
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations appearing 

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



DESIGN AND MODELING OF 

POWER-EFFICIENT COMPUTER 

ARCHITECTURES

DAVID BROOKS

A DISSERTATION 

PRESENTED T O  THE FACULTY 

OF PRINCETON UNIVERSITY 

IN CANDIDACY FOR THE DEGREE 

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE 

BY TH E DEPARTMENT OF 

ELECTRICAL ENGINEERING

November 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3021966

Copyright 2001 by 
Brooks, David Michael

Ail rights reserved.

__  _A

UMI
UMI Microform 3021966 

Copyright 2001 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



©  Copyright 2001 by DAVID BROOKS. 

All rights reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Power dissipation and thermal issues are increasingly significant in modern processors. 

As a result, it is crucial that power/performance tradeoffs be made more visible to 

chip architects and compiler writers, in addition to circuit designers. Most traditional 

power analysis tools achieve high accuracy by calculating power estimates for designs 

only after the circuit design, layout, and floorplanning are complete. In addition to 

being available only late in the design process, such tools are often quite slow, which 

compounds the difficulty of running them for a large space of design possibilities.

This thesis presents a methodology for estimating power dissipation at a much 

earlier stage in the design cycle and at a much higher level. VVattch and Power- 

Timer are two working examples of the use of this methodology. Both tools provide 

a framework for analyzing and optimizing microprocessor power dissipation at the 

architecture-level. These tools are 1000X or more faster than existing layout-level 

power tools, and yet maintain accuracy within 10% of their estimates as verified us­

ing industry tools on leading-edge designs. These tools can allow architects to explore 

and cull the design space early on and opens up the field of power-efficient computing 

to a wider range of researchers by providing a power evaluation methodology within 

the portable and familiar SimpleScalar framework.

This thesis also considers several applications of architectural-level power modeling 

to propose specific architectural-level power and temperature saving optimizations 

-  value-based clock gating and dynamic thermal management. Value-based clock 

gating is a technique which exploits the dynamic bitwidth requirements of typical

iii
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applications to save power within arithmetic units and the memory hierarchy. We 

have demonstrated that this technique can save roughly 50% of the power in the 

integer execution units. With dynamic thermal management, temperature sensors 

and throttling techniques are combined to adaptively slow down the CPU for extended 

periods of particularly high-power code sequences. This allows the CPU package and 

power delivery system to be designed for a much lower maximum power rating, with 

minimal performance impact for typical applications.

The techniques presented in this thesis represent some of the first work in the area 

of high-performance, low-power processor design at the architectural level. We hope 

that this work, and the other research in the area of low-power architectural modeling 

and design, will help future generations of processor architectures to meet the many 

new challenges in this area.
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Chapter 1

Introduction and Contributions

Power-aware computing has traditionally been the primary focus of designers of 

portable and battery-powered computing systems and has in the past largely been 

considered a low-level circuit design issue. In the past several years, we have seen two 

major shifts in the focus of power-aware computing that have greatly increased the 

amount of research interest in this field.

First, the need for power-efficient designs is no longer solely associated with 

portable computing systems. Power dissipation has rapidly become a first-order de­

sign constraint in virtually every type of computing system including hand-held de­

vices, set-top entertainment systems, desktop computers, and the most performance- 

hungry compute servers. As clock rates and die sizes increase, power dissipation is 

predicted to soon become the key limiting factor on the performance of single-chip 

microprocessors [41; 89]. Already, current high-end microprocessors are beginning to 

reach the limits of conventional air cooling techniques. In addition to battery life 

and cooling concerns the difficulties of delivering large and highly-varying amounts 

of current onto the chip are also significant.

The second major shift is that researchers in power-aware design have begun to 

focus on power and energy savings at higher levels in the design hierarchy including the 

logic design [90], microarchitecture [40; 52; 59; 87], software controlled voltage scaling

1
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Chapter 1: Introduction and Contributions 2

[72; 92], and the compiler [32], Specialized circuit techniques have been the main 

strategies for low-power design in the past, and these will continue to be important 

areas in the future. Unfortunately, these techniques alone are not sufficient; higher- 

level strategies for reducing power consumption are increasingly crucial. Architectural 

and software techniques—in addition to lower-level circuit techniques—must play a 

major role in creating power-efficient computer systