been performed on structures

in a current, high performance PowerPC processor. The power analysis has been

performed at the macro level; generally, multiple macros combine to form one micro-

architectural level structure (super-macro). For example, the fixed-point issue queue

(one super-macro) might contain separate macros for storage memory, comparison

logic, and control. Power analysis has been performed on each macro to determine

the macro’s power as a function of the input switching factor. The hold power, or

power when no switching is occurring, is also generated. These two pieces of data

allow us to form simple linear equations for each macro’s power. The energy model for

a super-macro is determined by summing the linear equations for each macro within

that structure. YVe have generated these power models for all microarchitecture-level

structures modeled in our research simulator [64; 65).

In addition to the models that specify the power characteristics for particular

super-macro (such as the fixed-point issue queue), we can derive power models for

more generalized structures; for example, a generalized issue queue model. These

Energy Modtts

Sub-Units (uArctvlevI Structures)

Power=C1'SF-*HoldPower Macrol

Macro2Powa»=C2'SF+HoldPower

MacroN|Powef=Cn*SF+HoHPowar

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 3: PowerTimer 40

generalized models are useful for estimating the power cost of additions to the base­

line microarchitecture. The generalized model is derived by analyzing the power

characteristics of structures within the baseline microarchitecture. For example, the

fixed-point, floating-point, logical-op, and branch-op queues have very similar func­

tionality and power characteristics and the energy analysis for these queue structures

has been used to derive a generalized issue-queue power model based on parameters

such as the number of entries, storage bits, and comparison operations.

Since we are interested in determining power-performance tradeoff analysis for

future microarchitectures within a particular product family, we must determine a

method of scaling the power of microarchitectural structures as the size of these

structures increases. The scaling factor depends on the particular structure; for ex­

ample, the power of a cache array will scale differently than that of an issue queue. In

addition, as resources increase in size, they necessarily cause other structures to be­

come larger. For example, as the number of rename registers increases, the number of

tag bits within each entry of the issue queues increases. Generally, as we increase the

number of entries in a structure, there will be a proportional increase in the power.

For this reason, we use linear scaling as a basis for many of the structures that we

consider. In addition, we have performed detailed analysis on the scaling of queue

and mapper structures. For these structures, we have determined the average power

per storage bit and per comparison operation. As the queues and mappers increase

in size, we compute the number of storage bits and comparisons that occur for the

larger structures. We also use previously published work on power scaling within

cache arrays which we discuss in Section 3.2.3.

3.1.2 Web-Based Interface and Power-Performance Metrics

In order to thoroughly explore the modeled design space, we selected 19 workloads

(8 SPECint95, 10 SPECfp95, and TPC-C) each of which was evaluated for over

permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 41

75 hardware configurations. Analyzing this amount of data is difficult and a GUI

makes the results of our analysis more useful. We developed a web-based back­

end analysis tool which allows the user to select the benchmarks of interest and the

microarchitectural parameter(s) to vary as well as the technology parameters such as

frequency, voltage, and feature size.

The tool also allows the selection of various power-savings features such as the style

of conditional clocking within the microarchitecture. Finally, the tool provides the

choice of five power-performance metrics: Average CPI, average power dissipation,

C P hpow er, (C P I)2*power, and (C P I)3*power. The latter three metrics correspond

to energy, energy-delay product [31; 40], and energy * delay2 [16]. In the remainder

of this section we will present our power-performance results as (CPI)2 * power.

3.2 Power-Performance Evaluation Examples

In this section, we first provide a high-level description of the processor model assumed

in our simulation toolkit. Then, we present some example experimental results with

analysis and discussion. The results were obtained using our current version of Pow­

erTimer, which works with pre-silicon performance models used in defining future

PowerPC structures.

3.2.1 Base Microarchitecture Model

We assume a generic, parameterized, out-of-order superscalar processor model adopted

in a research simulator called Turandot [64; 65]. The overall pipeline structure (as

reported in [64]), is repeated here in Figure 3.3. The modeled microarchitecture is

similar in complexity to a current generation microprocessor (e.g. [34; 63]). As

described in [64], this research simulator was calibrated against a pre-RTL, detailed,

latch-accurate processor model (referred to as R-model in [64]). The R-model is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 42

Branch

Figure 3.3: Processor Organization Modeled by the Turandot Simulator.

custom simulator, written in C + + (with mixed VHDL “interconnect code”). There is

a 1-to-l correspondence of signal names between the R-model and the actual VHDL

(RTL) model. However, the R-model is about two orders of magnitude faster than

the RTL model and is considerably more flexible. Many microarchitecture param­

eters can be varied, albeit within restricted ranges. Turandot, on the other hand

is a classical trace/execution-driven simulator, written in C, which is 1-2 orders of

magnitude faster than R-model. It supports a much greater number and range of

parameter values.

We report power-performance results using the same version of R-model that was

used in [64]. That is, we first used our energy models in conjunction with the R-model:

this ensured accurate measurement of the resource utilization statistics within the ma­

chine. To circumvent the simulator speed limitations, we used a parallel workstation

cluster; also, we post-processed the performance simulation output and fed the av­

erage resource utilization statistics to the energy models to get the average power

numbers. This is faster than the alternative of looking up the energy models on every

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 13

cycle. While it would have been possible to get instantaneous, cycle-by-cycle energy

consumption profiles through such a method, it would not have changed the average

power numbers for entire program runs. Having used the detailed, latch-accurate ref­

erence model for our initial energy characterization, we were able to look at the unit-

and queue-level power numbers in detail in order to understand, test and refine the

various energy models. Currently, we have reverted to using an energy-model-enabled

Turandot model, for fast CPI vs. Power tradeoff studies with full benchmark traces.

Turandot allows us to experiment with a wider range and combination of machine

parameters. In future publications and talks based on PowerTimer, we plan to report

these results in detail.

3.2.2 Workloads Used in the Study

In this section, we report experimental results based on the SPEC95 benchmark

suite and a commercial TPC-C trace. All workload traces are PowerPC-based. The

SPEC95 traces were generated using the tracing facility called Aria within the MET

toolkit [65]. The particular SPEC trace repository used in this study was created by

using the full reference input set. However, sampling was used to reduce the total trace

length to 100 million instructions per benchmark program. A systematic validation

study to compare the sampled traces against the full traces was done, in finalizing

the choice of exact sampling parameters. The TPC-C trace used is a contiguous (i.e.

unsampled) trace collected and validated by the processor performance team at IBM

Austin. It is about 180 million instructions long.

In the following three sections we present examples of the use of the Power­

Timer simulation infrastructure. The results show the average CPI and average

(C P I)3 * power for the traces described above. Each SPEC data point was obtained

by averaging across the benchmark suite. Note, however, that we have excluded apsi

from the SPECfp results due to a problem with these simulation runs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 44

3.2.3 Data Cache Size and the Effect of Scaling Techniques

1.01
SPECfp SPECIM TPC-C I

_ 0.99

2 0.98

0.97

0.96

0.9S
2x 4x 8x 16x1x

Relative Cache Size
(•)

SPECfp-
lin

SPECIp-
nonlin

SPECinl
lin

SPECint
nonhn

TPC-C

TPC-C-
1x 2x 4x 8x 16x nonlin

Relative Cache Size ~'°“
(b)

Figure 3.4: Variation of Performance and Power-Performance with Cache Size.

In this section we evaluate the relationship between performance, power, and LI

data cache size. We vary the cache size by increasing the number of cache lines per

set while leaving the linesize and cache associativity constant. Figure 3.4a and 3.4b

show the results of increasing the cache size from the baseline architecture (points

labeled lx on the x-axes). Figure 3.4a illustrates the relation between the cache size

in the first-level data cache and the relative CPI for the workloads that we studied.

The CPI value for each cache size is computed as a ratio, relative to the base lx

CPI for that workload. Figure 3.4b shows the relation when we consider the metric

(C P I)3 * power. From Figure 3.4a, it is clear that the small CPI benefits (note the

small range on the relative CPI plot) of increasing the data cache are outweighed by

the increases in power dissipation due to larger caches.

In Figure 3.4b, we show the results with two different scaling techniques. The first

technique assumes that power scales linearly with the cache size. As the number of

lines is doubled, the power of the cache is also doubled. The second scaling technique

is based on data from [53] which studied energy optimizations within multi-level cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 3: PowerTimer 45

architectures. In [53], data is presented for cache power dissipation for conventional

caches with sizes ranging from 1KB to 64KB.

In the second scaling technique, which we call “non-lin” in Figure 3.4b, the cache

power is scaled with the data showing power/performance results for many cache

sizes presented in [53]. The increase in cache power by doubling cache size using

this technique is roughly l.46x, as opposed to the 2x with the simple linear scaling

method. Obviously the choice of scaling technique can greatly impact the results. It

is clear, however, that with either scaling choice, conventional performance-focused

cache organizations will not scale in a power-efficient manner. (Note that the curves

shown in Figure 3.4b assume a fixed circuit/technology generation; they are intended

to show the effect of adding more cache to the current design.)

3.2.4 Number of Completion Buffers

1.251.1

1.21.08

s 1.15_ 1.06a.o
4)
| 1.04

SPECtp

SPECinl

TPC-
CC

1.02 1.05

0.98
0.6x 0.8x lx 1.2x 1.4x 0.6x 0.8x lx 1.2x 1.4x
Number ol Completion Butters Number of Completion Buffers

(■) <*>)

Figure 3.5: Variation of Performance and Power-Performance with Number of Com­
pletion Buffers.

In the target microarchitecture, the number of completion buffers determines the

total number of instructions that can be active within the machine. The completion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 46

table is very similar to a re-order buffer in that it tracks instructions as they dispatch,

issue, execute, wait for exceptions, and complete. Figures 3.5a and 3.5b show the

effects of varying the number of completion buffers on performance and the power-

performance metric. From Figure 3.5a, it is evident that little additional performance

is gained by increasing the number of buffers past the current design point (lx). When

considering (C P /)3 * power in Figure 3.5b, we see that power-efficiency is slightly

degraded by increasing the number of entries due to a roughly 3% increase in the

core’s power dissipation.

3.2.5 Ganged Sizing

1.6

1.5
2.5

1.4

SPECtp h
1 U SPECint O

1.5
TPC-C

0.9

0.8 0.5
0.6x 0.8x 1x 1.2x 1.4x 0.6x 0.8x 1x 1.2x 1.4x

Rotative Core Size Relative Core Size
(•) (b)

Figure 3.6: Variation of Performance and Power-Performance with Core Size (ganged
parms).

The out-of-order superscalar processors we consider rely on queues and buffers

to efficiently decouple instruction execution to increase performance. The depth of

the pipeline and the sizes of the resources required to support decoupled execution

(queues, rename registers, completion table) combine to determine the performance

of the machine. Because of this decoupled execution style, increasing the size of one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 47

resource without regard to the other resources in the machine may quickly create

a performance bottleneck. Thus, in this section we consider the effects of varying

multiple parameters rather than just a single parameter.

Figure 3.6a and 3.6b show the effects of varying all of the resource sizes within the

processor core. This includes issue queues, rename registers, branch predictor tables,

memory disambiguation hardware, and the completion table. For the buffers and

queues, the number of entries in each resource is scaled by the values specified in the

charts (0.6x, 0.8x, 1.2x, and 1.4x). For the instruction cache, data cache, and branch

prediction tables, the size of the structures are doubled or halved at each data point.

From Figure 3.6a, we can see that performance is increased by 5.5% for SPECfp,

9.6% for SPECint, and 11.2% for TPC-C as the size of the resources within the core

is increased by 40% (except for the caches which are 4x larger). The configuration

had a power dissipation of 52%-55% higher than the baseline core. Figure 3.6b, shows

that the most power efficient core microarchitecture is somewhere between the lx and

1.2x cores.

3.3 Chapter Summary

We have described PowerTimer: a research power-performance simulator designed

to help with the definition and evaluation of follow-on products within the high-

end PowerPC microprocessor family. Based on this model, we have evaluated power

and performance tradeoffs using SPEC95 workloads and a TPC-C trace. We have

presented a few selected experimental results from our analysis repository to illustrate

the kinds of tradeoffs that one may be able to study using this toolkit. A web-

based interface allows users to view specific power-performance tradeoff curves of

their choice. This allows users to evaluate the worth and wisdom of making specific

microarchitecture-level enhancements to an existing design point. The tool allows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: PowerTimer 48

one to evaluate whether a certain aspect of the design is inherently power-efficient

or not. For example, in an initial, voltage-invariant “technology remap” scenario, we

may like to know whether simply increasing the cache sizes, without perturbing the

core engine would buy us enough performance to counterbalance any power increase.

Compared to VVattch, PowerTimer uses a very similar methodology for power

estimation, although its energy models are based on existing circuits for an industrial

microprocessor. PowerTimer’s models are best suited for exploring microarchitectural

tradeoff decisions building off of this core microarchitecture.

PowerTimer allows one to experiment with a large number of design parameters

and there are multiple choices available in terms of selecting a power-performance

efficiency metric. We have presented just a few examples in this section. For example,

one can study the effectiveness of various flavors of conditional clocking to see how

the sensitivity curves are affected. Also, the use of technology scaling parameters,

allows the user to explore the future design space in a realistic manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Power Model Validation

Validation is a critical part in the process of developing a model or simulator for any

type of system. This phase is important to give the users of the model information

about how reliable the model is under different operating conditions. This is especially

important when abstractions have been used within the model to provide superior

simulation speed, improved design space flexibility, or faster model construction.

Validation of architectural performance simulators is a challenging problem. Val­

idating early-stage architectural power-performance simulators is even more difficult.

In Section 4.1 we discuss the types of modeling error that we would like to quantify.

In Section 4.2, we will describe three forms of validation of the relative and absolute

accuracy of the Wattch infrastructure. In Section 4.3, we focus our validation ef­

forts on quantifying the robustness of the relative accuracy of our power-performance

simulators. We discuss why relative accuracy is sufficient for many interesting experi­

ments, and we present results showing the effects of inserting artificial errors into our

power models to demonstrate the relative accuracy for both Wattch and PowerTimer.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 50

4.1 Types of Modeling Error

The two types of accuracy that we would like from an architectural-level power-

performance simulator are relative and absolute. With relative accuracy, the simulator

can estimate the proper ratio of power dissipation among all of the major components

of the modeled architecture. Essentially, the simulator provides an accurate estimate

of the fraction of the total power that each component uses. Absolute accuracy, on

the other hand, requires relative accuracy but also requires that the magnitude of

each component (or the total chip power) be estimated accurately.

250
idealized bound

200
simulator

100

"optimal" design point true h/w m easurem ents

1 2 3 4 5 6 7 8 9 10

Superscalar width W

Figure 4.1: Relative accuracy in a design tradeoff study.

Achieving relative accuracy is much easier than achieving absolute accuracy, espe­

cially during the early-stages of the design process. This is because relative accuracy

can be maintained despite errors in low-level technology parameters, incorrect as­

sumptions about circuit-design styles, clocking network design methodologies, etc.

Absolute accuracy will be degraded due to all of these conditions.

A simulator that ensures good relative accuracy still provides quite a bit of use­

ful information to an architect. For example, design tradeoff studies with the goal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 51

of choosing architectural parameters to achieve an optimal power-performance effi­

ciency can easily be performed. Figure 4.1 demonstrates this with an example using

contrived data. In this figure, a metric of power efficiency is plotted against the

superscalar width of a processor allowing the CPU designer to choose the optimal

superscalar width. The bottom-most curve in this chart is the MIPS/YVatt of the

processor as measured from a true-hardware design. The middle curve shows the val­

ues that the power-performance simulator gave during the architectural design stage.

The top curve shows an upper-bound on power which could be generated through ar­

chitected test cases or simple technology' scaling equations. The point of this example

is to show that while in some cases the absolute error can be quite significant, because

the simulator maintains good relative accuracy, the chip architect could choose the

correct design point, in this case a processor with a superscalar width of three.

This example demonstrates how relative accuracy is extremely useful for a chip

architect’s design decisions. This is not to say that absolute accuracy is not important

at all. Absolute accuracy is primarily needed to estimate full chip-power for planning

package and system power budgets. However, good relative accuracy, combined with

useful upper-bounding techniques, could also help CPU designers with this problem.

4.2 Model Validation

Validating the power models is crucial because fast power simulation is only useful if

it is reasonably accurate. In this section we provide three methods of validation. The

first is a low-level check to compare the capacitance values generated from our model

with those of real circuits. The second validation level aims at quantifying the rela­

tive accuracy of our model. Namely, we compare the relative power weights that our

model generates with experimentally-measured results from published works on in­

dustry chips. The final validation technique seeks to quantify the absolute magnitude

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 52

accuracy of our models. With this method we compare the maximum processor power

reported in published works with the power results of similar processor organizations

generated from our models.

4.2.1 Validation 1: Model Capacitance vs. Physical Schemat­

ics

The parameterized power models presented in Section 2.2 obtain power dissipation

estimates by calculating the capacitance values on critical nodes within common

circuits. Thus, a low-level method for validating the models is to compare the ca­

pacitance value computed by the model, against circuit design tool calculations of

capacitance values for industry schematics.

In this section, we describe this type of validation for a 128-entry, 6-1-bit wide

register file structure with 8 read ports and 6 write ports. The physical register

file schematic was selected from the actual design for one of Intel’s IA-64 products.

This type of large array structure is common in modern microprocessors and hence

provides a good sample for our study.

% Change in Capacitance
Gate Diffusion InterConn. Total

Wordline (r)
Wordline (w)
Bitline (r)
Bitline (w)

1.11
-6.37
2.82
-10.96

0.79
0.79
-10.58
-10.60

15.06
-10.68
-19.59
7.98

8.02
-7.99
-10.91
-5.96

Table 4.1: Percentage difference between lower-level tool capacitance values and the
values estimated by our model.

Table 4.1 presents the results for validating the register file. We studied both

the read and write nodes for the bitlines and wordlines in the register file. The

table breaks down the capacitance for each of these into gate capacitance, diffusion

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 53

capacitance, and interconnect capacitance. For each entry, we present the percentage

difference between the capacitance value estimated from a circuit-level capacitance

extraction tool and the one calculated by our model. Most of the capacitance error

rates are within +/-10%. The largest sources of error were within the interconnect

capacitance. There are two reasons for this. First, the capacitance of polysilicon wires

is difficult to model, because the lengths of these wires vary with the physical layout.

Second, it is difficult to match the exact lengths of the interconnects in the physical

schematic with the modeled nodes. For example, the wire in the bitline node in the

physical schematic may extend beyond the length of the edge of the array structure,

whereas our model assumes that the wire ends directly on the array boundary. Still,

the total capacitance values are within 6-11% for the four nodes that were studied.

Array structures comprise roughly 50% of the total modeled chip power dissipa­

tion. Similar low-level validation could be performed on other hardware structures

such as CAM arrays. We expect that the results will be similar, since the methodology

for modeling these units is identical.

4.2.2 Validation 2: Relative power consumption by structure

Comparing low-level capacitance values is the most precise means of validating a

power simulator. This method of validation has shown the models to be accurate

within 10%, which is similar to what has been reported by the CACTI authors for

analytical delay models [96] and later for analytical power models [76]. Amrutur and

Horowitz have also studied analytical power and delay models for SRAMs [4].

To validate our models at a slightly higher level, we present a second set of val­

idation data. This data compares relative power of different hardware structures

predicted by our model against published power breakdown numbers available for

several high-end microprocessors. The downside to this comparison is that we have

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 54

no way of knowing whether the design style we model for each unit matches the de­

sign style that they actually use. In spite of this downside, it is reassuring to see that

these power breakdowns track quite well. As shown in Tables 4.2 and 4.3, the relative

power breakdown numbers for our models are within 10-13% on average of reported

data.

Hardware Structure Intel Data Model
Instruction Fetch 22.2% 21.0%
Register Alias Table 6.3% 4.9%
Reservation Stations 7.9% 8.9%
Reorder Buffer 11.1% 11.9%
Integer Exec. Unit 14.3% 14.6%
Data Cache Unit 11.1% 11.5%
Memory Order Buffer 6.3% 4.7%
Floating Point Exec. Unit 7.9% 8.0%
Global Clock 7.9% 10.5%
Branch Target Buffer 4.7% 3.8%

Table 4.2: Comparison between Modeled and Reported Power Breakdowns for the
Pentium Pro®.

Hardware Structure Alpha 21264 L Model
Caches 16.1% 15.3%
Out-of-Order Issue Logic 19.3% 20.6%
Memory Management Unit 8.6% 11.7%
Floating Point Exec. Unit 10.8% 11.0%
Integer Exec. Unit 10.8% 11.0%
Totai Clock Power 34.4% 30.4%

Table 4.3: Comparison between Modeled and Reported Power Breakdowns for the
Alpha 21264.

Tables 4.2 and 4.3 compare breakdowns of Watt ch's power consumption for dif­

ferent hardware structures, with those from published data for the Intel Pentium

Pro® and (then Compaq) Alpha 21264 CPUs [41; 59[. This power consumption is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 55

shown for “maximum power” operation, when all of the units are fully active. This

mode of operation represents our worst-case power estimates; we assume all of the

ports on all of the units are fully active, with maximum switching activity. We did

not actually modify SimpleScalar’s internal structure to resemble these processors.

Instead we used the worst-case power estimates from our models for the hardware

configurations of the processors. The parameter configurations for our models are set

based on published Intel and Alpha 21264 parameters [41; 43].

The power breakdowns track fairly well. For example, the Intel data in Table 4.2

is an exact or near match for several units. These include the data caches, instruc­

tion fetch and out-of-order control logic. The average difference between the power

consumption of our modeled structures and the reported data was 13.3% for the Intel

processor.

The relative power proportions for the Alpha 21264 are again similar to the re­

ported data, with an average difference of 10.7%.

One unit which shows some inaccuracy in our current model is the global clock

power for the Intel processor; our model predicts it to be 10% of total chip power,

while the published data suggests it is less: 8%. This difference could be because

the clock power model we use is based on an aggressive H-tree style that was used in

Alpha 21264 [36], but not in the Intel processor.

The Alpha 21264 has a significantly higher percentage of total clock power than

Intel: 34% for the Alpha compared to 8% for the Intel processor. The main reason

for this large difference is simply the method of accounting that is used for clock

power by the two groups. The clock power category for 21264 includes all clock

capacitance including the clock nodes within individual units. On the other hand,

the Intel method for clock power accounting only counts clock power as the global

clock network. Clock nodes that are internal to various hardware structures are

counted towards the power dissipation of those units. When we model these two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 56

different chips, we adjust our clock power accounting method to match that of the

respective company’s data reporting.

Finally, note that the power proportions we discuss here are normalized to the

hardware structures that we consider. For example, since we do not model Intel’s

complex x86 to micro-op decoding, we do not report the instruction decode unit

power consumption, which consumes 14% of the chip power.

4.2.3 Validation 3: Max power consumption for three CPUs

In this section we perform a third form of validation in which we compare the pub­

lished maximum power numbers for three commercial microprocessors with the values

produced by our models for similar configurations. This allows us to evaluate both

the relative and absolute accuracy of our power models. While such a comparison is

difficult without exact process parameter information, general power trends can be

seen based on the hardware organizations of these machines. Table 4.4 describes the

details of the three processors that we consider.

Figure 4.2: Maximum power numbers for three processors: Model and Reported.

100
90

80
70

-•-M odel
Reported

■,/

30

20
10
0

Pentium Pro MIPS R10K Alpha 21264

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation

Processor Alpha
21264

Pentium
Pro

MIPS
R10000

Processor Core
Instr. YVindow(s) 20 INT

15 FP
20 UOPs 16 INT

16 MEM
16 FP

Physical Registers 2x80-INT
72-FP

40 UOPs 64-INT
64-FP

Memory Order Queue 32 20 8
Fetch width per cycle 4 3 4
Decode width per cycle 4 6 4
Issue width per cycle 6 3 4
Commit width per cycle 4 3 4
Functional Units 4 Int 4 Int 3 Int

2 FP 1 FP 3 FP
Branch Prediction

Local History Table 1024x10 N/A N/A
Local Predict 1024x3 512x4 512x2
Global History Register 12 N/A N/A
Global Predict 4096x2 N/A N/A
Choice Predict 4096x2 N/A N/A
BTB IK entry

2-wav
512 entry
4-wav

32 entry

Return-address stack 32 entry N/A N/A
Memory Hierarchy

LI Dcache Size 64K 8K 32K
LI Dcache Assoc. 2-wav 2-wav 2-way
LI Icache Size 64K 8K 32K
LI Icache Assoc. 2-way 4-way 2-way
DTLB Size (full assoc) 128 64 64
ITLB Size (full assoc) 128 32 64

Process Specifications
Feature Size ,35um .35um .35um
Vdd 2.2V 3.3V 3.3V
MHz 600 200 200

Table 4.4: Configuration of Processors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 58

Figure 4.2 shows the results for the maximum power dissipation for the three pro­

cessors that we considered. In all three cases, YVattch’s modeled power consumption

was less than the reported power consumptions, on average 30% lower. There are

a few reasons for this systematic underestimation. First, we have concentrated on

the units that are most immediately important for architects to consider, neglecting

I/O circuitry, fuse and test circuits, and other miscellaneous logic. Second, circuit

implementation techniques, transistor sizings, and process parameters will vary from

company to company. On the other hand, the models are general enough that they

could be tuned to a particular processor’s implementation details. It is reassuring

to see that the trends already track published data for several high-end commercial

processors.

4.3 Robustness of Relative Accuracy

In the remainder of this chapter we will provide quantitative results for both VVattch

and PowerTimer to demonstrate how design tradeoff studies can be performed despite

the presence of different types of error in the low-level power models. These results

give some insight into the robustness of the relative accuracy of the power models

and demonstrate the extent to which a design tradeoff study can withstand error in

the low level power models.

4.3.1 Design Criteria

When performing a design tradeoff study, a methodology must first be established

for deciding when to choose a particular design point over another design point.

When viewing design tradeoff curves visually, we would like to choose the “knee”

of the curve so as to pick the point that is close to optimal without reaching the

point of diminishing returns. To quantify this tradeoff selection, we propose the

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 59

acceptable range window as a method to quantify the selection of design points from

raw power/performance data.

Acceptable Range Window

The experiments in this chapter quantify the amount of acceptable error within a

power/performance simulator tolerated before different design points are chosen. The

acceptable range window forms a group of points which meet the criteria for selection.

Generally, we choose the lowest cost point within the acceptable range window for

implementation.

Two different definitions of the acceptable range window are considered:

• +/-x% of absolute at optimal choice {range 1)

• +/->•% of (worst-choice - optimaLchoice) for this design study (range2)

W orst C hoice

W orst • O ptim al

$
I
©
tS

R angel A bsolute at
optim al

O ptim al ChoiceRange2

256K64K 128K16K 32K

Figure 4.3: Example of acceptable range windows.

The derivation of the acceptable range window is shown graphically in Figure 4.3.

In this figure, the absolute at the optimal choice and the range of the worst.choice -

optimal-choice are shown. The rangel and range2 windows are also shown.

For each design tradeoff experiment, two checks are performed. First, we check

for overlap between the acceptable range windows of the baseline simulator and the

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 60

modified simulator. Second, we check if the window still suggests the same lowest

cost point for the modified simulator.

In Figure 4.3, the 64K and 128K design choices are optimal for both criteria, but

the 256K design choice is only optimal under the range2 criteria. However, both

criteria choose the same least cost design point at 64K.

4.3.2 Wattch

We use Wattch as the baseline simulator to perform the first set of studies. Four

distinct types of error are considered that could affect the power models. While all

of these types of error disturb the absolute accuracy of the simulator, this study

quantifies the effect on the relative accuracy of the simulator by investigating several

design tradeoff ppstudy scenarios.

The four types of error considered are as follows:

• Error within a unit that is independent of the design tradeoff experiment.

• Error within a power model that is used in the structure under study as well as

in independent structures.

• Error solely within the unit under study.

• Error in the amount/type of clock gating style used in the simulator.

Three typical design tradeoff studies were considered for each of these four er­

ror conditions. These design tradeoff studies investigate energy-delay product for

the number of RUU-entries, the size of the LI Data Cache, and the size of the LI

Instruction Cache.

The results are shown for both the rangel and range2 windows with x=y =5%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 61

Example 1: Error in an Independent Unit

We will first consider a simple experiment which has error in the power estimate for

a unit that is totally independent of the unit under investigation in the design study.

For example, error in the ALU power model or the global clock power, is mostly

independent of the power model for the RUU or the LI caches. While the absolute

accuracy of the model suffer quite a bit under these conditions, the relative accuracy

of the model for this particular design study will be less severely affected.

Figures 4.4, 4.5, and 4.6 show two graphs each for the vortex application while

varying the number of RUU entries, D-Cache size, and I-Cache size. In each of

the graphs there are five curves showing the power and energy-delay product trends

while varying the microarchitectural parameters. The five lines labeled -.2x through

2x refer to the amount of additional power dissipation inserted into the model. The

amount of power added or subtracted is equal to the ratio given multiplied by the

total chip power of the baseline case with an 80-entry RUU, and 64KB D- and I-

Caches. For example, if the baseline power dissipation estimate was 30W, the .2x

point adds 6W additional power and the -.2x point subtracts 6W of power from the

total chip power.

The first graph in each figure shows the power dissipation while varying both

conditions. Since the additional power dissipation added in this experiment is inde­

pendent of the RUU or cache power models, it does not affect the relative accuracy

of this curve and only shifts the curves up and down by the corresponding amounts.

The second graph in each figure shows the energy-delay product while varying the

microarchitectural parameters and the amount of error. The energy-delay product

factors in the IPC, performance, for the various microarchitectural choices. Because

of this, the energy-delay product curves are skewed by the IPCs of the various design

points.

Although the relative accuracy of the power dissipation curves is not disturbed,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 62

Figure 4.4: Power and EDP for vortex varying indep. unit and RUU entries.

32K 64K 128K 2S6K
Data Cacha S in

Figure 4.5: Power and EDP for vortex varying indep. unit and D-Cache size.

60

SO

I40
j 30

20

10
0

♦ -2*
■ * - - lx

ban
♦ 1x
*2>

16K 32K 64K I28K
Inatruction Cacha SM

256K

18

16

14

►-2x

f 12

Q 10
>»? 8
5 6

16K 32K 64K 128K
Inatruction Cacha S in

2S6K

Figure 4.6: Power and EDP for vortex varying indep. unit and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 63

Acceptable range windows under independent scaling error ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark -,2x -.lx No Error (Ox) .lx .2x
compress-rl 16-32 16-32 16-32 entries 32-48 32-48
gcc-rl 16 16-32 16-32 entries 16-32 16-32
go-rl 16 16 16 entries 16 16-32
ijpeg-rl 16-48 32-48 32-80 entries 32-112 32-128
m88ksim-rl 16 16 16 entries 16-32 16-32
vortex-rl 16-64 16-64 32-80 entries 32-80 32-96

(a) RUU-entries

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-rl 32K-128K 32K-128K 32K-128K 32K-128K 32K-128K
gcc-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
go-rl 16K-64K 16K-64K 16K-64K 16K-64K 32K-64K
ijpeg-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
m88ksim-rl 16K-32K 16K-32K 16K-32K 16K-64K 16K-64K
vortex-rl 16K-32K 16K-32K 16K-32K 16K-64K 16K-64K

(b) LI Data Cache

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
gcc-rl 64K 64K 64K 64K-128K 64K-128K
go-rl 32K-64K 32K-64K 32K-64K 32K-64K 32K-64K
ijpeg-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-rl 32K-64K 32K-64K 32K-64K 32K-64K 32K-64K
vortex-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.5: Optimal design choice decisions under indepent scaling ratios

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation

Acceptable range windows under independent scaling error ratios
Range‘2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-r2 16-32 32 32 entries 32 32
gcc-r2 16 16 16 entries 16-32 16-32
go-r2 16 16 16 entries 16 16
ijpeg-r2 32 32 32 entries 32 32
m88ksim-r2 16 16 16 entries 16 16
vortex-r2 32 32 32 entries 32 32,64

(a) RUU-entries

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-r2 64K 64K 64K 64K 64K
gcc-r2 16K-32K 32K 32K 32K 32K-64K
go-r2 32K-64K 32K-64K 32K-64K 32K-64K 32K-64K
ijpeg-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-r2 16K 16K 16K 16K L16K
gcc-r2 64K 64K 64K 64K 64K-128K
go-r2 32K 32K 32K-64K 32K-64K 32K-64K
ijpeg-r2 16K 16K 16K 16K 16K
m88ksim-r2 32K 32K 32K 32K 32K-64K
vortex-r2 64K 64K-128K 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.6: Optimal design choice decisions under indepent scaling ratios

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 65

the variation in 1PC among design points, combined with the additional independent

unit power dissipation, can lead to differences in the energy-delay product design

tradeoff choices. Tables 4.5 and 4.6 show the acceptable range windows for optimal

EDP designs for the RUU, LI D-Cache, and LI I-Cache under the independent error

scaling ratios described above with the rangel and range2 design criteria.

Each table shows the acceptable range windows for the baseline case with no error

(Ox scaling) and the cases for -.2x through .2x. Bold entries in the table indicate

acceptable range windows with a deviation from the baseline case. If a deviation

occurs on the left-side of the acceptable range window, a different lowest-cost design

point would be chosen. For example in Table 4.5, the lowest cost RUU size for ijpeg

within the acceptable range windows is 32 entries with the baseline case. However,

at -.2x scaling the design choice would be 16-entries. In general, range2 has fewer

deviations in design choices, because of the tighter design criteria.

Figures 4.7, 4.8, and 4.9 show the percent difference from the optimal design

choice for the various microarchitectural choices and the amount of error inserted.

The y-axis of these figures plot the percent difference between the design point and

the optimal (lowest energy-delay) design point. The x-axis shows the amount of

additional independent unit error that is inserted, and the lines plotted show the

different design points under consideration. For example, in Figure 4.7 the 32-entry

curve is always equal to zero, because this is the optimal energy-delay design point

for this experiment under all of the error conditions.

These figures show that for microarchitectural design points that are smaller than

optimal, the difference from the optimal point increases with additional independent

unit error. As the microarchitectural design points become larger than the optimal

design choice, the difference from optimal decreases with additional independent unit

error. This occurs because as the total power dissipation becomes larger (when the

permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 66

20%

15%

S 10%

- 1 1 2
— 1285%

0%
.2x-.2x -.1x Ox 1 x

Independent unit Error

Figure 4.7: Design optimality for vortex varying independent error and RUU entries.

60%

50% •

-1 6 K
-3 2 K
— 64K

128K
-256K

£ 30% ■

20% -

10% i

-,2x -.lx Ox .1x 2x
Indcpandtnl unit Error

Figure 4.8: Design optimality for vortex varying independent error and D-Cache size.

-,2x *.1x Ox -1x .2x
IndependMt unit Error

Figure 4.9: Design optimality for vortex varying independent error and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 67

error increases) the additional performance benefit achieved by increasing the mi-

croarchitectnral structure is magnified. Thus, the smaller design points are farther

from optimal as the error increases, and the larger design points will become closer

to optimal as the error increases.

In these curves, any point that is less than 5% corresponds to an entry in the

acceptable range window with the rangel criteria. Discrepancies in the acceptable

range window occur when a curve has some points above and some points below the

5% threshold. Curves with a steeper slope are more affected by the independent unit

error, because they are more likely to have some points that fall above and below the

threshold.

Example 2: Error in Bitline Capacitance

A second major class of experimental inaccuracy in power models is error that occurs

in a model that is used within many microarchitectural structures. For example, the

cache power models is used in the LI instruction and data caches, the L2 cache, and

the branch predictor tables. Error in the cache power model would affect the power

estimates for many of these units.

In this example, we consider bitline capacitance, a component that will have an

effect on many microarchitectural structures in our processor model. Bitline capaci­

tance estimates are used within the array structure models for caches and register files.

The errors in bitline capacitance affect all three of the microarchitectural parameters

under study, as well as several independent structures.

Figures 4.10, 4.11, and 4.12 show the power and energy-delay product for the

vortex application while varying the number of RUU entries, D-Cache size, and I-

Cache size. The five curves shown are similar to the ones in the previous section, but

each of these curves shows a different ratio for the bitline capacitance scaling that

was used. Again, significant deviations are difficult to see from these curves even with

with permission of the copyright owner. Further reproduction prohibited without permission.

Po
w

ar
 (

W
)

Po
w

ar
(W

)
Po

w
er

 <
W

)
Chapter 4: Power Mode] Validation 68

»0.6x
♦ oa*

lx (base)

16 32 48 64 00 96 112 128

RUU EntriM

18 - » 0 .6 x

16 ̂ ■*"08x
ix(base)

>4 • i ,2x

4 ;i
2 :

0 i
16 32 48 64 80 96 112 128

RUU EntriM

Figure 4.10: Power and EDP for vortex varying bitline error and RUU entries.

Figure 4.11: Power and EDP for vortex varying bitline error and D-Cache size.

16K 32K 64K 128K 2S6K

instruction C ache S i n

Figure 4.12: Power and EDP for vortex varying bitline error and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 69

0.6x and 1.4x scaling of the bitline capacitance estimates.

Tables 4.7 and 4.8 show the acceptable range windows for the design choices for

the RUU, Ll-DCache and Ll-ICache under the same bitline scaling. These tables

show the benchmark with the rangel (rl) and range2 (r2) acceptable range window

calculations. For many of the benchmarks with these three design tradeoff studies,

the error in bitline capacitance had no effect. However, in a few cases the acceptable

range window did change. In only one case, compress's Ll-Dcache design choice under

rangel, did the least-cost design choice change. In this case, with 0.6x scaling, a 32K

cache is chosen, while with the lx scaling a 16K cache is chosen as the least-cost

design choice.

Figures 4.13, 4.14, and 4.15 show the difference from design optimality for the

design tradeoff selections. Again, any point on these curves that is less than 5%

corresponds to an entry in the acceptable range window with the rangel criteria.

The relatively small slopes of most of the curves demonstrates that the bitline error

will have a small effect on the design tradeoff choices.

Example 3: Error in Dependent Unit Scaling Factors

We now consider the effect of error solely associated with the unit under consideration

in the design study. These experiments explore this source of error by explicitly scaling

the power estimate for the individual structures (RUU and LI Caches) by lx through

2x. This type of error could exist if the wrong subbanking scheme was assumed, if a

different circuit-design style was chosen for that particular structure, etc.

Figures 4.16, 4.17, and 4.18 show the power and energy-delay product for the

vortex application while varying the number of RUU entries, D-Cache size, and I-

Cache size. Each of the five curves again shows the energy-delay product as that

particular unit’s power estimate scales by lx through 2x. This type of error clearly

affects the design tradeoff study. As the amount of scaling increases, instead of just

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 70

Acceptable range windows under bitline error ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark .6x ,8x No Error (lx) 1.2x 1.4x
compress-rl 16-48 16-48 16-48 entries 16-48 16-48
gcc-rl 16-64 16-64 16-64 entries 16-48 16-48
go-rl 16-64 16-64 16-48 entries 16-48 16-48
ijpeg-rl 32-80 32-80 32-80 entries 32-80 32-64
m88ksim-rl 16-64 16-64 16-64 entries 16-64 16-64
vortex-rl 32-80 32-80 32-80 entries 32-80 32-80

(a) RUU-entries

Benchmark .6x .8x No Error (lx) l.2x 1.4x
compress-rl 32K-128K 16K-128K 16K-128K 16K-128K 16K-128K
gcc-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
go-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
ijpeg-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
m88ksim-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-32K
vortex-rl 16K-64K 16K-64K 16K-32K 16K-32K 16K-32K

(b) Li Data Cache

Benchmark .6x .8x No Error (lx) 1.2x 1.4x
compress-rl 64K-128K 64K-128K 64K 64K 64K
gcc-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
go-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
ijpeg-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
m88ksim-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
vortex-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.7: Optimal design choice decisions under bitline error ratios

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 71

Acceptable range windows under bitline error ratios
Range2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark .6x .8x No Error (lx) 1.2x 1.4x
compress-r2 32 32 32 entries 32 32
gcc-r2 32 32 32 entries 32 32
go-r2 16-32 16-32 16-32 entries 16-32 16-32
ijpeg-r‘2 32 32 32 entries 32 32
m88ksim-r2 32 32 32 entries 32 32
vortex-rl 32 32 32 entries 32 32

(a) RUU-entries

Benchmark .6x .8x No Error (lx) 1.2x 1.4x
compress-r2 64 K 64K 64K 64K 64K
gcc-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
go-r2 32K-64K 32K-64K 32K-64K 32K 32K
ijpeg-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark ,6x .8x No Error (lx) 1.2x 1.4x
compress-r2 64K 64K 64K 64K 64K
gcc-r2 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
go-r2 64K-128K 64K-128K 64K 64K 64K
ijpeg-r2 64K-128K 64K-128K 64K 64K 64K
m88ksim-r2 64K-128K 64K-128K 64K-128K 64K-128K 64K
vortex-r2 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K

(c) Ll Instruction Cache

Table 4.8: Optimal design choice decisions under bitline error ratios

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Mode! Validation 72

14% ‘
| 12%
1 10%

8%

6%

4%

2%

0%

— 128

0.6x 0.8x 1x (base)
BilliM Err Of

1.2X 1.4x

Figure 4.13: Design optimality for vortex varying bitline error and RUU entries.

50%
45%

| 40%

I 35%
f 30%
I 25%

120%
15%
10%
5%
0%

16K
•-32K
-►64K

I28K
- 2 5 6 K

0.6x 0.8x ix (b a se) 1 2x 1.4x
BWIm Error

Figure 4.14: Design optimality for vortex varying bitline error and D-Cache size.

► 32K

e 40%

0.6x 0.8x 1x(b ase)

Baikio Error
1.2x 1.4x

Figure 4.15: Design optimality for vortex varying bitline error and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 4: Power Model Validation 73

RUU Entries

Figure 4.16: Power and EDP for vortex varying RUU-scale-factor and RUU entries.

32K 64K 128K 256K

Data Cache Size

Figure 4.17: Power and EDP for vortex varying DCache-sf and D-cache size.

16K 32K 64K 128K 256K

Instruction C ache S ize

Figure 4.18: Power and EDP for vortex varying ICache-sf and 1-cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 74

shifting the results, the curves begin to separate as more scaling is applied.

The acceptable range windows quantify the disturbance to the design tradeoff

study. With a 1.25x scaling factor, there is very little change in the acceptable

range windows for the three design tradeoff studies with these applications. Only

compress with the range2 window resulted in a different design decision; with the

baseline simulator a 64K I-Cache is chosen and with the 1.25x scaling, a 32K I-Cache

is chosen.

Moving to the 1.5x and larger scaling factors, more design decisions change. Vortex

under the rangel and compress under the range2 window need a smaller number of

RUU-entries.

Errors that only involves the unit under study in a design tradeoff experiment will

be more likely to cause a different design choice to be made. This occurs because the

additional scaling on the microarchitectural structure, in the absence of the scaling in

other independent units, causes the structure in the tradeoff experiment to become a

larger share of the overall chip pie.

Figures 4.19, 4.20, and 4.21 show the difference from design optimality for the

various scaling ratios. The curves with steep slopes that are near the 5% range cor­

respond to the entries highlighted in the previous tables. For example, in Figure 4.19

the 16-entry curve falls below 5% only under the 1.5x - 2x scaling factor conditions.

Clock Gating

This section considers the effect of Wattch’s three base clock gating modes on the

design tradeoff study. The first mode is simple clock gating, where a unit consumes

100% power if any port is active on a cycle, and can only be gated off if no ports are

in use. The next mode is ideal clock gating where power is linearly proportional to

the number of ports in use. The last mode is aggressive clock gating which is similar

to ideal, but disabled ports consume some additional power.

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 75

Acceptable range windows under scaling ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-rl 16-32 entries 16-32 16-32 16-32 16-32
gcc-rl 16-32 entries 16-32 16-32 16 16
go-rl 16 entries 16 16 16 16
ijpeg-rl 32-80 entries 32-64 32-64 32-48 32-48
m88ksim-rl 16 entries 16 16 16 16
vortex-rl 32-80 entries 32-64 16-64 16-64 16-48

(a) RUU-entries

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-rl 32K-128K 32K-128K 16K-64K 16K-64K 16K-64K
gcc-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-32K
go-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
ijpeg-rl 16K-64K 16K-64K 16K-32K 16K-32K 16K-32K
m88ksim-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark No Error (lx) 1.25x 1.5x l.75x 2x
compress-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K
gcc-rl 64K 64K 64K 64K 64K
go-rl 32K-64K 32K-64K 32K-64K 32K-64K 32K
ijpeg-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-rl 32K-64K 32K-64K 32K-64K 32K 32K
vortex-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K

(c) LI Instruction Cache

Table 4.9: Optimal design choice decisions under scaling ratios

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 76

Acceptable range windows under scaling ratios
Range2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-r2 32 entries 32 32 16-32 16-32
gcc-r2 16 entries 16 16 16 16
go-r2 16 entries 16 16 16 16
ijpeg-r2 32 entries 32 32 32 32
m88ksim-r2 16 entries 16 16 16 16
vortex-r2 32 entries 32 32 32 32

(a) RUU-entries

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-r2 64K 32K-64K 32K-64K 32K-64K 32K-64K
gcc-r2 16K-64K 16K-64K 16K-64K 16K-64K 16K-32K
go-r2 32K-64K 32K-64K 32K 32K 32 K
ijpeg*r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksirn-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-r2 16K 16K 16K 16K 16K
gcc-r2 64K 64K 64K 64K 64K
gor2 32K-64K 32K 32K 32K 32K
ijpeg-r2 16K 16K 16K 16K 16K
m88ksim-r2 32K 32 K 32K 32K 32K
vortex-r2 64K-128K 64K-128K 64K-128K 64K 64K

(c) LI Instruction Cache

Table 4.10: Optimal design choice decisions under scaling ratios

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation ~~

25%

i 20% :
I
| 15%

8 10%

a 5%

o%
.2x1.75x1.5x1.25X1 x

(base)

— 16
» 32
- 4 8

64
- 8 0
- 9 6
— 112
— 128

Scaling Factor

Figure 4.19: Design optimality for vortex varying RUU-scale factor and RUU entries.

80% i

70%

60%

50%

£ 40%

§ 30%

20%

10%

-1 6 K
-3 2 K
— 64K

128K
-256K

1x
(base)

1.25x 1.5x 1.75x

Scaling Factor

.2x

Figure 4.20: Design optimality for vortex varying D-Cache scaling and D-Cache size.

80% ii

(base)
Scaling Factor

Figure 4.21: Design optimality for vortex varying I-Cache scaling and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 78

simple
ideal
aggressive

ideal aggressive

Clack Gating Style

Figure 4.22: EDP and optimality for vortex varying clock gating and RUU entries.

ia
16

14

£12
310 >

hi 6 -

4

2
0

- simple
■ ideal
-aggressive

16K 32K 64K 128K
Data C ache S it e

256K

— 16K
-32K
»64K

128K
-256K

simple ideal aggressive
Clock Gating Style

Figure 4.23: EDP and optimality for vortex varying clock gating and D-Cache size.

aggressive
32K 64K 128K
Instruction C ache S ize

Figure 4.24: EDP and optimality for vortex varying clock gating and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 79

Figures 4.22, 4.23, and 4.24 show the energy-delay and the optimality analysis for

vortex while varying the clock gating style and the RUU, D-Cache, and I-Cache sizes.

There are some changes in the optimal design points under different clock gating

conditions. These changes are particularly noticeable with the I-Cache experiment

at the 16K size. Vortex incurs a large number of I-Cache misses with small I-Caches,

resulting in many opportunities for it to be clock gated in the simulator. This causes

a noticeable difference with the three clock gating strategies. The RUU figure also

has noticeable changes particularly at the 16-entry and 32-entry design choices.

Tables 4.11 and 4.12 show the acceptable range windows for the design choices for

the RUU, Ll-DCache and Ll-ICache while varying the clock gating strategy. These

tables show that the choice of clock gating style can have an effect on the design

choices for these microarchitectural structures. The lowest-cost RUU sizing within

the acceptable range windows varies considerably depending on the simple, ideal,

or aggressive clock gating settings. For the I-Cache and D-Cache tables, there are

fewer differences primarily because since there are fewer ports on these structures,

the different clock gating strategies have smaller effects.

4.3.3 PowerTimer

In the next study, we use PowerTimer to perform similar experiments. One of the

potential sources of inaccuracy in PowerTimer is the scaling ratio factors used as the

size of the microarchitectural structures increases or decreases. Chapter 2 discusses

these scaling factors. For most structures, power increases proportionally to the

number of entries in a structure. For example, if the number of entries in an issue

queue doubles, the power consumption doubles. For cache structures, the power

increases by 1.46x for every doubling of the cache size as suggested by the circuit

experiments in [53].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 80

Acceptable range windows under clock gating schemes
Rangel Criteria

Benchmark simple ideal aggressive
compress-rl 16-32 entries 16-32 16-48
gcc-rl 16-48 entries 16-48 16-64
go-rl 16-48 entries 16-32 16-48
ijpeg-rl 32-64 entries 16-64 32-80
m88ksim-rl 16-64 entries 16-48 16-64
vortex-rl 32-64 entries 16-64 32-80

(a) RUU-entries

Benchmark simple ideal aggressive
compress-rl 32K-128K 32K-256K 16K-128K
gcc-rl 16K-64K 16K-64K 16K-64K
go-rl 16K-64K 16K-64K 16K-64K
ijpeg-rl 16K-64K 16K-64K 16K-64K
m88ksim-rl 16K-32K 16K-64K 16K-64K
vortex-rl 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark simple ideal aggressive
compress-rl 64K-128K 64K 64K
gcc-rl 64K-128K 64K-128K 64K-128K
go-rl 64K-128K 64K 64K-128K
ijpeg-rl 64K-128K 64K-128K 64K-128K
m88ksim-rl 64K-128K 64K-128K 64K-128K
vortex-rl 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.11: Optimal design choice decisions under different clock gating schemes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Mode] Validation 81

Acceptable range windows under clock gating schemes
Range2 Criteria

Benchmark simple ideal aggressive
com press-r2 32 entries 16 32
gcc-r2 32 entries 16-32 32
go-r2 32 entries 16 16-32
ijpeg-r2 32 entries 32 32
m88ksim-r2 32 entries 16-32 32
vortex-r2 32 entries 32 32

(a) RUU-entries

Benchmark simple ideal aggressive
compress-r2 64K 64K-128K 64K
gcc-r2 16K-32K 16K-32K 16K-32K
go-r2 32K-64K 32K-64K 32K-64K
ijpeg-r2 16K-32K 16K-32K 16K-32K
m88ksim-r2 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark simple ideal aggressive
compress-r2 64K 64K 64K
gcc-r2 64K-128K 64K 64K-128K
go-r2 64K-128K 64K 64K
ijpeg-r2 64K-128K 64K 64K
m88ksim-r2 64K-128K 64K 64K-128K
vortex-r2 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.12: Optimal design choice decisions under different clock gating schemes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 82

Scaling Factors

Figures 4.25, 4.26, and 4.27 show the energy-delay for the aggregate of SPECint95

while varying the scaling ratios and the core size, Ll D-Cache size, and the size of

the global completion table (GCT). Figures 4.26 and 4.27 show the scaling factors of

1.2x-2.8x (with a baseline of 2x), and Figure 4.25 shows scaling factors from 0.876x

through 2.044x with a baseline of 1.46x.

Figure 4.27 shows results as we vary the size of the core by scaling all of the issue

queues, renamers, and other major microarchitectural structures in the core while

leaving the caches constant. Core3 is the baseline core; core4 scales the size of every

structure by 1.2x and core5 by 1.4x. Similarly core2 and corel reduce the size of the

core by scaling by 0.8x and 0.6x.

Tables 4.13 and 4.14 show the acceptable range windows for the 8 individual

SPECint95 applications. For the Ll D-Cache experiment, although the acceptable

range windows do change in some cases, all of the design choices remain the same

with 1.168x through 2.044x scaling ratios. At 0.876x scaling, go chooses a larger cache

size under both range definitions.

The completion buffer experiment demonstrates several cases where the design

tradeoff choice changes. At 1.6x and 2.4x scaling, go, peri, and vortex choose different

numbers of GCT entries under the range2 criteria. At the 2.8x scaling there are even

more differences. For example, go would choose a 0.6x size GCT with 2x scaling,

but would choose a lx size GCT with 2.8x scaling. Under the rangel criteria, the

design tradeoff choices remain the same. This is because the GCT is a relatively

small structure in the overall chip’s power dissipation so the differences in this design

tradeoff only show up with the range2 criteria.

The core size experiment changes the size of many structures, so it is likely that

this experiment will be especially susceptible to varying scaling ratios. With the

1.6x and 2.4x scaling, compress, go, m88ksim, and peri had different acceptable range

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 83

120

100

S’ 80
2
V 60

I -
20

1x

- .876x
-1.168X

1.46x(base)
-1.752x
-2.044X

2x 4x 8x
Data Cache Size

16x

350%

300%

250%

100%

50%

0%
1 752* 2 044x1 168x 1 46x876x

(base)
D»Cacha seating factor

Figure 4.25: EDP and optimality for SPECint95 varying DCache-SF and DCache
size.

30 i
29 j
28 -|

>27 j
1 2 6 i

s 25
524
a 23

22
21
20

• 1.2x
-1 .6 x

2x(base)
-*-2.4x
-2 .8 x

,6x .8x 1 x
GCT Size

1.2x 1.4x

_ 6%

V %
i 4% 7

- 6x
• 8x
-►lx

1 2x
■» 1 4x

2%

0%
2.8x1.6x 2x (base) 2.4x1 2x

OCT scaling factor

Figure 4.26: EDP and optimality for SPECint95 varying GCT-SF and GCT size.

50

>»
a.

,45 1
40

I 35
•3 0

“ 25

20

♦ 1.2x
-1 .6 x

2x (base)

100%

corel core2 core3 core4
Core Size

core5

-► corel
■► core2
-►cores

► cores

1.2x 1.6x 2x
(base)

CORE scaling factor

2.4x 2.8x

Figure 4.27: EDP and optimality for SPECint95 varying CORE-SF and CORE size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation

Acceptable range windows under scaling ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark .876x 1.168x Baseline (1.46x) 1.752x 2.044x
compress-rl lx-2x lx-2x lx lx lx
gcc-rl lx-2x lx lx lx lx
go-rl 2x lx-2x lx-2x lx lx
ijpeg-rl lx-2x lx lx lx lx
li-rl lx-2x lx lx lx lx
m88ksim-rl lx-2x lx lx lx lx
perl-rl lx-2x lx lx lx lx
vortex-rl lx-2x lx-2x lx lx lx

(a) Data Cache Size

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-rl .6x-1.4x .6x-l.4x .6x-1.4x .6x-1.4x 6x-1.2x
gcc-rl .6x-1.4x .6x-1.4x .6x-1.4x .6x-1.4x 6x-1.2x
go-rl .6x-1.4x .6x-l.4x .6x-1.4x .6x-1.4x 6x-1.2x
ijpeg-rl 6x-1.4x 6x-1.4x .6x-1.2x .6x-1.2x .6x-l
li-rl .8x-1.4x .8x-1.4x .8x-1.4x .8x-1.4x ,8x-1.2x
m88ksim-rl .6x-1.4x .6x-1.4x .6x-1.4x .6x-1.4x ,6x-1.2x
perl-rl .6x-1.4x .6x-1.4x ,6x-1.4x .6x-1.4.x 6x-1.2x
vortex-rl .8x-1.4x .8x-1.4x .8x-1.4x .8x-1.4x .8x-1.2x

(b) Completion Table Size (GCT)

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-rl c2,c4 c2-c4 c2-c3 c3 c3
gcc-rl c4 c3-c4 c3 c3 c3
go-rl c4 c4 c2-c4 c3 c3
ijpeg-rl c3-c4 c3-c4 c3 c3 c3
li-rl c3-c4 c3-c4 c3 c3 c3
m88ksim-rl c2-c4 c2-c4 c2-c3 c3 c3
perl-rl c2,c4 c2-c4 c3 c3 c3
vortex-rl c4 c3-c4 c3 c3 c3

(c) CORE Size

Table 4.13: Optimal design choice decisions under scaling ratios

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation

Acceptable range windows under scaling ratios
Range2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark ,876x 1.168x Baseline (1.46x) 1.752x 2.044x
com press-r2 lx-2x lx-2x lx-2x lx lx
gcc-r2 lx-2x lx-2x lx-2x lx lx
go-r2 2x ix-2x lx-2x lx-2x lx-2x
ijpeg-r2 lx-2x lx-2x lx-2x lx lx
li-r2 lx-2x lx-2x lx-2x lx lx
m88ksim-r2 lx-2x lx-2x lx-2x lx lx
perl-r2 lx-2x lx-2x lx lx lx
vortex-r2 lx-2x lx-2x lx-2x lx-2x lx

(a) Data Cache Size

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-r2 ,8x .8x .8x .8x-lx lx
gcc-r2 .8x .8x .8x lx lx
go-r2 .8x .8x ,6x-.8x .6x lx
ijpeg-r2 .6x .6x .6x .6x .6x
li-r2 .8x .8x .8x .8x lx
m88ksim-r2 ,8x .8x .8x 8x-lx lx
perl-r2 .8x,1.2x .8x .8x-lx lx lx
vort,ex-r2 1.2x 1.2x lx lx lx

(b) Completion Table Size (GCT)

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-r2 c2,c4 c2-c3 c2-c3 c3 c3
gcc-r2 c4 c3-c4 c3 c3 c3
go-r2 c4 c4 c3-c4 c3 c3
ijpeg-r2 c3-c4 c3-c4 c3 c3 c3
li-r2 c3-c4 c3 c3 c3 c3
m88ksim-r2 c2-c4 c2-c3 c3 c3 c3
perl-r2 c4 c2-c4 c3 c3 c3
vortex-rl c3-c4 c3-c4 c3-c4 c3 c3

(c) CORE Size

Table 4.14: Optimal design choice decisions under scaling ratios

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 86

windows and design choices. At the 1.2x ratio, gcc and vortex also had different design

choices.

It is also interesting to consider the design choices that are made when taking

SPECint95 as an aggregate. For the Ll D-Cache and GCT size experiments, although

the acceptable range windows changed slightly, the same minimum cost design points

are chosen for all scaling ratios. When considering the choice of the core size, however,

the change is more drastic. At 1.2x scaling, the core size of 4 would be chosen. At

1.6x scaling, the acceptable range window was between core2 and cored, so core2 is

the minimum cost choice. With 2x-2.8x scaling ratios, core3 is chosen.

4.4 Chapter Summary

We have presented details on the power models and simulator infrastructure required

to perform architectural-level power analysis. We have verified these power models

against industrial circuits and found our results to be generally within 10% for low-

level capacitance estimates. We have also shown the relative accuracy of the models,

which is especially important for architectural and compiler research on tradeoffs

between different structures, is within 10-13% on average.

One limitation of the power models within Wattch is that they do not necessarily

model all of the miscellaneous logic present in real microprocessors. Furthermore,

different circuit design styles can lead to different results. Hence, the power models

will not necessarily predict maximum power dissipation of custom microprocessors.

The methodology for modeling this extra logic or other circuit design styles is the

same as what we have done thus far; there is no inherent limitation to the models

that prevents this additional hardware from being considered. Another limitation of

the models is that the most up-to-date industrial fabrication data is not available

in the public-domain, which can lead to variations in the results. The models will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Power Model Validation 87

be most accurate when comparing CPUs of similar fabrication technology. This is

reasonable for architects considering tradeoffs on a particular design problem, where

the fab technology is likely to be a fixed factor.

In this chapter, we have also considered the robustness of the relative accuracy

of VVattch and PowerTimer. VVe have investigated the primary potential sources of

error within these tools and demonstrated how design tradeoff studies can tolerate

some error while still leading to the choice of the same design point.

When performing a design tradeoff study, it is most important to provide accurate

power models for the unit under consideration in the study. Error in independent

units will not affect the study, and errors that can affect multiple units could also

have small disturbances because relative accuracy is maintained. However, errors

that affect only the unit under study can lead to errors in the relative accuracy of the

power model and incorrect design choices in some cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 5

Value Based Clock Gating

The first half of this dissertation has discussed a framework for estimating power

dissipation at the architectural level, several schemes to validate the accuracy of

the models, and some simple case studies demonstrating its usage. The rest of this

thesis will discuss the application of these models to exploring techniques for high-

performance, power/thermal-efficient design. In this chapter, we will discuss one such

technique which can reduce the average power of a microprocessor, value-based clock

gating.

In recent years there has been a shift towards 64-bit instruction sets in major

commercial microprocessors. The increased word widths of these processors were

largely motivated because addresses were getting larger; however, the size of the

actual data has not increased as quickly. As high-end processor word widths have

made the shift from 32 to 64 bits, there has been an accompanying trend towards

efficiently supporting subword operations. Subword parallelism, in which multiple 8-

or 16-bit operations are performed in parallel by a 64-bit ALU, is supported in current

processors via instruction set and organizational extensions. These include the Intel

MMX [71], HP MAX-2 [57], and Sun VIS [93] multimedia instruction sets, as well as

vector microprocessor proposals such as the TO project [5].

All of these ideas provide a form of SIMD (single instruction-multiple data) parallel

88

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 89

processing at the word level. These instruction set extensions are focused primarily on

enhancing performance for multimedia applications. Such applications perform large

amounts of arithmetic processing on audio, speech, or image samples which typically

only require 16-bits or less per datum. The caveat to this type of processing is that

thus far these new instructions are mainly used only when programmers hand-code

kernels of their applications in assembler. Little compiler support exists to generate

them automatically, and the compiler analysis is limited to cases where programmers

have explicitly defined operands of smaller (i.e., char or short) sizes.

This chapter proposes hardware mechanisms for dynamically exploiting narrow

width operations without programmer intervention or compiler support. By detecting

“narrow bitwidth” operations dynamically, we can exploit them more often than with

a purely-static approach. Thus, our approach will remain useful even as compiler

support improves.

We have explored two optimizations that take advantage of the core “narrow width

operand” detection that we propose. For both techniques, we explore both a basic and

extended version of the optimization. The basic approach only operates in cases that

it is guaranteed to succeed. In the extended version of the proposals, we demonstrate

speculative techniques that can improve the efficiency of the optimizations.

The first optimization that we propose watches for small operand values and

exploits them to reduce the amount of power consumed by the integer unit. This is

accomplished by an aggressive form of clock gating. Clock gating has previously been

shown to significantly reduce power consumption by disabling certain functional units

if instruction decode indicates that they will not be used [40]. The key difference of

our work is to apply clock gating based on operand values. When the full width of a

functional unit is not required, we can save power by disabling the upper bits. With

this method we show that the amount of power consumed by the integer execution

unit can be reduced for the SPECint95 suite with little additional hardware.

permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 90

The second proposed optimization improves performance by dynamically recogniz­

ing, at issue time, opportunities for packing multiple narrow operations into a single

ALU. With this method the SPECint95 benchmark suite shows an average speedup of

4.3%-6.2% depending on the processor configuration. The MediaBench suite showed

an average speedup of 8.0%-10.4%. Since this optimization falls outside the scope

of this dissertation, I refer readers to previously published work which describes this

optimization in detail [17; 19].

The primary contributions of this work are a detailed study of the bitwidth re­

quirements for a wide range of benchmarks and two proposals for methods to exploit

narrow width data to improve processor power consumption and performance. In

Section 5.1 we further discuss the motivations for our work and place it in the con­

text of prior work in multimedia instruction sets, power savings, and other methods

of using dynamic data. Section 5.2 describes the experimental methodology used to

investigate our optimizations. Section 5.3 details the power optimization technique

based on clock gating for operand size and presents results on its promise. In Section

5.4, we describe speculative techniques to improve the benefits of value based clock

gating. Finally, Section 5.6 concludes and discusses other opportunities to utilize

dynamic operand size data in processors.

5.1 Motivation

5.1.1 Application Bitwidths

In this study we show that a wide range of applications frequently calculate using

small operand values. Figure 5.1 illustrates this by showing the cumulative percentage

of integer instructions in SPECint95 in which both operands have values that can

be expressed using less than or equal to the specified bitwidth. (Section 5.2 will

permission of the copyright owner. Further reproduction prohibited without permission

Chapter 5: Value Based Clock Gating 91

loo

•»

«n

70

j .
3

10

:« 12 40 a120 « %

Bil Width

Figure 5.1: Bitwidths for SPECint95 on 64-bit Alpha.

discuss the Alpha compiler and SimpleScalar simulator used to collect these results.)

Roughly 50% of the instructions had both operands less than or equal to 16-bits. We

will refer to these operands as narrow width; an instruction execution in which both

operands are narrow width is said to be a “narrow-width operation” . Since this chart

includes address calculations, there is a large jump at 33-bits. This corresponds to

heap and stack references. (Larger programs than SPEC might have this peak at a

larger bitwidth.) The data demonstrate the potential for a wide range of applications,

not just multimedia applications, to be optimized based on narrow-width operands.

While other such work, e.g., narrow bitwidth transformations to a protein-matching

application [3], required algorithm or compiler changes, we focus here on hardware-

only approaches.

5.1.2 Observing and Optimizing Narrow Bitwidth Operands

The basic tenet behind the optimizations proposed here is that when operations are

performed with narrow-width operands, the upper bits of the operation are unneeded.

To decrease power dissipation, clock gating can disable the latch for these unneeded

upper bits. Alternatively, to improve performance, we propose “operation packing” ,

permission of the copyright owner. Further reproduction prohibited without permission

Chapter 5: Value Based Clock Gating 92

in which we issue and execute several of these narrow operations in parallel within the

same ALU. In either case, the crux in exploiting narrow-width operands lies in recog­

nizing them and modifying execution. Section 5.3 will discuss hardware approaches

for tagging result operands as ‘narrow-width” as they are produced, and for storing

these tags along with source operands as we stage subsequent instructions waiting for

issue.

Figure 5.2: Percentage of instructions whose operand precision changes from less than
16-bit to greater than 16-bit over a single program run. Data is presented for both
perfect and realistic branch prediction.

5.1.3 Disadvantages of Static Compiler Analysis

Part of the motivation for this work was the fact that static analysis of input operand

sizes has several disadvantages. First, RISC instruction sets, such as the Alpha

instruction set that we consider in this study, typically do not include instructions

that specify the operand size information for each operation. For example, the Alpha

ISA does not include add instructions that operate on 8-bit or 16-bit quantities.

Thus the compiler could not embed operand size information without instruction set

extensions. More importantly there are many cases where it is impossible to know

what the true operand bitwidths (as opposed to the declared operand sizes) will be

□ perfect
■ realistic

With permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 93

until run-time. Actual operand sizes depend very much on the input data presented.

Operand sizes for particular instructions can also vary over the program run even

with the same input data, which makes the task of the compiler even more difficult.

Figure 5.2 shows the percentage of PC values where operand width changes as

the instruction is executed repeatedly within a single run. In particular, the figure

shows how often an instruction fluctuates from having less than 16-bit operands to

greater than 16-bit operands as it executes repeatedly within a single program run.

Figure 5.2 thus demonstrates some of the difficulty that a compiler would encounter in

determining the operand-widths of operations statically. In particular, it is interesting

to note that with perfect branch prediction, the instruction operand sizes are far more

predictable than with realistic branch prediction. This is because with perfect branch

prediction only the true execution path is seen. With imperfect branch prediction,

uncommon paths, like error conditions, may be executed (but not committed) if

the branch predictor points that way. Along these paths, operand statistics may be

markedly different. Compile time analysis must conservatively analyze all potential

paths to ensure that operations can truly be packed. This may include uncommon

error conditions and other extreme cases. As a result, the compiler runs into much

of the same diverse operand values as seen by imperfect branch prediction.

Overall, compiler dataflow analysis for operand sizes must be conservative about

possible operand values. Programmer hints about operand sizes can aid the compiler.

It is unrealistic, however, to assume that programmers will provide these hints on

codes other than small multimedia kernels.

From Figure 5.1 it is clear that many opportunities exist to exploit narrow-width

data for subword parallelism and aggressive clock gating. Searching for subword

parallelism in applications is somewhat analogous to the search for instruction-level

parallelism (ILP) in applications. In the late 80s and early 90s, most general purpose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 94

superscalar microprocessors were statically scheduled, and the compiler was respon­

sible for uncovering ILP in programs. Current microprocessors implement aggressive

dynamic scheduling techniques to uncover more ILP. This evolution was necessary

to feed the wider-issue capabilities of these processors. In a similar manner, more

subword parallelism can be uncovered with the dynamic approaches wc propose than

if one relies solely on compiler techniques.

5.1.4 Related Work

The notion of disabling the clocks to unused units to reduce power dissipation in high

performance microprocessors has been discussed in [41; 89]. In the CAD community,

similar techniques have been demonstrated at the logic level of design. Guarded

evaluation seeks to dynamically detect which parts of a logic circuit are being used

and which are not [90]. Logic pre-computation seeks to derive a pre-computation

circuit that under special conditions does the computation for the remainder of the

circuit [2]. Both of these techniques are analogous to conditional clocking, which can

be used at the architectural level to reduce power by disabling unused units.

There has been other work in specializing for particular operand values at run­

time. The PowerPC 603 includes hardware to count the number of leading zeros of

input operands to provide an “early out” for multicycle integer multiply operations.

This can reduce the number of cycles required for a multiply from five for 32-bit mul­

tiplication to two for an 8-bit multiplication [38]. At a higher level, value prediction

seeks to predict result values for certain operations and speculatively execute addi­

tional instructions based on these predicted operand values [58]. Memoing is another

high-level technique that exploits data redundancy to eliminate power dissipation of

long-latency integer and floating point operations [6]. Memoing is the idea of storing

the inputs and outputs of long-latency operations and re-using the output if the same

inputs are encountered again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 95

Finally, there has also been other work in detecting and exploiting narrow bitwidth

operations. Razdan and Smith propose a hardware-programmable functional unit

which augments the base processor’s instruction set with additional instructions that

are synthesized in configurable hardware at compile time [74]. Since all synthesized

instructions must complete in a single cycle, bitwidth analysis is performed at compile

time to highlight sequences of narrow-width operations that are the best candidates

for implementation. Stephenson et al. have developed a compiler framework that

detects bitwidth requirements for integers and memory addresses by statically prop­

agating information back and forth in the dataflow graph [86]. Stefanovic use a

run-time profiling tool to analyze the bitwidth requirements of applications under

different accounting models for measuring bitwidth requirements [85].

Tong et al. have proposed sacrificing computational accuracy for reduced power

consumption [91], Their analysis shows that certain floating point programs suffer

very little loss of accuracy with a significant reduction in bit-width. They propose

minimizing the bit-width representation of floating-point data to reduce power con­

sumption in the floating point unit. Our work differs from this technique, because

we include hardware structures to dynamically detect opportunities to capitalize on

narrow bitwidth operations ensuring that program will produce the same results as

without the optimization.

5.2 Methodology

In Sections 5.3 and 5.4 of this chapter we present the results for the low power op­

timizations that we propose for dynamically exploiting small operand values. This

section lays the groundwork by detailing the experimental methodology used for ob­

taining those results.

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 96

5.2.1 Simulator

We have used a modified version of SimpleScalar’s sim-outorder to collect our results.

In Section 2.3.1 the simulator and parameters are discussed.

Most of the changes made to the simulator for this study are localized to the issue

and decode stages. In the decode stage, bitwidths are calculated for dynamic data and

stored in the reservation station entry to be used during the issue stage. In the issue

stage, this data is used to decide if instructions can be issued and executed in parallel

based on the data from the decode stage. While these changes reflect the simulator

implementation, subsequent sections discuss how our ideas would be implemented in

an actual processor.

5.2.2 Benchmark Applications

A goal of this study is to demonstrate and exploit the prevalence of operations with

narrow bitwidths even in applications outside the multimedia domain. For this reason

we evaluate the SPECint95 suite of benchmarks as well as several benchmarks from

the MediaBench suite [56]. For the power optimization we also consider eight of the

SPECfp95 benchmarks.

We have compiled the benchmarks using the DEC/Compaq cc compiler with the

following optimization options as specified by the SPEC Makefile: -migrate -stdl

-05 -ifo -non-shared. In particular, the -05 setting, along with numerous other

optimizations, provides vectorization of some loops on 8-bit and 16-bit data (char

and short).

For this study we used the reference inputs for the SPEC95 suite. We did not

want to use the test or training inputs because our data-specific optimizations might

be unfairly helped by smaller data sets. Using the reference inputs, the SPEC95

benchmarks run for billions of instructions, which, if simulated fully, would lead to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 97

Benchmark Family # of Warmup Insns. or Description Input Data
ccl SPECint 221M cccp.i
peri SPECint 601M scrabble game
Upeg SPECint 824M vigo.ppm
compress SPECint 2576M bigtest.in
m88ksim SPECint 26M dhrystone
li SPECint 271M All inputs
vortex SPECint 2451M persons. Ik
go SPECint 926M 9stone21
applu SPECfp 1410M applu.in
apsi SPECfp 1400M apsi.in
fpppp SPECfp 1000M natoms.in
hydro2d SPECfp 375M hvdro2d.in
mgrid SPECfp 1410M mgrid.in
su2cor SPECfp 2500M su2cor.in
turb3d SPECfp 1000M turb3d.in
wave5 SPECfp 1410M \vave5.in
adpcm Media 16 bit PCM < - > 4-bit ADPCM coder clinton. pcm
mpeg2 Media MPEG digital compressed format encoding rec%d
gsm Media Audio and speech encoding with GSM std. clinton.pcm
g721 Media Voice compression using the G.721 standard clinton.pcm

Table 5.1: Characteristics of the SPEC95 and Mediabench benchmarks studied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 98

excessively long execution times. Thus we have adopted a methodology similar to

that described in [81]. We warm up the architectural state using a fast-mode cycle-

level simulation that updates only the caches and branch predictors during each cycle.

The warmup period also avoids the effects of smaller operand sizes that are prevalent

within program initialization. Using the results of [81] to identify representative

sections of the program run based on cache and branch prediction statistics, we then

simulate a 100 million instruction window using the detailed simulator. Table 5.1 lists

the reference input that we have chosen for the SPEC95 benchmarks, and the number

of instructions for which we warm up the caches and branch predictor. Table 5.1 also

describes the applications chosen from the MediaBench suite. For the MediaBench

suite, gsm, g721, and mpeg2-decode were run to completion while mpeg2-encode was

simulated for 100 million instructions after a 500M instruction warmup period.

5.3 Proposal: Value Based Clock Gating

5.3.1 Clock Gating

Dynamic power dissipation is the primary source of power consumption in CMOS

circuits. In CMOS circuits, dynamic power dissipation occurs when changing input

values cause their corresponding output values to change. Only small leakage currents

exist as long as inputs are held constant. Clock gating has been used to reduce power

by disabling the clock and thereby disabling value changes on unneeded functional

units. In static CMOS circuits, disabling the clock on the latch that feeds the input

operands to functional units essentially eliminates dynamic power dissipation. Power

consumption on the critical clock lines is also saved because the latch itself is disabled.

In dynamic or domino CMOS circuits, the same effect can be obtained by disabling

the clocks that control the pre-charge and evaluate phases of the circuit. The use of

permission of the copyright owner. Further reproduction prohibited without permission

Chapter 5: Value Based Clock Gating 99

clock gating may introduce additional clock skew and can complicate timing analysis

which provide challenges for circuit designers performing the implementation. Despite

these difficulties, conditional clocking is commonly used in current microprocessors

[41].

Currently most work on clock gating has focused on using the decoded opcode to

decide which units can be disabled for a particular instruction. For example, nop’s

allow most of the units to be disabled since no result is being computed. As another

example of opcode-based clock gating, consider an “add byte” instruction. Since the

opcode guarantees that only the lower portion of the adder is needed, the top part of

the functional unit can be disabled.

Proposed Architecture

Our approach proposes a more aggressive clock gating approach and quantifies its

benefits. At run-time, it determines instances when, based on the input operands,

the upper bits of an operation are not needed; in those cases, it disables the upper

portion of the functional unit. The key differences from prior approaches are that (1)

our approach is operand-based, not opcode-based, and (2) our approach is dynamic,

not static. (One could, of course, use our method in addition to prior opcode-based

approaches.) Different runs of the program, or even different executions of the same

instruction, can dissipate different amounts of power depending on the operands seen.

There are several different possible hardware implementations for this technique.

Figure 5.3 is a diagram of one possible implementation. This unit recognizes that the

upper bits of both input operands are zeros. For example, in an addition operation,

if both input operands have all zeros in their top 48 bits, these bits do not have to be

latched and sent to the functional units. We already know that the result of this part

of the addition will be zero, and thus zeros can be multiplexed onto the top 48 bits

of the result bus, rather than computed via the adder. In this architecture the low

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating

zcro48

Bypass
Result

Operand A
from

bypass

Operand A
from

registers

Zero48_Bypass

Zero4S_RegA

ResulUv)

Gated Clock Result.^)

Functional
ResuiUj.|S

Gated u o c k

Zeroi8_RegB

Operand B
from

bypass

Operand B
from

registers

Figure 5.3: Clock gating architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 101

16 bits are always latched normally. The high 48 bits are selectively latched based

on a signal that accompanies the input operand from the reservation stations or the

bypass network. This signal, called zero\8 in Figure 5.3, denotes that the upper 48

bits are all zeros and is created by zero detection logic when the result was computed.

Since some operands come directly from the cache, there must also be a zero-check

during load instructions. We believe such zero-detect hardware and corresponding

flags within the reservation stations are already present in some processors; it is

used, for example, to recognize divide-by-zero exceptions early. However, in some

processors it may not be possible to perform zero-detects on incoming loads, and in

these cases the hardware will not recognize an opportunity to gate the clock. For the

SPECint95 suite, 13.1% of power saving instructions have one or more operands that

come directly from a load instruction; these are the instructions that would be missed

if zero-detect were omitted on loads. The percentages for the media benchmarks are

much lower at 1.5%.

The gated clock signal used to disable the upper 48 bits of the functional unit

is generated based on the zero48 signals of the respective operands and is combined

with an AND gate in parallel with data bypass multiplexing. In the case of functional

units designed with static logic this signal can be used to disable the upper 48 bits

of the preceding latches thus effectively reducing the switching activity to zero. For

functional units design with dynamic logic, the zero48 signal would be placed into

the latches and used in the next cycle to disable the clock on the upper 48 bits of the

functional unit.

In Figure 5.3 the zero48 signal is generated after the functional unit completes the

specified operation. In processors with architecturally visible zero-flags such as the

Intel x86, Motorola 68K, and IBM/Motorola PowerPC architectures, this approach

would be feasible because there would be no additional serial delay introduced. How­

ever, in other architectures in which adding a zero-detect in the execute stage would

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 102

affect cycle time, another implementation is possible. This implementation relies on

the fact that if we know that the two source operands of an operation are 16 bits or

less, then it is relatively easy to determine whether or not the result will be 16 bits or

less. For example, with an arithmetic operation, if the carry-out signal of the 16th bit

is zero and the two source operands are 16 bits or less, then we know that the result

will be 16 bits or less. Thus, the zero48 signal can be computed after the carry-out

of the 16th bit is generated, well before the final adder result is finished. Finally, in

some cases a designer might not want to insert the zero48 signal into the register file

or reservation stations. In this case, the 48-bit zero-detects could be inserted after

register fetch while waiting for the bypass results to be returned. This relies on the

fact that register read generally takes place in the first half the cycle and writeback

occurs in the second half of the cycle.

In order for any power saving technique to be useful, it must save more power

than it consumes. In our technique, the new power dissipated is mainly in the zero-

detection logic and in widening the mux onto the result bus. The primary power

savings stems from selectively clock-gating the functional units based on the results

of the zero-detection logic. In the following subsections we evaluate these costs and

benefits in more detail.
□A n* a Lope IStoft CMm* O Coapm

Figure 5.4: Operations with both operands 16 bits or less.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 103

Bitwidth Analysis of Benchmarks

The success of our approach relies on the frequent occurrence of narrow bitwidth

operands. Figure 5.4 shows, for each benchmark, the percentage and type of opera­

tions whose input operands are both less than or equal to 16 bits. (Both operands

must be small in order for the clock gating to be allowed.) The breakdown by op­

eration type is another important metric. Intuitively, disabling the upper bits on an

adder or multiplier will save more power than turning off the upper bits on the less

power-hungry logical functions. Figure 5.4 shows that for most benchmarks, arith­

metic and logical operations dominate the number of narrow-width operations. In

most of the benchmarks multiplies are rather infrequent although they do account for

6% of the narrow-width operations in gsm.

Recall that Figure 5.1 illustrated how address calculations result in many oper­

ations with bitwidths of 33. Roughly 94% of SPECint95 compute operations had

bitwidth requirements of 33 or less with 37% occurring at the 33-bit mark. From this

data it makes sense to include a second control signal for clock gating of operands

that are 33 bits or less. The zero detect logic can be shared so that the extra hard­

ware requirements are minimal. This modification is also useful for optimizing the

multiplication of two 16-bit numbers. In these cases a 32-bit result can occur, so

the 33-bit mux onto the result bus would be used as shown in Figure 5.5. Figure

5.5 also shows the expanded clock gating architecture with clock gating at the 16-bit

and 33-bit boundaries. The operand latches have been further partitioned and an

additional clock gating signal is generated. In sections 5.3.3 and 5.3.4 we discuss the

choice of the bitwidths to clock gate in more detail.

Negative numbers provide another source of narrow-width data for operand-based

clock gating to exploit. In the Alpha architecture that we considered in this study,

the fundamental datum is the 64-bit quadword. Quadword integers are represented

with a sign bit occupying the most significant bit [11]. Numbers are expressed in two’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating

nairow48, natrow31

Gated Ok»v

Operand A
fram

bypass Latch
63-34

Operand A
from

registers elk
Latch
33-16

Latch
15-0

— Gated Clhtvu —

— Gated Clkins

Operand B
from

bypass

Latch
33-16

Figure 5.5: Expanded clock gating architecture with 33-bit gating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 105

complement form which simplifies arithmetic operations. The techniques presented in

this work rely on determining when data requires less than the full word width of the

machine. For positive numbers, this can be accomplished by performing a zero detect

on the high order bits. For negative numbers in the two’s complement representation,

leading l ’s signify the same thing that leading 0’s do for positive number - essentially

unneeded data. Thus a ones detect computation (simply an AND of the high-order

bits) must be performed in parallel with the zero detect computation to detect narrow

bitwidth negative numbers. An additional signal does not need to be stored in the

register file because this information can be derived by sampling one of the higher

order bits. Figure 5.5 shows the zero and ones-detect logic which creates the signals

narrow31 and narrowJS (analogous to the zero48 from Figure 5.3).

5.3.2 Power Results: Overview

Device 32-bit 48-bit 64-bit
Adder (CLA) 105 158 210
Booth Multiplier 1050 1580 2100
Bit-wise Logic 5.8 8.7 11.7
Shifter 4.4 6.6 8.8
Zero-Detect - 4.2 -

Additional Muxes - 3.2 -

Table 5.2: Estimated power consumption of functional units at 3.3V and 500Mhz
(mVV).

The amount of power that is saved by our approach depends on both the type

and frequency of narrow-width operations. In order to quantify the amount of power

saved, we use previously-reported research to estimate the amount of power that

various functional units use [13; 28; 67; 98]. From these sources we obtain power

estimates assuming dynamic logic and relatively fast carry look-ahead adders. We

assume that the power scales linearly with the number of bits of the units based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 5: Value Based Clock Gating 106

[66]. We assume that the multiplier is pipelined with its power usage scaling linearly

with the operand size. Again, the zero-detect for 33 bits can be computed within

the 48-bit zero-detect so no additional power is consumed. Table 5.2 summarizes the

values that we have assumed for different size devices. The functional units in current

high-end microprocessors are likely to use even more power. For this analysis though,

the important factor is the ratio of the respective functional units to each other.

QTolfti Saved. Ib b itru u ll

■ T o tal Saved 33 btt result

QToU l E i tn Power Urad

I M Li
* / * ^ ^ * / / / / / / / /

Figure 5.6: Net power saved by clock gating at 16 and 33 bits. Total extra used is the
amount used by zero detection and multiplexing. Net savings is equal to the amount
saved at 16 bits plus the amount saved at 33 bits minus the amount used.

Figure 5.6 summarizes the amount of power saved and expended by the integer

execution units. We arrived at these numbers by determining the amount of power

saved and expended per operation executed and multiplying by the average issue

rate. These results include all loads, stores, branches, and other integer execution

unit instructions that are not part of the set of instructions that our optimization

applies to. Among the SPECint95 benchmarks, our technique saves the most power

for ijpeg and go. Ijpeg has a large number of narrow-width arithmetic operations.

Go includes a large number of address calculations and is helped the most by adding

the extra signal to detect 33-bit operations. The media benchmarks tend to save

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 107

even more power than the SPECint95 benchmarks. This is primarily because of the

larger number of arithmetic operations. GSM, in particular, has a relatively large

number of narrow bitwidth multiply operations. The amount of power used by the

zero detection circuitry is small and nearly constant for all benchmarks. In no case

does the amount of power used for zero detection exceed the amount of power saved.

*00

TOO

600

□ Baseline
■Optimized

<(•' s f j / j t J-
/ / - ' % <i* & * %
Figure 5.7: Power usage of integer unit.

Figure 5.7 shows the total amount of power that is saved by the integer unit with

our optimization. For the baseline system, we assume that all operations use the

amount of power that a 64-bit device would use. (We assume basic clock gating in

which, for example, multipliers are turned off for add instructions and vice versa.)

For the SPECint95 benchmark suite, the average power consumption of the integer

unit was reduced by 54.1%. For the media benchmarks, the reduction was 57.9%.

While a 50-60% power reduction seems exceptional, it is important to note that

the integer unit’s contribution to total power varies depending on the CPU. In some

high-end CPUs much of the power is spent on clock distribution and control logic, and

thus the integer unit represents only about 10% of the power dissipation [41). In such a

processor, our optimizations will lead to 5-6% power reductions on average. As control

is streamlined, either in DSPs or via explicitly-parallel instruction computing (EPIC)

as in future Intel processors [35], the integer unit is a larger factor in the processor’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 108

total power dissipation, as much as 20-40% [54]. In these cases, the total power savings

from our technique will approach 20%. In all processors, our approach promises a

relatively easy way to prune power from the integer unit where this is important.

We also note that our power savings estimates are somewhat conservative. The clock

gating technique also reduces the switch capacitance seen by the clock distribution

network, and this can lead to a further power reduction. Although this effect can be

significant, it cannot be quantified without a chip floorplan.

5.3.3 Selecting Gating Boundaries

In the previous subsections, data has been presented for clock gating at 16-bit and

33-bit boundaries. The choice of the 33-bit mark was motivated because the empirical

data demonstrated that a large number of operations exist with both source operands

33 bit or less, primarily due to address calculations. The reason for choosing the 16-bit

mark is more arbitrary and reflects the need to balance two tradeoffs in the selection of

the boundary at which to clock gate. First, if the boundary is chosen to be too large,

the amount of power saved will not be as significant as possible. On the other hand,

if the boundary is selected to be too small, not enough operations will be eligible for

clock gating at that boundary.

In this subsection, we systematically investigate the selection of the clock gating

boundary. In this analysis, we limit the number of boundaries that are clock gated to

one or two. We also assume that the power dissipation of the functional units scales

linearly at the bit-level. In the next section, we investigate the potential for clock

gating at more than two points with finer granularities.

Figure 5.8 shows the integer unit power reduction by having one clock gating

boundary at the specified bitwidths. The data is shown as a percentage power re­

duction relative to the original integer unit power. Clearly, if we are only allowed

to clock gate at one point, we should clock gate at 33 bits. Clock gating at points

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 109

„ m 2 t
*
I JO*

0 I 2 3 4 5 0 7 t 9 10 II 12 13 14 !5 16 17 19 |9 20 21 22 23 24 23 26 27 29 29 30 31 32 33

Figure 5.8: Integer unit power reduction by selecting to gate at one bitwidth.

beyond 33 bits does not make sense for this set of benchmarks, because they rarely

utilize the upper portion of the functional units. Section 5.3.5 will discuss floating

point benchmarks in more detail. Future applications written for 64-bit CPUs may

use larger values more frequently, but we typically expect this usage to grow slowly

from the 33-bit mark as addressing needs grow.

3 30% 3 1

0 I 2 3 4 } 6 7 9 9 10 II 12 13 14 15 16 17 19 19 20 21 22 23 24 25 26 27 29 29 30 31 32 33

Figure 5.9: Integer unit power reduction by clock gating at 33 bits as well as at the
specified bitwidth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^9318994494159318945499^69

Chapter 5: Value Based Clock Gating 110

Figure 5.9 shows the power savings assuming that we now are able to clock gate at

two points. One of the two points is always chosen to be 33 bits, capturing the large

number of address calculations. The second point varies, with each bar measuring

the total amount of power saved by clock gating at that bitwidth as well as at 33

bits. Figure 5.9 demonstrates that choosing the clock gating point to be anywhere

from ten to seventeen results in very little difference in the total amount of power

saved. Thus our original choice of clock gating at 16 bits was reasonable. On the

other hand, certain benchmarks display a preference for clock gating at a particular

bitwidth. This can affect the total amount of power saved significantly. For example,

the optimal selection of clock gating boundary for m88ksim is 5 bits. Clock gating at

this bitwidth would save approximately 10% more power than our default selection

of 16 bits.

5.3.4 Selecting the Number of Clock Gate Boundaries

In the previous subsection we investigate the optimal selection of clock gating bound­

aries for one and two points. In this subsection, we investigate the potential for clock

gating at multiple points at finer granularities. For example, instead of clock gating

just at 16 bits and 33 bits, as in our original proposal, another choice might be to

clock gate four bitwidths: the 8-bit, 16-bit, 24-bit, and 33-bit boundaries.

Figures 5.10 and 5.11 show the percent of the integer unit power saved by clock

gating at the specified granularities for the SPECint95 and multimedia benchmarks.

In these figures, the last bar assumes clock gating at only the 33-bit boundary. The

second to last bar is similar to our original proposal, in which we clock gate at 16-

bits and 33-bits. The remaining three bars show the improvement by clock gating at

additional, finer granularities. These figures show the diminishing marginal returns

for clock gating as we approach 1 bit of granularity. The data suggests that our

original proposal with two boundaries at 16 and 33 is close to optimal. If additional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 111

I OT* 1 1
X

£ 40*I
s3s **

:o%

Q t fail flZ -bii Q 4-bii Q l-b ii B lfr-h u O K -b ti

ijp«| m l lb im | o t iiip ccl ' • o t u x pcti SPCCuil45

Figure 5.10: Percent of integer unit power saved with varying clock gating granulari­
ties.

(UDxkcodi p B H ira k RV*fi-<*GoJi jT?l-«sorti MantA

Figure 5.11: Percent of integer unit power saved with varying clock gating granulari­
ties.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Vaiue Based Clock Gating 112

boundaries are desired, then 8-bit boundaries provide slightly better power savings.

5.3.5 Value-based Clock Gating in Floating Point Bench­

marks

In this section we discuss value-based clock gating within floating point benchmarks.

Here we will consider clock gating on both integer data, as in the previous sections,

and within certain types of floating point operations.

Clock Gating Integer Code in Floating Point Benchmarks

Floating point benchmarks often contain a significant percentage of integer code in

addition to floating point operations. Integer code in floating point benchmarks is

often used for loop index variables and address computations. In the integer bench­

marks that we studied, roughly 50% of the instructions are integer computations that

are available for clock gating. In the floating point benchmarks approximately 25%

of the instructions are integer computations. The integer computations within these

benchmarks tend to have a larger percentage of arithmetic operations which consume

more power than the other classes of instructions. Thus the power consumption

within the integer unit is significant within these benchmarks.

Figure 5.12 presents the data for functional width analysis on the integer code

within SPECfp95. This graph is similar to Figure 5.1 in which we present the data

for SPECint95. The main difference between the two graphs is that the spike at

33 bits is larger, corresponding to the fact that address calculations will be a larger

percentage of the integer code than within floating point programs. Still, about 37%

of the operations require 16 bits or less to perform their computation.

We next present data on the power saved by clock gating the floating point bench­

marks. We assume that we will definitely want to clock gate at the 33 bits. Figure

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 113

ion

10
to

AO

* $0
2
iru w

14 !A 44IA 4 S4

Figure 5.12: Bitwidths for integer computation in SPECfp95 on 64-bit Alpha.

*n%

0 I l \ 4 J A 7 I 9 10 II II tJ t4 IJ 16 IT II 11 » : t s 3 24 3 » 17 : • .*9 » Jl n t t

Figure 5.13: SPECfp95 integer unit power reduction by clock gating at 33 bits as well
as at the specified bitwidth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 114

5.13 shows that the optimal mark for placing the second clock gating mark is at the

11-bit mark. However, the difference between choosing the 11-bit mark and the 16-

bit mark that we chose before is only 2%, so we can use 16-bits to keep the same

hardware structure as the original proposal for the integer benchmarks.

QBueline
■Optimized

s »*>

ipplii tpii fpfW bydroM mgTNi i«Zcor nubW »«vt5 SPECfjrti

Figure 5.14: SPECfp95 power usage of integer unit.

Figure 5.14 shows the total power used by the integer assuming the baseline and

clock gated configurations. The percentage savings of the clock gated configuration

is still over 50%. However, as expected the total power used and saved within the

integer unit is less than before. Hence the optimization would have less of an effect

on the overall power dissipation of the processor for these floating point programs.

Clock Gating Floating Point Operations

Applications with floating point code tend to have higher overall power dissipation.

This is because floating point operations are much more complex and hence use more

power. For example, floating point programs tend to have a larger number of power

hungry multiplication operations. We will focus on these multiplication operations

in this section for two reasons. First, in floating point arithmetic, multiplication is

simpler than addition and subtractions in that it does not require shifting an operand

to align them before performing the computation. Essentially, the mantissas of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 115

input operands are multiplied together and the exponents of the input operands are

added together. Second, since multiplication is more expensive in terms of power

dissipation there is more potential for power savings.

ton

■»

tu

TOv*
I *8
sos
i
a «
iu w

10

fj
5212 21 40 410 4 I \h 44

Ml Width

Figure 5.15: Bit width analysis of the 52-bit mantissa in double precision floating
point multiplication

According to IEEE Standard 754, 64-bit double-precision, floating point arith­

metic uses a mantissa of 52 bits, an exponent of 11 bits, and one sign bit [47]. We

consider clock gating on input operands of the 52-bit integer multiplication operation

that occurs in double precision multiplication. In single precision operations, the

lower 29 bits are all zeros. Single precision multiplication uses the same functional

units as double precision multiplication and would present many additional opportu­

nities for clock gating. However, we do not consider them here because traditional

opcode-based clock gating techniques would be sufficient to capture these situations.

Figure 5.15 presents the bit width analysis for the 52-bit mantissa in double pre­

cision floating point multiplication. Most often the operations require nearly the full

52 bits of precision. However, roughly 10% of the operations require less than 4 bits

of precision. Despite the small number of instructions that are amenable to clock

gating, being able to clock gate nearly the full width of the multiplication saves an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 116

I «
x
1 5*
£

2 4*

0 2 4 6 I 10 12 14 16 (I 20 22 24 26 21 JO 32 34 16 I I 40 42 44 46 41 10

Figure 5.16: FP multiplier power reduction by selecting one clock gating point in the
52-bit mantissa.

appreciable amount of power. Figure 5.16 shows the power saved by selecting one

clock gating point within the 52-bit mantissa. By selecting gating at the 4-bit bound­

ary, approximately 9% (18mVV) can be saved. This compares to about 125mVV saved

by clock gating operations in the integer benchmarks, and about 100mVV saved by

clock gating integer operations in the floating point benchmarks.

5.4 Speculative Approaches for Exploiting Narrow-

Width Operands

The power optimization discussed in Section 5.3 requires that both input source

operands be less than 16-bits to operate most efficiently. For the power optimization,

if the first input operand is less than 16-bits and the second operand is greater than

16-bits, yet still less than 33-bits, it will be clock gated at the 33-bit mark rather than

the more optimal 16-bit mark.

The requirement that both input operands be less than 16-bits excludes a large

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8079829459

Chapter 5: Value Based Clock Gating 117

number of arithmetic operations used for memory addressing, loop incrementing, etc.

In many of these cases, one of the input operands may be very large, while the

other is quite small. When this is true, it is possible that adding them will result

in a carry that ripples into the highest bits, but in practice, such large ripple carries

occur infrequently. Based on this observation, we present extensions here to value

based clock gating that allows the optimization to proceed speculatively assuming

that there will be no overflow from the 16-bit operation; the high 48 bits of the larger

source operand can be muxed onto the result bus to proceed into the destination RUU

stations. However, in the rare cases that there is overflow from the 16-bit addition, the

instruction can be squashed and subsequently re-executed as a full-width instruction.

Such a situation could be handled in a similar manner to “replay traps” , which are

already available for other reasons in the Alpha 21164 and other CPUs [15].

5.4.1 Replay Clock Gating for Arithmetic Operations with

Varying Operand Sizes

In this section we investigate the benefits of speculatively clock gating operations at

the 16-bit mark when one source operand is less than 16-bits and the other source

operand is greater than 16-bits. We will call this technique replay clock gating.

When the replay clock gate operation succeeds, the power savings are similar

to those previously presented. We must also, however, account for the cases when

the 16-bit addition has carry-out and the instruction must be re-executed. These

replay overflows incur both a performance and a power penalty. Because of this, we

would like the percentage of instructions that overflow the 16-bit boundary to be

low. Figure 5.17 demonstrates that for most of the benchmarks this is true. This

figure shows the percentage of replay clock-gated operations that overflowed the 16-

bit boundary. For the SPECint95 benchmark suite, about 9% of the speculatively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 118

Figure 5.17: Percentage of replay clock gated instructions that overflow the 16-bit
boundary.

clock gated instructions did have overflow. The multimedia benchmarks, having more

regular data types and ranges, had a overflow rates of only 2%. Compress (33%) and

ccl (18%) had the highest overflow rates.

800 :
O.V« frvtnff

■N«i S«m p*itrpUr

Figure 5.18: Net savings with and without replay clock gating.

In computing the net power saved via replay clock gating, we attempted to charge

operations with a power cost when they overflow and need to be re-executed. VVe also

took into account the power cost of re-issuing instructions in the previous pipeline

stage that were dependent on the squashed instruction. Computing the amount of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 119

power used when re-executing is fairly straightforward; we simply charge the instruc­

tion with the cost of a second add (usually 33-bits, assuming 33-bit clock gating was

valid). Estimating the amount of additional power consumed to re-issue the depen­

dent instruction is more difficult and depends heavily on the actual implementation

details of the processor. We used the VVattch infrastructure discussed in Chapter 2

to provide these estimates.

Figure 5.18 shows the net savings with and without replay clock gating. The net

savings with replay includes the amount of additional power saved on replay clock

gated instructions as well as an estimate for the amount of extra power dissipated due

to replay overflows. The amount of additional power saved was approximately 12%

for SPECint95 and 21% for the multimedia benchmarks. However, as expected the

benchmarks did not perform uniformly. In fact, the net savings for compress was 20%

lower when using replay clock gating; its unusually large number of replay overflows

incur additional power consumption. Figure 5.19 shows the two components of the

additional power used when replay overflow occurs. The power used to re-execute

instruction is about 2-3X higher.

6 0-,
0K*«uc«ucdm

Figure 5.19: Additional power used when replay overflow occurs.

In addition to consuming additional power, re-issuing and executing instructions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 120

can lead to performance degradation. All of the benchmarks we considered, except

compress, performed within 0.5% of the baseline system when using replay clock

gating. Compress suffered a 4% performance degradation due to the large number of

replay overflows.

Overall, replay clock gating has mixed results. For most of the applications in the

benchmark suite, the additional power savings benefits are attractive. However, for

compress the performance degradation is noticeable.

While speculatively applying clock gating has mixed results, we found that spec­

ulative approaches for operation packing are quite successful [19]. We call this tech­

nique replay packing. Replay packing achieved speedups of 4.3%-6.2% for SPECint95

and 8.0%-10.4% for the multimedia benchmarks. This is a significant improvement

over the non-speculative version of the operation packing optimization.

5.4.2 Summary of Results

Sections 5.3 and 5.4 have explored value based clock gating in order to exploit the

detection of narrow-width operations at run-time. We discussed both speculative and

non-speculative versions of the optimization.

For this optimization, the non-speculative version of the clock gating optimization

seems like the best choice. While the speculative optimization saved approximately

20% more power, performance may be sacrificed for some applications, since instruc­

tions must be re-issued after a misspeculation.

The speculative technique is most successful when the 16-bit overflow rate is low

as shown in Figure 5.17. Overflow confidence predictors could be used to decrease

the overflow rates by recording the 16-bit overflow history of arithmetic operations to

determine whether it is expected to be useful to perform the replay gating/packing.

This would decrease the replay overflow rate and hence the benefits of replay clock

gating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 121

5.5 Value-Based Clock Gating in an Industry Con­

text

This chapter discusses the potential benefits and possible implementation of value-

based clock gating and operation packing. This study was performed within an aca­

demic environment and while many details were considered, industrial circuit design

styles and pipeline designs could have an impact on this technique. In this section

we discuss the results of a study on the analysis and one potential implementation of

value-based clock gating within a high-performance Itanium™(IA64) processor fam­

ily microprocessor design. This study was conducted as part of a summer internship

project at Intel Corporation.

5.5.1 IA64 Bitwidth Analysis

Bitwidth

Figure 5.20: Bitwidths for SPECint95 for IA64 and 64-bit Alpha.

In Figure 5.20 we compare the bitwidth analysis that was performed on the Alpha

ISA during the academic study with a similar analysis that was performed at Intel

on the IA64 ISA using an internal research simulator. The results of the analysis are

co
2
8.
9>
3
3
E3
o

0oc
g
3o
O

-IA64 (Intel)

- Alpha (SimpleScalar)

12 16 20 24 28 32 36 40 44 48 52 56 60 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 122

very similar up to the 20-bit mark. Around this region, there are two small spikes

which show the percent of integer compute operations which required 20 and 28-bits

to perform their computation. These points most likely correspond to the location

where the IA64 compiler used in this study performed address calculations. This

compares to the 33-bit mark with the Alpha compiler and ISA. Note that the results

depend on whether or not the binaries are generated to take advantage of the entire

64-bit address space. For this study, we used SPECint95 binaries generated from the

IA64 research compiler.

co
2
0a
o>‘<30
3
E
3
o

100 -
90 -
800o 70

c
s 60 -
k3 50 -
oo 40 -
O 30 (

20 I
10 T
o -m Ht-

— I A64-compute
addition

— comparison
— shift
— logic

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Bitwidth

Figure 5.21: Breakdown of Bitwidths for SPECint95 for IA64 and 64-bit Alpha.

Figure 5.21 shows the bitwidth and operation type breakdown for SPECint95 with

the IA64 ISA. About 80% of the comparison, shift, and logic operations occur at the

16-bit mark or below, while roughly 35% of the pure addition operations occur at the

16-bit mark or below.

Overall, the bitwidth analysis on the IA64 ISA was very similar to the Alpha ISA.

This suggests that a similar value-based clock gating implementation can be useful for

IA64 processors, although the exact location of the value-gating mark may change.

For example, it may be sufficient to perform value-gating at the 28-bit mark instead

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 123

64-bit Adder Randomized Zeros Ijpeg Stream
Upper 32 Disabled 42.6% 34.7% 37.5%
Upper 48 Disabled 62.4% 53.8% 58.8%
Selective Gating N/A N/A 46.3%

Table 5.3: Reduction in power dissipation for a 64-bit adder under various gating
schemes

of the 33-bit mark.

5.5.2 Value Based Clock Gating Implementation

Circuit-level analysis was performed to determine how much power could poten­

tially be saved with value-based clock gating under a variety of operating conditions.

These experiments were performed with PowerMill, a commercial circuit-level power-

estimation tool. The circuit and layout design for the 64-bit arithmetic units within

the high-performance IA64 processor design was used for this study. The average

power dissipation for 100 test vectors as reported by PowerMill.

Three different input streams were applied to the adders under three different

gating conditions. The three different input streams are randomized inputs, a stream

where all of the inputs are zeros, and a stream which was captured from arithmetic

computations within the ijpeg application (and had a representative mix of arithmetic

computation values). The three gating conditions that we consider are where the

upper 32-bits are disabled for every operation, where the upper 48-bits are disabled

for every operation, and where the upper bits are disabled selectively (either 32- or

48-bits disabled) based on the inputs (for the ijpeg stream).

Table 5.3 shows the results from this circuit-level analysis. These results show

the decrease in power dissipation relative to the unmodified 64-bit adder. With ran­

domized inputs, disabling half of the adder reduced the power dissipation by slightly

less than half. Disabling three-fourths of the adder reduced the power by 62%. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 124

reflects the fact that there is some additional logic that is not disabled so the power

dissipation does not decrease directly proportionally to the amount of bits being

disabled.

The second column of results in Table 5.3 demonstrates the reduction in power

dissipation when the input stream of zeros is sent to this adder. Because of the

dynamic logic in this adder, there is significant power dissipation under this input

stream.

The last column in the table shows the power dissipation under the stream of

arithmetic operations captured from the ijpeg application. The row labeled selective

gating shows the results assuming that a value gating signal exists which disables

either the upper 32-bits or upper 48-bits depending on the actual values in the stream.

With this scheme, selective gating saves roughly half of the power of this arithmetic

unit.

Finally, we performed a power and delay analysis of zero detection circuitry which

would be required to generate the value based clock gating signals. The power dissi­

pation of a 64-bit zero-detect operation was less than 1% of the power dissipation of

the 64-bit adder, suggesting that the power overhead of generating the gating signals

is small.

Figure 5.22 shows the major pipestages in the microprocessor which would be

affected by value based clock gating. We consider a possible implementation for the

value-based clock gating signals. In this implementation, 48-bit zero detection logic is

inserted after the values are fetched from the register file. This location was selected

because there is some slack time available while waiting for the bypass values to feed

into the value-select mux that writes into the execute stage pipeline registers. This

allows value-gating signals to be generated for values that are fetched directly from

the register file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 125

REG
r ZD48 -1

I r f I I 1— •= !

Immedi ate---------

Bypasses---------

IRF
j- ZD48 j

Bypasses

EXE

SHIFTER

ADDER

Zero

LOGIC

Mask

Bypass

Figure 5.22: Pipeline diagram showing proposed changes

WRB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 126

For values that come from the time critical bypass path, two solutions were consid­

ered. First, the gating signal could be generated within the flag generation circuitry

which is already performed with the ALU after the value is computed. Second, a

small optimization can be used to simplify the generation of the gating signal for

these bypass values. We recognize that if the two source inputs to the adder are 16-

bits or less, the results of the arithmetic operation will be 16-bits or less if there is no

carry-out from the 16-bit stage of the adder. Using this optimization, a gating signal

can be generated for bypass values with 1 gate delay following the 16-bit carry-out

signal of the adder which can be performed before the final 64-bit value is computed.

We have proposed an implementation of value-based clock gating which does not

affect any critical timing paths in a high-performance commercial microprocessor.

This implementation can save roughly 50% of the power within the arithmetic units.

This analysis suggests that this could be a viable point-optimization within com­

mercial, high-performance microprocessors. Next we will consider possible methods

to extend this technique to reduce power by performing value-based gating within

register files and other memory structures.

5.5.3 Pervasive Value Gating: Wordline Disable

The optimizations that discussed so far have primarily focused on utilizing bitwidth

information to reduce power within the integer functional units. A clear extension

would be to save power on narrow-width values within the memory hierarchy. Poten­

tially there would be opportunity for more power savings with this approach because

a large fraction of the overall chip power is dissipated within memory structures.

Our proposed optimization within the memory hierarchy focuses on selectively

disabling wordlines at the narrow-bitwidth boundaries. Figure 5.23 shows a diagram

of how gating bits could be used to save power by disabling the wordline at the 16-

bit boundary. This mechanism saves power because the upper 48 bitlines are not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 127

Wordlines
-127-0

t/i« oS i
w sO

S

o r "I r q r I...L

i r

J L
q r

J L
q r

J
qL

•

•

•

15 r

J L

1 r

J L

q r

J

q
LJ LJ L J

Zero48

r q r q r qL2 ^ LJ L I

Figure 5.23: Wordline disable scheme in a register file

activated on read operations. A similar technique could be performed to save power

on write operations by gating the driving circuitry for the write bitlines.

Power can be reduced farther by disabling the pre-charge circuitry for the unnec­

essary (upper 48) bitlines. This scheme may be more difficult to implement because

the pre-charge logic is often asserted before the register id has been decoded. This

requires that an additional control bit accompany the register id indicating that the

upper 48-bits were all Os.

Circuit level analysis was performed on a 128-entry, 64-bit register file to determine

potential savings from various gating schemes. In this experiment, we compared

schemes to disables the clock (pre-charge) circuits, the wordlines, and applying both

simultaneously. These schemes were evaluated under the conditions where the register

file values are initialized to all Is and all Os. Random values are then read and written

to the register file for 100 cycles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 128

Integer Register File Init to 0 Init to 1
Clock (pre-charge) disabled
Wordlines disabled
Both disabled

31.1%
30.1%
58.4%

26.0%
45.1%
66.0%

Table 5.4: Reduction in power dissipation of a 128-entry, 64-bit register file under
various gating schemes (includes bitline, wordline, and precharge power)

Table 5.4 shows the reduction in power dissipation under the three gating con­

ditions. There is 30%-45% reduction in power dissipation when using the different

gating techniques alone, but a 58-66% reduction when they are applied together.

Still, this is somewhat less than the ideal 75% reduction corresponding to the ideal

scenario where power reduction is directly proportional to the reduction in bits that

are fetched from the register files.

Techniques to disable the wordlines and pre-charge circuitry in register files and

caches can provide substantial savings in power dissipation throughout the processor,

because these memory structures consume a large fraction of the overall chip power

dissipation. Recently, other research efforts have also begun to explore value-based

clock gating throughout the datapath and memory hierarchy [29; 95].

5.6 Chapter Summary

Recently there has been increased interest in supporting operations with operand

widths smaller than the maximum supported by functional units in microprocessors.

This interest stems first from the increasing use of multimedia applications, but also

from the larger 64-bit word sizes on current microprocessors. Most of the past re­

search in this area has focused on increasing performance by discerning instructions

with narrow width operands at compile time and generating code that allows such

computations to occur with sub-word parallelism. From this research we can draw

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 129

several conclusions.

• Compiler bitwidth analysis: Compile-time analysis of operand width is con­

strained by the fact that the operand range of instructions may vary over the

course of a program run depending on the input data. In addition, the compiler

must conservatively analyze all potential paths taken. Our work notes that cer­

tain uncommon paths may have markedly different operand size characteristics

than the typical path through programs.

• Dynamic bitwidth analysis: In order to augment compile-time analysis, we

present a technique to dynamically exploit narrow-width data. This technique

reduces power in the integer execution unit with aggressive clock gating, after

determining that the upper portion of functional unit is not needed. This

results in a 45%-60% reduction in the integer unit’s power consumption for

the benchmarks that we studied. This equates to a 5%-l0% full-chip power

savings.

• Avenues to exploit narrow-width values: Value based clock gating and

operation packing both rely on the same core mechanism to achieve their opti­

mization; namely they recognize that the upper bits in the input operands are

not needed to perform the computation. Another area offering opportunities

for dynamic recognition of low-precision operations is in the memory and I/O

hierarchy. These opportunities include: (1) pin and bandwidth compression by

recognizing that multiple pieces of low-precision data can share the same I/O

pins and on-chip wiring, and (2) low power caches which save power by writing

16-bits for the value and one signal bit indicating that the stored value is low

precision rather than writing the full 64-bits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Value Based Clock Gating 130

A key characteristic of our current proposal is that it requires only a small amount

of hardware and no compiler intervention. Because of their common hardware re­

quirements, we foresee systems in which the choice of whether to use the power or

performance optimization can also be made dynamically, based on thermal input or

other mode controls. More broadly, they represent a further step towards operand-

value-based optimization strategies throughout processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Dynamic Thermal Management

With the increasing clock rate and transistor count of today’s microprocessors, power

dissipation is becoming a critical component of system design complexity. The value-

based clock gating technique proposed in Chapter 5 reduces the average power, or

energy, of the CPU. However, in addition to energy reduction, we will need to be­

gin to find solutions for thermal and power-delivery issues related to the maximum

CPU power dissipation. These issues are becoming especially critical for very high-

performance computing systems.

In this chapter, we investigate dynamic thermal management as a technique to

control CPU power dissipation. With the increasing usage of clock gating techniques,

the average power dissipation typically seen by common applications is becoming

much less than the chip’s rated maximum power dissipation. For example, while the

Alpha 21264 processor is rated as having a maximum power dissipation of 95W when

running “max-power” benchmarks, the average power dissipation was found to be

only 72W for typical applications [41]. However, system designers still must design

thermal heat sinks to withstand the worst-case scenario.

We define and investigate the major components of any dynamic thermal manage­

ment scheme. Specifically we explore the tradeoffs between several mechanisms for

responding to periods of thermal trauma and we consider the effects of hardware and

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 132

software implementations. With appropriate dynamic thermal management, the CPU

can be designed for a much lower maximum power rating, with minimal performance

impact for typical applications.

6.1 Motivation

The system complexity associated with increased power dissipation can be divided

into two main areas. First, there is the cost and complexity of designing thermal

packaging which can adequately cool the processor. It is estimated that after exceed­

ing 35-40W, additional power dissipation increases the total cost per CPU chip by

more than $1/W [89]. The second major source of design complexity involves power

delivery, specifically the on-chip decoupling capacitances required by the power dis­

tribution network.

EI Max Power
■ Average Power

Alpha 21264 Intel PPro Intel Celeron VIAC3

Figure 6.1: Average vs. Maximum power in several microprocessors.

Unfortunately, these cooling techniques must be designed to withstand the max­

imum possible power dissipation of the microprocessor, even if these cases rarely

occur in typical applications. Figure 6.1 shows that the average power dissipation

is often 30-50% less than the maximum rated chip power for many microprocessors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 133

The increased use of clock gating and other power management techniques that tar­

get average power dissipation will expand this gap even further in future processors.

This disparity between the maximum possible power dissipation and the typical power

dissipation suggests dynamic thermal management techniques to ensure that the pro­

cessor does not reach these maximum power dissipation levels. That is, we seek to

explore scenarios where the cooling apparatus is designed for a wattage less than the

true maximum power, and dynamic CPU approaches guarantee that this designed-for

level is never exceeded during a program run.

With many industrial designers predicting that power delivery and dissipation will

be the primary limiters of performance and integration of future high-end processors,

we feel that some form of dynamic thermal management will eventually be seen as

a performance optimization, enabling larger chips to be built which would otherwise

not be feasible [14; 41; 44; 89]. If die area and the number of transistors per chip

become constrained by power density, techniques that can constrain the maximum

possible power dissipation could allow designers to include more transistors per chip

than would otherwise be possible, thus leading to increased performance.

In this work, we define and examine the generic mechanisms inherent in dynamic

thermal management (DTM) schemes. Section 6.2 provides an overview and back­

ground on dynamic thermal management. We explore and compare the potential for

hardware and software-based implementations of several dynamic thermal manage­

ment schemes. Section 6.3 discusses the methodology used in the remainder of the

chapter. We then break thermal management systems into three components: trig­

gers, responses, and initiation policies, and discuss each of them in Sections 6.4, 6.5,

and 6.6 respectively. The core of any DTM system is how it responds to a thermal

emergency (e.g. frequency scaling, execution throttling, etc.). While this work pro­

vides data on a number of possible responses, we feel that further work may identify

even more effective ones. Thus, Section 6.7 outlines a methodology for identifying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 134

promising new response techniques by comparing power and performance correlations.

Finally, Section 6.8 offers conclusions.

6.2 Dynamic Thermal Management: Overview and

Strategies

This chapter explores policies and mechanisms for implementing dynamic thermal

management in current and future high-end CPUs. As we use it, the term dynamic

thermal management refers to a range of possible hardware and software strategies

which work dynamically, at run-time, to control a chip’s operating temperature. Tra­

ditionally, the packaging and fans for a CPU or computer system have been designed

to maintain a safe operating temperature even when the chip was dissipating the

maximum power possible for a sustained period of time, and therefore generating the

highest amount of thermal energy. This worst-case thermal scenario is highly un­

likely, however, and thus such worst-case packaging is often expensive overkill. DTM

allows packaging engineers to design systems for a target sustained thermal value

that is much closer to average-case for real benchmarks. If a particular workload

operates above this point for sustained periods, a DTM response will work to reduce

chip temperature. In essence, DTM allows designers to focus on average, rather than

worst-case, thermal conditions in their designs. Until now, techniques developed to

reduce average CPU power have garnered only moderate interest among the designers

of high-end CPUs because thermal considerations, rather than battery life, were their

primary concern. Therefore, in addition to reducing packaging costs, DTM improves

the leverage of techniques such as clock gating designed to reduce average power [17;

89].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 135

The key goals of DTM can be stated as follows: (i) to provide inexpensive hard­

ware or software responses, (ii) that reliably reduce power, (iii) while impacting per­

formance as little as possible. Voltage and frequency scaling are two methods for

DTM that have been implemented in current chips [62; 92]. Unfortunately, little

work has been done on quantifying the impact of voltage or frequency scaling on

application performance. This work seeks to address this need, while also propos­

ing other microarchitectural approaches for implementing DTM. We also propose a

methodology based on performance and power correlations for seeking out new DTM

responses.

6.2.1 Overview and Terminology

We are primarily concerned with reducing the maximum power dissipation of the pro­

cessor. From a pure hardware point of view, the maximum power dissipation occurs

when all of the structures within the processor are active with maximum switch­

ing activity. However, mutual exclusions in the underlying control structures make

this scenario impossible. In reality, the maximum power dissipation is constrained

by the software program that can maximize the usage and switching activity of the

hardware. Special max-power benchmarks can be written to maximize the switch­

ing activity of the processor. These benchmarks are often quite esoteric, perform no

meaningful computation, and dissipate higher power than “real” programs. Thus,

DTM techniques could be used solely to target power levels seen in maximum power

benchmarks and would rarely be invoked during the course of typical applications. In

this work, we also consider more aggressive DTM designs which seek to further reduce

the amount of cooling hardware necessary in machines. In Section 6.4 we discuss the

tradeoffs between cooling hardware and performance loss in more detail.

Figure 6.2 offers a motivating example of how dynamic thermal management

(DTM) can work. This figure plots chip temperature versus time (in cycles). In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 136

Designed-far Cooling
Capacity w/out DTM

Designed-far Cooling
Capacity w/ DTM

DTM Trigger
Level

u
Response
Engaged

Initiation and
Response Delay

Response
Shutoff

Time

Figure 6.2: Overview of Dynamic Thermal Management (DTM) technique.

this figure, there are three horizontal dashed lines. The top-most line shows the

designed-for cooling capacity of the machine without DTM. The second line shows

that the cooling capacity could be reduced if dynamic techniques were implemented,

because DTM reduces the effective maximum power dissipation of the machine. Fi­

nally, the lowest horizontal line shows the DTM trigger level. This is the temperature

at which the DTM techniques are engaged.

Figure 6.2 has two curves which show chip temperature for some sequence of

code being executed on the machine. The upper, solid curve is executed on the

machine without DTM, and the lower, dotted curve is executed on a machine that has

implemented DTM. Both curves are the same until the DTM trigger level is exceeded.

At this point, after a small delay to engage the response, the curves diverge. In the

uppermost curve the chip temperature slowly increases and then falls back below the

trigger level. The lower curve shows how DTM would affect the same sequence of

code. In this case, the DTM response is able to reduce the power dissipation and

hence the chip temperature; the temperature never exceeds the designed-for cooling

capacity. Eventually, the temperature decreases (as in the non-DTM curve), and the

response is dis-engaged with some performance delay relative to the non-DTM curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 137

Trigger Turn Check Check Turn
Reached Response On Temp Temp Response

I > I Off

r J f ' ~ | I F ~ [I
Initiation Response Policy Shutoff

Delay Delay Delay Delay
4— Response On-----►

Figure 6.3: Mechanisms for Dynamic Thermal Management.

Figure 6.3 breaks down a DTM instance into several components. First, DTM is

triggered. The triggering event may be a thermal sensor, a power estimator, or other

gauge which indicates when DTM is needed. Once the trigger goes off, there is some

initiation delay while, for example, an operating system interrupt and handler are

invoked to interpret the triggering event. Once the handler has been executed, some

DTM response begins. For example, possible responses include voltage or frequency

scaling [72], or some of the microarchitectural ideas we discuss in later sections. De­

pending on the type of response chosen, there may be some delay inherent in invoking

it; we refer to this time as response delay. Once the response is in effect, the next issue

concerns when to turn it off. Turning the response off as soon as the temperature dips

below the threshold may be unwise; temperature may fluctuate around the threshold

and warrant keeping the response turned on. We use the term policy delay to refer

to the number of cycles we wait before checking to see if the temperature has dipped

below the triggering level. Finally, once the DTM system has determined that the

response should be turned off, there is often a shutoff delay while, for example, the

voltage or frequency is readjusted.

Implementing an effective DTM system, therefore, involves several key design

choices which we consider throughout the remainder of this chapter:

• Selecting simple and effective triggers (Section 6.4),

• Identifying useful response mechanisms (Section 6.5),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 138

• Developing policies for when to turn responses on and off (Section 6.6).

6.2.2 Background and Related Work

Some dynamic thermal management techniques have previously been explored. For

example, the G3 and G4 PowerPC microprocessors from Motorola include a thermal

temperature sensor in hardware and an interrupt capability to notify software of when

a particular temperature has been reached [75; 78]. The processor also includes an

instruction cache throttling mechanism that allows the processor's fetch bandwidth

to be reduced when the CPU reaches a temperature limit.

The Transmeta Crusoe processor includes “LongRun” technology which dynam­

ically adjusts CPU supply voltage and frequency to reduce power consumption [92].

While voltage and frequency tuning are quite effective at reducing power consumption

since power scales linearly with clock frequency and with the square of the supply

voltage, the delay in triggering these responses is necessarily higher than with mi-

croarchitectural techniques that are more localized. One of the goals of this work

is to provide an overall view for the tradeoffs between initiation delay, response de­

lay, and performance overhead for a number of techniques including both previously

published techniques as well as ones newly-proposed in this thesis.

In addition to the fairly-recent Crusoe work, the ACPI (Advanced Configuration

and Power Interface) specification likewise works to have hardware and software co­

operate to manage power dynamically [1]. Unlike our work or those described above,

ACPI is very coarse-grained. That is, power management in ACPI involves actions

like turning on or off I/O devices or managing multiple batteries. Our work seeks

to provide a much more fine-grained solution to thermal problems within the CPU

itself. Recent work, including our own, has operated on different thrusts to explore

this domain [18; 20; 46; 80]. These papers and our own work each focus on distinct

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 139

classes of processor architectures. Rohou and Smith have also considered using tem­

perature feedback to guide the operating system in controlling CPU activity on a

per-application basis [77].

Finally, we also note that the work by both Motorola and Transmeta is mainly

geared toward improving battery life in portable machines. Our work, in contrast,

has thermal packaging in high-end CPUs as its main thrust. This context is more

performance sensitive than is power management for laptops. Our overall goal is to

guarantee much lower worst-case power consumption, so that cheaper packaging can

be used, with as little impact on performance as possible.

6.3 Methodology

We have used Wattch for the performance and power estimation results discussed

in this chapter. Our results assume a model of a processor with the configuration

parameters shown in Table 2.3. For technology parameters, we use the process pa­

rameters for a .35um process at 600MHz. We use Wattch’s aggressive clock gating

style for all results. This models power scaling which is linear with the number of

active ports on any particular unit.

6.3.1 Power vs. Temperature

Wattch provides per-cycle power estimates, but one challenge in this research has

been translating these power estimates into chip-level temperature variations. The

most accurate approach would be to develop a model for the chip packaging and heat

sink in a microprocessor. We are currently discussing such models with packaging

engineers, but have abstracted them for the research presented here. We use the

average power over a suitably large chunk of cycles (10k, 100k, and 1M) as a proxy

for temperature [73]. The Tempest project at Intel seeks to eventually provide a

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 140

robust model to link power dissipation and chip temperature [33].

6.4 Dynamic Thermal Management: Trigger Mech­

anisms

Any dynamic response technique requires a trigger mechanism to engage the response

during program execution. In this section, we consider two aspects of the trigger

mechanism. First, we describe several possible trigger mechanisms for dynamic ther­

mal management. Second, we discuss the rationale for determining an appropriate

trigger limit to use in the DTM system. Sections 6.5 and 6.6 discuss the other key

parts of the system: response techniques and initiation mechanisms.

6.4.1 Trigger Mechanisms

For our experimental setup we use an abstraction of chip temperature by using the

moving average of power dissipation for the last 10,000 cycles of the processor’s op­

eration. This trigger mechanism is similar to an on-chip temperature sensor. We will

discuss the details of the temperature sensor as well as several other trigger mecha­

nisms that could be used as abstractions for temperature.

• Temperature Sensors for Thermal Feedback

In the PowerPC dynamic thermal management system, thermal feedback from

an on-chip temperature sensor is used as the trigger mechanism [78]. In the

proposed scheme, the temperature sensor compares the junction temperature

with a user programmable threshold. If the value is exceeded an interrupt is

triggered allowing the operating system to invoke a response mechanism. This

is the basic trigger mechanism that we evaluate in Section 6.5 with a variety of

response mechanisms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 141

• On-chip Activity Counters

Another possible source of information regarding the current chip temperature is

through the use of activity monitors or on-chip performance counters [26]. These

devices record “activity factors” for various structures within the processor and

thus provide a gauge of how much work is being done and, correspondingly, the

thermal state of the machine.

• Dynamic profiling analysis

The runtime system of the machine can be responsible for determining when the

application or user-behavior does not require the full resources of the computing

system and then triggering a response. For example, operating systems often

provide a wait process which is entered when there is no work to be performed,

or address access information can be used to determine when the processor is

idling [68].

In addition, certain real-time and user-interactive applications inherently set

certain acceptable performance levels. These types of applications would allow

dynamic thermal management to occur when the specified rate is exceeded [39].

• Compile-time trigger requirements

Static analysis at compile time can be used to estimate the performance of appli­

cations. In a similar manner, the compiler could estimate the high-power code

segments and insert instructions specifying that DTM triggers should occur. In

EPIC or VLIW where more of the parallelism is exposed by the compiler, this

method would be more fruitful.

Comparing the viability of various trigger mechanisms is a topic for future research

in this area. Relying exclusively on chip temperature sensors may have some draw­

backs. First, the temperature sensor only approximates the average chip temperature;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 142

multiple sensors may be needed on large chips. Second, there may be hysteresis be­

tween the temperature reading and the actual temperature. Pure hardware solutions

also do not provide information about the workload; a combination of temperature

sensors, activity counters, and software analysis may more effective than any of the

techniques taken alone. For the results presented in this thesis, we use an abstracted

trigger mechanism based on interrupts when modeled power reaches a a pre-set trig­

ger threshold. This approximates the situation of a CPU with a single temperature

sensor.

6.4.2 Thermal Trigger and Emergency Settings

The second decision that must be made within the trigger mechanism is the pre-set

trigger threshold. We will define a ‘thermal trigger” to be the temperature threshold

at which the trigger mechanism initiates the response mechanism to begin to cool the

processor’s temperature. A “thermal emergency” is a second temperature threshold

set to a higher level and is used as a gauge of how successful the response mechanism

was in dealing with the increase in temperature. Except where noted, in our simu­

lation environment thermal triggers and emergencies occur if the moving average of

full chip power dissipation for the past 10,000 cycles exceeds the pre-set trigger and

emergency wattage values. Likewise there are also triggers that indicate the CPU has

returned to a safe temperature. At these trigger points, the CPU can begin returning

to normal operation.

In the next two sections we present analysis for the case where the response

is triggered when the 10k moving average exceeds 24W and a full-fledged thermal

emergency is considered to occur when the 10k moving average exceeds 25W. In

Section 6.4, we consider the effects of varying the trigger level and the 10k cycle

thermal window, but for the rest of the results we will use these values. Table 6.1

shows the percent of cycles that were above the thermal emergency threshold for the

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 143

Benchmark Cycles in Emergency Average Power
go 1.0% 22.7W
ccl 1.6% 21.6W
ijpeg 32.7% 24.3 W
li 50.9% 24.8W
vortex 61.6% 24.6W
su2cor 70.5% 25.1W

' tomcatv 96.1% 25.5 W
fpppp 98.4% 32.9W

Table 6.1: Average Power and Percent of Cycles in Emergency for Simulated Processor

baseline system without DTM with the 24VV trigger. There are three main categories

of applications; the remainder of our charts will be sorted as follows:

• Mild Thermal Demands: The first two benchmarks have less than 10% of their

cycles in thermal emergencies with average powers much less than the emergency

level.

• Intensive Thermal Demands: The second group of four benchmarks ranges from

32% to 96%. Tomcutv fell into this class because its average power is only just

above the emergency level.

• Extreme Thermal Demands: Fpppp is the extreme case in which 98% of the

cycles exceeded the thermal threshold and the average power was 7W above the

threshold.

We selected this trigger setting and this set of applications so we could observe

the impact of DTM in a range of scenarios with varying thermal demands. We have

neglected compress and m88ksim in this analysis because neither application had any

cycles exceeding the chosen emergency point.

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 144

6.5 Dynamic Thermal Management: Response Mech­

anisms

In this section we consider the second basic mechanism within a dynamic thermal

management architecture. The goal of designing a good DTM scheme is to reduce

power with as small a performance loss as possible. A key part to realizing this goal

is the response mechanism that throttles power dissipation in the system.

In this work, we consider five response mechanisms. Three of these are microarchi-

tectural responses: I-cache-toggling, speculation control by restricting the number of

unresolved branches, and decode bandwidth throttling (similar to Motorola’s I-cache

throttling [78]). We also consider clock frequency scaling and a combination of clock

frequency scaling and voltage scaling.

• Clock Frequency Scaling

Clock frequency scaling essentially trades a linear performance loss for a linear

power savings. While in principle clock frequency scaling is trivial to imple­

ment, there may be delays incurred when changing clock rates. Furthermore,

communicating with synchronous devices on the system bus may become more

complicated.

• Voltage and Frequency Scaling

Transmeta’s LongRun technology performs dynamic clock frequency scaling

along with dynamic voltage scaling to reduce power dissipation when neces­

sary [92]. Obviously this requires detailed timing analysis and careful attention

to circuit design choices [23]. Furthermore, as future process technologies scale

to lower base supply voltages, dynamic voltage scaling may become more diffi­

cult. This is especially true when standby leakage currents become important.

Leakage currents are directly related to the supply voltage; lowering the sup­

ply voltage to dynamically reduce dynamic power would have a corresponding

with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 145

increase in the standby leakage current.

• Decode Throttling

The PowerPC G3 microprocessor uses a micro-architectural level dynamic ther­

mal management technique called instruction cache throttling to restrict the

flow of instructions to the processor core [78]. This scheme relies on clock

gating to reduce power dissipation as the flow of instructions is restricted. As

motivation for selecting I-cache throttling instead of clock frequency scaling, the

authors cite the difficulty in implementing dynamic clock control for the on-chip

PLL as well as the fact the chip’s L‘2 cache interface operates at a different clock

rate from the chip’s core.

• Speculation Control

Speculation control is similar to Manne's work on speculative pipeline gating

based on branch confidence estimation [42]. However, with the method proposed

here, instead of basing the speculation control on branch confidence as in [42],

we arbitrarily restrict the amount of speculation in the pipeline whenever a

thermal trigger level is reached. To implement this, a counter is incremented

whenever a branch is decoded and decremented whenever a branch resolves. If

the counter exceeds a software-set limit, the decode stage stalls until enough

branches have been resolved. The infrastructure for restricting the number of

resolved branches is most likely already in place in most processors, since they

limit the number of branches in the pipeline to restrict the additional state

required for each active branch.

• I-cache Toggling

We also propose a microarchitectural response technique called /-cache toggling.

This response involves disabling the instruction fetch unit (I-cache and branch

prediction) and using the instruction fetch queue to feed the pipeline. The fetch

unit can be disabled every cycle, every other cycle, or at any specified interval

permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 146

as specified by the interrupt call.

Obviously other techniques, or combinations of techniques, could be used as the

response mechanism. In Section 6.7, we discuss a systematic methodology for deter­

mining new response techniques.

Both the trigger and the various response mechanisms that have been discussed

could be programmable, allowing system designers to specify thermal management

levels based on the amount of heat-sink technology in the system. For example,

more expensive high-end server systems could have higher trigger limits and allow

more unresolved branches, while cheaper low-end desktop systems would have lower

trigger limits corresponding to their smaller heat-sinks. In addition, the individual

response mechanisms allow a variation in the amount of throttling to be performed.

6.5.1 Response Mechanism Results

We use two metrics to evaluate the DTM schemes. First, the scheme should reduce the

number of cycles in which the processor's temperature exceeds the thermal emergency

threshold. The second metric that we use is the overall performance loss that the DTM

technique incurs. Since the schemes we evaluate rely on microarchitectural as well

as frequency scaling techniques, we consider total execution time as our performance

metric.

We present analysis for the case where the response is triggered when the 10k mov­

ing average exceeds 24W and a full-fledged thermal emergency is considered to occur

when the 10k moving average exceeds 25W. We also assume here that the various re­

sponses are initiated by a 250-cycle interrupt from the operating system in a manner

similar to that of the PowerPC, but in Section 6.6 we consider additional hardware

support which improves the performance of thermal management by eliminating this

operating system overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 147

For the response that includes voltage scaling we assume a 10 microsecond delay

to switch frequencies and a 20 microsecond response delay to switch voltages. During

this delay the processor is stalled; this is consistent with the delay that Transmeta

reports when switching between frequency and voltage states [60]. For the scaling

techniques we set the policy delay to be 15 microseconds; in Section 6.6 we consider

extending this delay to reduce the performance overhead of initiating the response.

Finally, we assume that the processor voltage scales proportionally to what is reported

in [60] for each frequency level. For example, when we scale frequency down by

10%, voltage is scaled down by 4.2% for the combined voltage and frequency scaling

technique.

2 0.4

□ toggle I

□ unrest

decode!

Figure 6.4: Reduction in performance compared to baseline for microarchitecture
techniques.

Figure 6.4 shows the overall program performance reduction from the baseline

for the microarchitectural techniques. Figure 6.5 shows the same results for the

frequency/voltage scaling based techniques. Within these figures the first two sets

of bars correspond to the benchmarks with mild thermal demands. The next five

bars have intensive thermal demands. Finally, we show the fpppp, the extreme case

benchmark.

Within Figure 6.4 there are four bars for each benchmark. The first two bars

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 148

i iu rwt
.5 0.9 :

□ fscalelO

■ fscale30

□ vfscalelO

■ vfscale30

Figure 6.5: Reduction in performance compared to baseline for frequency/voltage
scaling techniques.

correspond to I-cache toggling; togglel is the case where the I-cache is disabled every

cycle during the response, toggle2 corresponds to the case in which it is disabled

every other cycle. The third bar labeled unresl indicates that the maximum number

of unresolved branches allowed in the pipeline is restricted to one before the decode

stage is stalled. The final bar decode2 indicates that the decode bandwidth is reduced

by two instructions per cycle respectively. (We have considered additional settings

for the above parameters, but to save space, we have selected the parameters that

performed the best.) Within both Figure 6.4 and 6.5, bars which are cross-hatched

(for example, fpppp's toggle2, unresl, and decode2 bars) indicate that the thermal

emergencies were not entirely reduced for this configuration. Figure 6.5 also has four

bars per benchmark. The first two bars correspond to scaling down the frequency by

30% and 10%. The last two bars correspond to scaling both the frequency and the

voltage by 30% and 10%.

For many of the benchmarks, all of the techniques were able to entirely eliminate

the thermal emergencies in the machine at this trigger level. DTM was not successful

in entirely removing thermal emergencies with ijpeg with the unresl technique and

fpppp with three of the microarchitectural techniques and fscalelO.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 149

For the benchmarks with mild thermal demands, the microarchitectural level tech­

niques incurred an average performance penalty was 2%; the voltage and frequency

scaling techniques had a 7% drop. For the benchmarks with intensive thermal de­

mands, the reduction in thermal emergencies incurred a 12% performance penalty for

the microarchitectural techniques and a 22% performance penalty for the scaling tech­

niques. Only togglel, fscale30%, vfscalelO, and vfscale30 were effective at reducing

the number of thermal emergencies with fpppp] this came at over a 35% performance

penalty.

Clearly the performance degradation of DTM at this trigger/emergency level is

significant for the applications with large thermal demands. The performance degra­

dation from these techniques can be broken down into two components. The first

component is the performance drop due to invocation of the techniques. This in­

cludes the overhead of the operating system interrupt calls and the time needed to

dynamically adjust the frequency and voltage scaling of the system. The second

component is the IPC drop of the microarchitectural techniques or the frequency

degradation penalty of the scaling techniques. For example with su2cor and the un­

resl trigger, 26% of the performance degradation was due to the interrupt overhead

to engage and disengage the trigger. The remainder of the performance drop was the

IPC degradation due to restricting the number of unresolved branches. As expected,

the trigger overhead with frequency and voltage scaling techniques is much higher;

over 70% of the performance loss is incurred due to the interrupt calls and overhead in

adjusting the clock rate with frequency scaling and over 75% with combined voltage

and frequency scaling.

These trends tend to hold across the benchmarks and across the different styles of

responses. There are two major reasons for the larger invocation overhead of the fre­

quency and voltage scaling techniques. First, the overhead of frequency and voltage

scaling is significantly higher than that of the microarchitectural techniques. Second,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 150

fpppp

• “ 'jpeg
‘ su2cor

■-eel

30%

q
£

5% -

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Trigger Level (Watts)

Figure 6.6: Performance Loss at various trigger levels. Higher trigger levels (30-50
Watts) offer less packaging savings, but have nearly zero performance impact. More
aggressive trigger settings (25-30 Watts) begin to show modest performance impact.
50W is the max power for the modeled chip.

because of variations in application behavior which cause changes in the thermal be­

havior of the system these policies may be enabled or disabled many times during

program execution. This is especially true when DTM mechanisms are in place to

regulate temperature. Obviously for these applications, the large invocation over­

head is magnified. In the next section we consider additional hardware and other

techniques that can reduce the performance overhead of trigger engagement. The

results also show that there is room for application specific selection of response tech­

niques; certain response techniques perform much better than others for individual

benchmarks.

6.5.2 Thermal Trigger and Emergency Settings

In Figure 6.6 we consider an idealized version of the vfscaleSO policy that has no

initiation delay. This figure shows the percent performance loss relative to the total

execution time of the baseline system for DTM while varying the thermal trigger

settings ranging from 20-34W. For example, fpppp runs 27% slower with a trigger

of 20W than it does with no DTM, but its max power without DTM exceeds 40W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 151

in some cases. This performance penalty is incurred by the response mechanism; in

this case the response is a version of frequency scaling. When the trigger is set at

a conservative range (above 30W for these benchmarks), most of the benchmarks

see very little performance degradation. Even with the most conservative approach,

dynamic thermal management allows the chip’s maximum power rating to be reduced

considerably. In this design, the maximum power was around 50W; with DTM this

could be easily reduced to 35-40W.

A more aggressive design would set the trigger somewhere around 25W for these

applications. Being more aggressive in the trigger setting allows for more significant

packaging savings, about $1 per watt per CPU chip. But this savings may come at the

price of reduced performance for some applications. Thus, a key goal of this work is to

propose streamlined mechanisms for DTM that offer the best possible performance.

3 1 °9
S J 0.S| |°'7
§ j f 0.6
tj H 0.5
I t 0.4

mild

intensive

fPPPP__

FscalelO- fscalelO- fscalelO- fscalelO- fscalelO-
20.0 22.0 24.0 26.0 28.0

Figure 6.7: Performance Loss at various trigger levels for the fscalelO response tech­
nique.

Now we consider the effect of the trigger value with our standard (including all

delays) fscalelO technique. Figures 6.7 and 6.8 show the effects of varying the trigger

level for the fscalelO technique. Each data point shows the performance and number

of thermal emergencies relative to the baseline configuration without DTM at the

specified trigger level; the level that we consider to be an emergency is always set to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 152

intensive

fscalelO- fscalelO- fscalelO- fscalelO- IscalclO-
20.0 22.0 24.0 26.0 28.0

Figure 6.8: Emergency Reduction at various trigger levels for the fscalelO response
technique.

be 1VV above the trigger level. From Figure 6.7 we can see that for the set of mild

and intensive benchmarks, performance degrades further as we set more aggressive

trigger levels. However, from Figure 6.8 we see that the machine does not exceed the

thermal emergency threshold until we reach a trigger of 20W. Fpppp performs quite

differently. At trigger levels between 20-24W, the number of thermal emergencies

has not been reduced at all; the fscalelO policy is continuously engaged leading to a

constant 10% performance penalty. However, at 26VV and 28W the fscalelO policy

begins to be effective. At the 26VV trigger level there is a corresponding drop in

performance as we start to see the effect of the trigger being engaged and disengaged

during execution. At 28VV and upwards, this performance penalty diminishes.

We have seen similar patterns with the other voltage and frequency scaling tech­

niques as well as with the microarchitectural techniques. Overall, the choice of the

trigger level is an important lever for system designers to use when deciding whether

to trade off performance for some of the most extreme benchmarks such as fpppp

against the amount of cooling hardware to build into the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 153

6.6 Dynamic Thermal Management: Initiation Mech

anisms

In Section 6.5 we consider a variety of dynamic response mechanisms. In that section,

we assume an implementation where the operating system calls an interrupt handler

to invoke the dynamic response mechanism which incurs significant overhead. To

mitigate this overhead, we consider two modifications to the initiation mechanism

of DTM. First, we consider additional hardware support in the microarchitecture to

remove the interrupt overhead. Second, we modified the policy delay to allow the

response mechanism to remain engaged for longer periods of time, better amortizing

the cost of the trigger’s response delay over the program run.

6.6.1 Hardware Support for Initiating Responses

Eliminating interrupt call overhead is the obvious benefit from additional hardware

support. However, avoiding interrupt handling also allows more fine-grained control

of the response scheme. This reduces the performance overhead of DTM because the

performance-limiting response will only be engaged when it is needed. Finally, more

fine-grained control of the response mechanism could have a benefit on reducing the

number of cycles with thermal emergencies, because the mechanism will be engaged

faster.

To eliminate the trigger overhead, the trigger mechanism must be directly inte­

grated into the microarchitecture. For example, the temperature sensor or hardware

activity counter could generate a signal indicating that the trigger limit has been ex­

ceeded and this signal could be sent to microarchitectural state machines that would

engage the trigger. The operating system would only need to program internal regis­

ters at the beginning of the application’s execution to adjust the amount of throttling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 154

that the response should use. To evaluate the effects of this additional hardware we

have simulated the microarchitectural response techniques with a 0-cycle initiation

delay; this assumes that the 250-cycle interrupt overhead can be removed.

11
0.9 1
0.8
0.7
0.6 i
0.5 - i
0.4
0.3
0.2
0.1
0

& J '

□ toggle I

31unresl

uecode2

Figure 6.9: Reduction in performance compared to baseline.

Figure 6.9 shows the results for the microarchitectural response mechanisms as­

suming that the trigger mechanism is integrated into the microarchitecture. The

reduction in number of thermal emergencies is unchanged. However, there is a re­

duction in performance penalty. For the mildly intensive four benchmarks, the per­

formance penalty is on average 5%; this compares to a 7% performance hit without

the hardware support. For the next group of four benchmarks with more intensive

thermal demands, the performance reduction is 13% compared to 16% with OS over­

head. Since fpppp spends a large amount of time with the triggers engaged, speeding

up the interrupt overhead had a small effect on the performance using this scheme.

6.6.2 Policy and Thermal Window Effects on Voltage/Frequency

Scaling

In the previous section, we considered the use of hardware support to reduce the

overhead of initiating the response mechanism. This overhead is even larger for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 155

voltage and frequency scaling techniques. The majority of the time required to initiate

these techniques is spent scaling the frequency and internal voltage of the processor

to a new level. Since this overhead is not related to the operating system, reducing

the interrupt time will only have a small effect on performance. In this section we

consider two techniques to reduce this delay. First, we consider increasing the policy

delay, or the amount of time that the mechanism is enabled before it is eligible to be

disabled. Increasing the policy delay allows the response and shutoff overhead to be

amortized over a larger portion of the run. On the other hand, if the policy delay is too

long, the response will be engaged during unnecessary stretches of program execution.

The second technique we consider is using a larger thermal window to estimate the

temperature of the chip. For all of the previous results, we have used a window of

10K cycles. In this section, we consider increasing this window to be 100K cycles.

This has the effect of smoothing out short thermal spikes which could unnecessarily

cause the response to be triggered. For the more coarse-grained frequency and voltage

scaling techniques, we would like to minimize these situations.

2 & 09
u j j 0 . 8

I ® 0.7
5 I 0.6

> 0.4
I 0.3

1 0.2
® 0.1

mild

intensive

fcPPP

pd-l5us pd-40us pd-lOOus pd-IOOus-
chunklOOk

Figure 6.10: Reduction in performance compared to baseline.

We consider varying the policy delay with values of 15 microseconds, 40 microsec­

onds, and 100 microseconds. We have chosen 40 microseconds because it is the com­

bined response and shutoff delays of frequency+voltage scaling response mechanism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 156

Finally, we show the effect of increasing the thermal window from 10K cycles to 100K

cycles with a policy delay of 100 microseconds. Figure 6.10 shows the the performance

effect of the techniques when using the vfscale30. In this figure, the first three data

points report the performance relative to the baseline while varying the policy delay;

the final point shows the performance as the thermal window is increased to 100K

cycles.

From this Figure 6.10 we see that there was very little effect on performance for

the mild and intensive benchmark suite; in fact, there was a slight degradation in

performance as we increase the policy delay. This is because although the initia­

tion overhead was decreased, the amount of time spent with frequency and voltage

scaling engaged increased. On the other hand, fpppp had a substantial performance

improvement with increased policy delay. For this benchmark, the performance loss

to the baseline decreased from 60% with 15 microsecond policy delay to 44% with 100

microsecond policy delay. Finally, we see that increasing the thermal window had a

positive effect on all three classes of applications. When moving from the 10K cycle

window to the 100K cycle window the performance loss decreased to 34% for fpppp.

For the benchmarks with intensive thermal demands, the performance loss de­

creased to 20%. On the other hand, we found that increasing the size of the thermal

window had a much smaller (1-2%) performance benefit for the microarchitectural

techniques. Since these techniques are much more fine-grained in nature, they suffer

less from short thermal transients.

We have found that the initiation mechanism is a key factor to the performance

degradation of DTM. We have investigated two techniques which show promise for

reducing the performance overhead. Future work could address additional techniques

to reduce this overhead either through more efficient methods to initiate the responses

or smarter techniques to enable and disable responses.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 157

6.7 Method for Identifying DTM Responses

In this work we have compared the benefits of dynamic thermal management via

several microarchitectural techniques as well as clock frequency and voltage scaling.

In considering other schemes for thermal management, we would like to develop a

more systematic approach to identifying potential techniques.

We propose here a method based on correlation. That is, we wish to find levers

that reduce power with a less-than-proportional reduction in performance. We have

performed simulations using Wattch to correlate power dissipation with other pro­

cessor statistics such as instruction fetch rate, branch prediction accuracy, data and

instruction cache hit rates, execution bandwidth, and IPC. We use this method to

isolate certain processor statistics that track more closely with power than with IPC.

Correlation Fetch
Rate

BPred
Rate

DC Hit
Rate

IC Hit
Rate

Exec
BW

Power vs.
IPC vs.

0.82
0.77

0.37
0.61

0.40
0.25

0.50
0.48

0.83
0.81

Difference 0.05 -0.24 0.15 0.02 0.02

Table 6.2: Correlation Data for Average of Benchmarks

We collected the average power and performance statistical data for fixed chunks

of 10,000 cycles. These statistics were then correlated with each other after the

simulation completed. An example of the correlation data for the average of our

benchmark suite is shown in Table 6.2. The first line of this table shows the corre­

lation between processor power dissipation and instruction fetch rate (avg. number

of instructions fetched per cycle), branch prediction accuracy, cache hit rates, and

execution bandwidth (committed + mis-speculated instructions/cycle). As expected,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Chapter 6: Dynamic Thermal Management 158

power correlates very strongly with execution bandwidth. Instruction fetch band­

width correlates also correlates strongly with power. Branch direction prediction ac­

curacy, a secondary indicator of application performance, also correlates with power

but to a lesser degree. Data and instruction-cache hit rates correlate slightly more

than branch predictor accuracy with power.

The second line of Table 6.2 shows the correlation between IPC and the processor

statistics. From this table, we see execution bandwidth, branch predictor accuracy,

and fetch bandwidth correlate the most with performance.

Figure 6.11: Correlation between power and several performance statistics.

Figure 6.11 plots power correlation minus IPC correlation for each point for the

individual benchmarks. Thus, a positive data point in this graph corresponds to a

case where power dissipation is more strongly correlated with the metric (eg fetch

rate) than IPC is. Looking for possible DTM responses with strong power correla­

tions lets us seek out “wasted work” that may lead to good power reductions with

minimal performance impact. This may reveal strategies that would be most useful

for dynamic thermal management.

This data reveals some interesting trends. For example, for almost all of the

benchmarks, branch predictor accuracy correlated much more with performance than

8 0.6
e

0.8

□ fetch.rale

■ b p red .d ir

□ d c ac h e jiit

■ ic a ch e jb t

□ e.xec_bw

- 0.8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 159

with power. On other other hand, cache hit rates and instruction fetch bandwidth

correlated more with power than with IPC for many of the benchmarks. Execution

bandwidth correlates more with power than with IPC for four of the benchmarks.

This lends support to our decision to evaluate I-cache toggling and speculation con­

trol as methods for dynamic thermal management. We plan future work that will

broaden the types of microarchitectural response mechanisms that we investigate with

correlation analysis.

6.8 Chapter Summary

YVe have proposed and evaluated the benefits of using dynamic thermal management

to reduce the cooling system costs of CPUs. From this initial research effort, we have

drawn several conclusions which we feel can help guide future research in this area.

• Trigger Selection: Dynamic thermal management allows arbitrary tradeoffs

between performance and savings in cooling hardware. Conservative target

selections can still lead to significant cost improvements with essentially zero

performance impact, because the trigger point is rarely reached for many appli­

cations.

• Designers Can Focus on Average Power: In addition, DTM makes other

techniques targeting average power more interesting to the designers of high-end

CPUs. Effective DTM makes average power the metric of interest even for high-

end CPU designers, since packages need no longer be designed for worst-case

power. With DTM, lowering average CPU power will reduce the trigger value

needed for a particular level of performance, and thus will reduce packaging

costs.

• Trigger Activation Time is Significant: Not unexpectedly, the triggering

delay is a key factor in the performance overhead of DTM. We have found that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Dynamic Thermal Management 160

more fine-grained control of the trigger mechanism is especially important in the

context that we consider: reducing thermal traumas in high-performance CPUs.

Unfortunately, our data show that some of the most promising techniques in

DTM today, such as voltage or frequency scaling, are typically implemented

with very high activation delays. These lead to significant performance over­

heads across most applications.

• Lightweight Policies Are Effective: More lightweight, fine-grained policies,

such as the microarchitectural techniques we have discussed, often allow the

temperature to stay close to the target level with a small performance penalty.

In addition, the fine-grained policies are less affected by rapid fluctuations in

the temperature.

• Methodology for Identification of Future Techniques: Because of these

growing opportunities for microarchitectural DTM techniques, we have also

proposed a methodology for evaluating new DTM approaches. This mechanism

correlates power and performance, and looks for “low-hanging fruit” ; that is,

our correlators look for techniques that can cut power by significantly more than

they hurt performance. Identifying these sorts of wasted work, particularly on

an application-specific basis, appears to be a promising way of discovering new

microarchitectural DTM techniques in the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

This thesis has explored modeling and architectural techniques for high-performance,

power-efficient microprocessors. Establishing good modeling infrastructures to allow

us to develop new high-level techniques for power-efficient design is crucial to the

development of our next generation computing systems.

1 e + 0 8 ■

. 1 E+07
0 1 E+06 •
1 1 E+05
§ 1 E+04 ■
| 1 E+03 •
| 1 E+02
H 1 E+01 ■

1.E+00 ■
19

Figure 7.1: Moore’s Law of increasing transistors and corresponding increases in
Power Density.

Figure 7.1 illustrates the trends that we will need to overcome in the future. This

figure shows the exponential growth in transistors per die which has come to be

known as Moore’s Law. This growth has been sustained for the past thirty years

and is projected to continue for at least the next 10-15 years. This transistor growth

has for the most part directly contributed to the growth in computing performance.

161

♦ Intel Data
■ SIA Projection

Nuclear
Reacto?

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Conclusions 162

The second graph in this figure shows the power density for the same selection of

microprocessors. Unfortunately, the exponential growth in transistors per die has

also led to an exponential growth in power density. We are currently reaching the

limits of cost-effective packaging technology to build chips with these high power

densities. Because of this, the Semiconductor Industry Association (SIA) projects

that power density will begin to flatten out over the next several years [79]. This

projection is shown as squares in Figure 7.1. The challenge that we have as chip

designers is to continue to extract performance from our ever increasing number of

transistors, while restricting the corresponding increases in power consumption.

7.1 Contributions

This thesis has had two major thrusts focusing on the power problem. First, we

have developed a methodology for estimating power dissipation within traditional

architectural performance simulators. We developed two tools with this methodology:

Wattch and PowerTimer. The energy models within Wattch are very useful for early

stage design experiments with a microarchitecture that does not have existing power

data to scale from. On the other hand, PowerTimer is less flexible, but more useful in

making projections to chips that are follow-on products to an existing architecture.

Research in validating the accuracy of these models is critical to establish confidence

that our estimates can be useful in practice. We have performed validation at many

different levels including a detailed analysis of the robustness of these models under

many different error conditions.

The second major focus of this thesis has been the development of techniques

to reduce power dissipation and thermal issues in high-performance microprocessors.

Value-based clock gating proves to be a useful point-optimization which can signif­

icantly reduce power dissipation in the functional units as well as in the memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Conclusions 163

hierarchy. This optimization has been explored in detail within the context of a real

commercial high-performance microprocessor. Our results show that this technique

leads to a 50% reduction in the power dissipation of integer units.

Dynamic thermal management is a technique that addresses thermal issues re­

lated to the maximum power dissipation of high-performance microprocessors. This

technique seeks to dynamically throttle processor resources for sections of application

behavior that exhibit very high power and heat dissipation. This throttling allows

the processors to be designed with a heat solution for something approaching that of

the average power dissipation rather than the worst case power dissipation. We have

shown that dynamic thermal management can reduce the effective processor wattage

by about 30% with minimal performance loss for most applications.

The approaches described in this thesis demonstrate an initial step towards power

modeling at the architectural level and presents two key architectural level power

optimizations. These techniques, and similar ones, have begun to attract interest

within industrial research and design groups. However, in the future we will need to

continue to develop even more robust, flexible, and fast architectural power models

and subsequently generate and evaluate ideas to reduce power and thermal issues.

7.2 Future Directions

The field of architectural level power-efficient modeling and design is in its infancy.

Researchers in this field will need to focus on both modeling and the development

of new architectural ideas for power efficient design. This is a very fruitful area for

future research, not only because the area is relatively new, but because there are

many challenges to overcome. In the next few sections I will discuss some of the

major challenges that will need to be overcome in the areas of power modeling and

techniques for low power design.

s
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Conclusions 164

• Modeling Different Design Styles: Wattch and PowerTimer were both

written to model very high-performance microprocessors with custom design

styles. These classes of processors tend to use circuit design styles which fo­

cus on high-performance, with power as a secondary consideration. Because

of the focus on this particular design style, the models developed may not be

applicable to other classes of architectures such as low-power, embedded micro­

processors. However, the methodology presented will certainly apply to other

design styles. Ideally, our architectural toolsets would allow the user to choose

design styles appropriate to the chip under development. For example, very

high-performance, but also less power efficient structures could be chosen for

high-end processors, and low-power, but slower, structures could be chosen for

embedded processors.

• Chip and System Floorplans: Architectural level power estimation tools

could take into account chip floorplans estimates which would allow more ac­

curate models for interconnection power to be developed. A major area to be

explored is to look at system-level power modeling for both on-chip and off-chip

interconnection networks. This area will be especially important in the future

as many research projects have been looking at multiple cores on a chip [9; 45].

• Thermal and Packaging Models: In the future, techniques that seek to

reduce temperature of the processor die will need to focus on both the chip

floorplan, to identify local hotspots, and the chip package and heatsink, to

estimate how these local hotspots relate to each other. While detailed packaging

models do exist, these models are not well-suited to an architectural level tool.

Abstractions will need to be developed to provide the salient details of these

models to architects. Packaging models focusing on the chip pins will become

important as we focus on reducing the amount of d i/d t noise in microprocessors.

D i/dt noise is due to large swings in the power dissipation of the chip on a cycle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Conclusions 165

to cycle basis. These large swings can cause large disturbances in the values of

the power and ground nodes, causing the chip to malfunction.

• Leakage Estimates: Leakage energy, or static power dissipation, is expected

to grow at approximately 5x per generation unless major steps are taken to

reduce it. Even if known techniques are applied to reduce leakage energy it

will still become a large fraction of overall chip power dissipation within a few

generations. Architects are beginning to propose models [25] and architectural

techniques [51; 97] to reduce leakage energy. Because leakage is very temper­

ature dependent, we may need to couple leakage models with chip thermal

models.

• Higher Level Power Estimates: Another important area for power mod­

eling is to focus on pushing power estimates to higher levels in the system

such as the compiler and system software (OS). Estimating power in the com­

piler could allow for power-aware instruction scheduling to reduce energy or to

provide a smooth flow of instructions so as to reduce d i/d t noise. Providing

hooks within the operating system to monitor the power dissipation of run­

ning processes would permit the system software to enforce power and energy

budgets to processes. The OS could also play an active role in techniques like

dynamic thermal management by monitoring and reacting to thermal emergen­

cies in the machine. This is an area that has begun to receive some attention

with researchers proposing that the OS sample on-chip performance counters

to provide power estimates [10; 49].

• Dynamic Program Behavior: Many of the power-efficient architectural tech­

niques exploit some form of dynamic behavior to reduce power with a minimal

effect on performance. These techniques are exploiting the fact that general

purpose architectures will inherently be inefficient for certain applications or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7: Conclusions 166

phases of applications. This will be a key area for finding additional optimiza­

tions to improve both performance and power. Software infrastructures are

currently being developed to support these types of optimizations [8; 82].

7.3 Summary

Power dissipation is a first-order design constraint in nearly all types of computing

systems. Chip designers will need to develop techniques at all levels of the design hi­

erarchy to meet the power challenges that we will have to face in building the next few

generations of microprocessors. This thesis has demonstrated a methodology for es­

timating power at the architectural level and has shown how architectural techniques

can be effective in reducing energy and thermal issues in high-performance micro­

processors. In the future, we will need to continue to develop models and additional

techniques to cope with power dissipation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] Advanced Configuration and Power Interface, http://www.teleport.com/ acpi/.

[2] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou.

Precomputation-based sequential logic optimization for low power. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):426-36,

December 1994.

[3] B. Alpern, L. Carter, and K. Gatlin. Microparallelism and high-performance

protein matching. In Proceedings of SuperComputing 95, 1995.

[4] B. Amrutur and M. Horowitz. Speed and power scaling of sram’s. IEEE Journal

of Solid-State Circuits, 35(2):175—185, 2000.

[5] K. Asanovic, B. Kingsbury, B. Irissou, J. Beck, and J. YVawrzynek. TO: A single­

chip vector microprocessor with reconfigurable pipelines. In Proceedings of

the 22nd European Solid-State Circuits Conference, 1996.

[6] M. Azam, P. Franzon, VV. Liu, and T. Conte. Low power data processing by

elimination of redundant computations. In Proc. of Int ’I Symposium on Low-

Pouier Electronics and Design, 1997.

[7] R. I. Bahar, G. Albera, and S. Manne. Power and performance tradeoffs us­

ing various caching strategies. In Proc. of Int 7 Symposium on Low-Power

Electronics and Design, 1998.

[8] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic

optimization system. In ACM SIGPLAN Conference on Programming Lan­

guages Design and Implementation (PLDI), June 2000.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.teleport.com/

BIBLIOGRAPHY 168

[9] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,

B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: a scalable ar­

chitecture based on single-chip multiprocessing. In Proceedings of the 27th

Annual International Symposium on Computer Architecture: June 12-14,

2000, Vancouver, British Columbia, ‘2000.

[10] F. Bellosa. The benefits of event-driven energy accounting in power-sensitive

systems. In Proc. of the 9th ACM SIGOPS European Workshop, 2000.

[11] D. Bhandarkar. Alpha Implementations and Architecture - Complete Reference

and Guide. Digital Press, 1996.

[12] B. Bishop, T. Kelliher, and M. Irwin. The Design of a Register Renaming Unit.

In Proc. of Great Lakes Symposium on VLSI, 1999.

[13] M. Borah, R. Owens, and M. Irwin. Transistor sizing for low power CMOS cir­

cuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 15(6):665-71, 1996.

[14] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, July-August

1999.

[15] W. J. Bowhill et al. Circuit Implementation of a 300-MHz 64-bit Second-

generation CMOS Alpha CPU. Digital Technical Journal, 7(1):100—118,

1995.

[16] D. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuk-

tosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook.

Power-aware microarchitecture: Design and modeling challenges for next-

generation microprocessors. IEEE Micro, 20(6):26-44, Nov./Dec. 2000.

[17] D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to

improve processor power and performance. In Proceedings of the 5th Interna­

tional Symposium on High-Performance Computer Architecture (HPCA-5),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 169

Jan. 1999.

[18] D. Brooks and M. Martonosi. Adaptive thermal management for high-

performance microprocessors. In Workshop on Complexity Effective Design

2000 at ISCA27, June 2000.

[19] D. Brooks and M. Martonosi. Value-based clock gating and operation packing:

dynamic strategies for improving processor power and performance. ACM

Transactions on Computer Systems, 18(2):89—126, May 2000.

[20] D. Brooks and M. Martonosi. Dynamic thermal management for high-

performance microprocessors. In Proceedings of the 7th International Sym­

posium on High-Performance Computer Architecture (HPCA-7), Jan. 2001.

[21] D. Brooks, V. Tiwari, and M. Martonosi. VVattch: A framework for

architectural-level power analysis and optimizations. In Proceedings of the

27th Annual International Symposium on Computer Architecture, June

2000 .

[22] D. Brooks, J.-D. Wellman, P. Bose, and M. Martonosi. Power-Performance

Modeling and Tradeoff Analysis for a High-End Microprocessor. In Work­

shop on Power Aware Computing Systems at the 9th Int I Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS-IX), Nov. 2000.

[23] T. Burd, T. Pering, A. Stratkos, and R. Brodersen. A dynamic voltage scaled

microprocessor system. In ISSCC Digest of Technical Papers, pages 294-295,

2000 .

[24] D. Burger and T. M. Austin. The SimpIeScalar Tool Set, Version 2.0. Computer

Architecture News, pages 13-25, June 1997.

[25] J. Butts and G. Sohi. A static power model for architects. In Proceedings of

the 33rd International Symposium on Microarchitecture (MICRO-33), Dec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 170

2000 .

[26] C. Georgiou and S. Kirkpatrick and T. Larson. Variable Chip-clocking Mecha­

nism. US Patent 5,189,314, 1993.

[27] G. Cai and C. Lim. Architectural level power/performance optimization and

dynamic power estimation . In Cool Chips Tutorial at MICRO-32, Nov.

1999.

[28] T. Callaway and J. E.E. Swartzlander. Power-delay characteristics of CMOS

multipliers. In Proceedings of the 13th International Symposium on Com­

puter Arithmetic, July 1997.

[29] R. Canal, A. Gonzalez, and J. E. Smith. Very low power pipelines using signif­

icance compression. In Proceedings of the 33rd International Symposium on

Microarchitecture (MICRO-33), Dec. 2000.

[30] D. Citron, D. Feitelson, and L. Rudolph. Accelerating multi-media processing by

implementing memoing in multiplication and division units. In Proceedings

of the 8th In t’l Conf. on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-VIIl), pages 252-261, Oct. 1998.

[31] T. Conte, K. Menezes, and S. Sathaye. A technique to determine power-efficient,

high performance superscalar processors. In Proceedings of the 28th Hawaii

In t’l Conference on System Science, 1995.

[32] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-oriented

compiler optimizations for partitioned memory architectures. In Interna­

tional Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, November 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 171

[33] A. Dhodapkar, C. Lim, and G. Cai. TEM2P2EST: A Thermal Enabled Multi-

Model Power/Performance ESTimator. In Workshop on Power Aware Com­

puting Systems at the 9th In t’l Conference on Architectural Support for Pro­

gramming Languages and Operating Systems (ASPLOS-IX), Nov. 2000.

[34] K. Diefendorff. Power4 focuses on memory bandwidth. Microprocessor Report,

pages 11-17, Oct. 6, 1999.

[35] C. Dulong. The IA-64 architecture at work. IEEE Computer, 31(7):24—32, 1998.

[36] H. Fair and D. Bailey. Clocking Design and Analysis for a 600MHz Alpha Mi­

croprocessor. In ISSCC Digest of Technical Papers, pages 398-399, February

1998.

[37] F. Gabbay and A. Mendelson. Using value prediction to increase the power of

speculative execution hardware. ACM Transactions on Computer Systems,

Aug. 1998.

[38] G. Gerosa et al. A 2.2VV, 80 MHz superscalar RISC microprocessor. IEEE Jour­

nal of Solid-State Circuits, 29(12):1440—54, 1994.

[39] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation in workloads

with externally specified rates to reduce power consumption. In Workshop

on Complexity-Effective Design at the 27th In t’l Symposium on Computer

Architecture (ISCA27), June 2000.

[40] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micropro­

cessors. IEEE Journal of Solid-State Circuits, 31(9) :1277—84, 1996.

[41] M. Gowan, L. Biro, and D. Jackson. Power considerations in the design of the

Alpha 21264 microprocessor. In 35th Design Automation Conference, 1998.

[42] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence estimation

for speculation control. In Proceedings of the 25th International Symposium

on Computer Architecture (ISCA-25), pages 122-31, June 1998.

j
'(1
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 172

[43] L. Gwennap. Intel’s P6 uses decoupled superscalar design. Microprocessor Re­

port, pages 9-15, Feb. 16, 1995.

[44] L. Gwennap. Power issues may limit future CPUs. Microprocessor Report, Au­

gust 1996.

[45] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and K. Oluko-

tun. The Stanford Hydra CMP. IEEE Micro, 20(2):71-84, Mar./Apr. 2000.

Presented at Hot Chips 11 Conference, Stanford University, Stanford, Cali­

fornia, August 15-17, 1999.

[46] W. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A framework for dynamic

energy efficiency and temperature management. In Proceedings of the 33rd

International Symposium on Microarchitecture (MICRO-33), Dec. 2000.

[47] IEEE Standards Board. IEEE Standards for Binary Floating-Point Arithmetic.

Technical Report ANSI/IEEE Std. 754-1985, Institute of Electrical and

Electronics Engineers, 1985.

[48] Q. Jacobson and J. Smith. Instruction pre-processing in trace processors. In

Proceedings of the 5th International Symposium on High-Performance Com­

puter Architecture (HPCA-5), Jan. 1999.

[49] R. Joseph and M. Martonosi. Run-time power estimation in high-performance

microprocessors. In Proc. of In t’l Symposium on Loui-Pouier Electronics and

Design, 2001.

[50] M. B. Kamble and K. Ghose. Analytical Energy Dissipation Models for Low

Power Caches. In Proc. of Int ’I Symposium on Low-Pouier Electronics and

Design, 1997.

[51] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting generational

behavior to reduce cache leakage power. In Proceedings of the 28th Interna­

tional Symposium on Computer Architecture (ISCA-28), June 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 173

[52] J. Kin, M. Gupta, and VV. H. Mangione-Smith. The filter cache: An energy effi­

cient memory structure. In Proceedings of the 30th International Symposium

on Microarchitecture (MICRO-30), Nov. 1997.

[53] U. Ko, P. Balsara, and A. Nanda. Energy optimization of multilevel cache

architectures for RISC and CISC processors. IEEE Transactions on VLSI

Systems, 6(2):299-308, June 1998.

[54] H. Kojima, D. Gorny, K. Nitta, A. Shridhar, and K. Sasaki. Power analysis

of a programmable DSP for architecture and program optimization. IEICE

Transactions on Electronics, E79-C(12):1686-92, December 1996.

[55] K. Kundert. The designer’s guide to spice and spectre, 1995.

[56] C. Lee, M. Potkonjak, and VV. H. Mangione-Smith. MediaBench: A tool for eval­

uating and synthesizing multimedia and communication systems. In Proceed­

ings of the 30th International Symposium on Microarchitecture (MICRO-

30), Dec. 1997.

[57] R. Lee. Subword parallelism with MAX-2. IEEE Micro, 16(4):51—59, Aug. 1996.

[58] M. Lipasti, C. B. VVilkerson, and J. P. Shen. Value locality and load value

prediction. In Proceedings of the 7th In t’l Conf. on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-VII), pages

138-47, Oct. 1996.

[59] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation control

for energy reduction. In Proceedings of the 25th International Symposium

on Computer Architecture (ISCA-25), pages 132-41, June 1998.

[60] Marc Fleischmann. Crusoe Power Management: Cutting x86 Operating Power

Through LongRun. Embedded Processor Forum, June 2000.

[61] Mentor Graphics Corporation, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 174

[62] J. Montanaro et al. A 160-MHz, 32-b, 0.5YV CMOS RISC microprocessor. Dig­

ital Technical Journal, 9(2):49-62, 1996.

[63] C. Moore. The Power4 System Microarchitecture. Microprocessor Forum, Oct

2000 .

[64] M. Moudgili, P. Bose, and J. Moreno. Validation of Turandot, a fast proces­

sor model for microarchitecture exploration. In Proceedings of the IEEE

International Performance, Computing, and Communications Conference

(IPCCC), pages 451-457, Feb. 1999.

[65] M. Moudgili, J. YVellman, and J. Moreno. Environment for PowerPC microar­

chitecture exploration. IEEE Micro, 19(3):9—14, May/June 1999.

[66] C. Nagendra, M. Irwin, and R. Owens. Area-time-power tradeoffs in parallel

adders. IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, 43(10):689—702, October 1996.

[67] P. Ng, P. Balsara, and D. Steiss. Performance of CMOS differential circuits.

IEEE Journal of Solid-State Circuits, 31 (6):841—846, 1996.

[68] 0 . Ikeda. Power Saving Control System for a Computer System. US Patent

5,504,908, 1996.

[69] S. Palacharla, N. Jouppi, and J. Smith. Complexity-Effective Superscalar Pro­

cessors. In Proceedings of the 24th International Symposium on Computer

Architecture (ISCA-24), 1997.

[70] S. Palacharla, N. Jouppi, and J. Smith. Quantifying the Complexity of Super­

scalar Processors. In Univ. of Wisconsin Computer Science Tech. Report

1328, 1997.

[71] A. Peleg and U. Weiser. MMX technology extension to the Intel architecture.

IEEE Micro, 16(4):42-50, Aug. 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 175

[72] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dy­

namic voltage scaling algorithms. In Proceedings of International Symposium

on Low Power Electronics and Design, August 1998.

[73] Prof. Matt Krane. Materials Science Department, Purdue University. Thermal

Packaging Models. Personal communication, Dec. 1999.

[74] R. Razdan and M. Smith. A high-performance microarchitecture with hardware-

programmable functional units. In Proceedings of the 27th International

Symposium on Microarchitecture (MICRO-27), Nov. 1994.

[75] P. Reed et al. 250 MHz 5W RISC microprocessor with on-chip L2 cache con­

troller. Digest of Technical Papers - IEEE International Solid-State Circuits

Conference, 40:412, 1997.

[76] G. Reinman and N. Jouppi. CACTI 2.0. In WRL Research Report, 1999.

[77] E. Rohou and M. Smith. Dynamically managing processor temperature and

power. In 2nd Workshop on Feedback-Directed Optimization at the 32nd

International Symposium on Microarchitecture (MICRO-32), Nov. 1999.

[78] H. Sanchez et al. Thermal management system for high performance powerpc

microprocessors. Digest of Papers - COMPCON - IEEE Computer Society

International Conference, page 325, 1997.

[79] Semiconductor Industry Association. The National Technology Roadmap for

Semiconductors. SEMATECH, Inc., 2000 edition, 2000.

[80] J. Seng, D. Tullsen, and G. Cai. Power-sensitive multithreaded architecture. In

International Conference on Computer Design 2000, Sep. 2000.

[81] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch prediction,

instruction-window size, and cache size: Performance tradeoffs and simula­

tion techniques. IEEE Transactions on Computers, 48(11) :1260—810, Nov.

1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 176

[82] J. Smith, T. Heil, S. Sastry, and T. Bezenek. Achieving high performance via co­

designed virtual machines. In International Workshop on Innovative Archi­

tectures for Future Generation High-Performance Processors and Systems,

October 1998.

[83] A. Sodani and G. Sohi. Dynamic instruction reuse. In Proceedings of the 24th

International Symposium on Computer Architecture (ISCA-24), May 1997.

[84] G. S. Sohi and A. S. Vajapeyam. Instruction issue logic for high-performance,

interruptible pipelined processors. In Proceedings of the 14th International

Symposium on Computer Architecture (ISCA-14), pages 27-34, June 1987.

[85] D. Stefanovic and M. Martonosi. On availability of bit-narrow operations in

general-purpose applications. In 10th International Conference on Field Pro­

grammable Logic and Applications (FPL 2000), August 2000.

[86] M. Stephenson, J. Babb, and S. P. Amarasinghe. Bidwidth analysis with appli­

cation to silicon compilation. In ACM SIGPLAN Conference on Program­

ming Languages Design and Implementation (PLDI), pages 108-120, June

2000.

[87] C. Su and A. Despain. Cache Designs for Energy Efficiency. In Proceedings of

the 28th Hawaii In t’l Conference on System Science, 1995.

[88] Synopsys Corporation. Powermill Data Sheet, 1999.

[89] V. Tiwari et al. Reducing power in high-performance microprocessors. In 35th

Design Automation Conference, 1998.

[90] V. Tiwari, S. Malik, and P. Ashar. Guarded evaluation: Pushing power man­

agement to logic synthesis/design. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 17(10):1051—60, October 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 177

[91] Y. Tong, R. Rutenbar, and D. Nagle. Minimizing Floating-Point Power Dissi­

pation Via Bit-VVidth Reduction. In Power-Driven Microarchitecture Work­

shop at the 25th International Symposium on Computer Architecture, 1998.

[92] Transmeta Corp. The Technology Behind the Crusoe Processor Whitepaper,

2000 .

[93] M. Tremblay, J. O’Connor, V. Narayanan, and L. He. The Visual Instruction

Set (VIS) in UltraSPARC. IEEE Micro, 16(4):10-20, Aug. 1996.

[94] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye. Energy-driven

integrated hardware-software optimizations using simplepower. In Proceed­

ings of the 27th Annual International Symposium on Computer Architecture,

June 2000.

[95] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero compression for cache

energy reduction. In Proceedings of the 33rd International Symposium on

Microarchitecture (MICRO-33), Dec. 2000.

[96] S. Wilton and N. Jouppi. An Enhanced Access and Cycle Time Model for

On-chip Caches. In WRL Research Report 93/5, DEC Western Research

Laboratory, 1994.

[97] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar. An inte­

grated circuit/architecture approach to reducing leakage in deep-submicron

high-performance i-caches. In Proceedings of the 7th International Sympo­

sium on High-Performance Computer Architecture (HPCA-7), Jan. 2001.

[98] R. Zimmermann and W. Fichtner. Low-power logic styles: CMOS versus pass-

transistor logic. IEEE Journal of Solid-State Circuits, 32(7):1079-90, 1997.

[99] V. Zyuban. Inherently Lower Power High Performance Superscalar Architec­

tures. PhD thesis, University of Notre Dame, March 2000.

[100] V. Zyuban and P. Kogge. The energy complexity of register files. In Proc. of In t’l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 178

Symposium on Low-Power Electronics and Design, pages 305-310, 1998.

[101] V. Zyuban and P. Kogge. Optimization of high-performance superscalar archi­

tectures for energy efficiency. In Proc. of In t’l Symposium on Low-Power

Electronics and Design, pages 84-89, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

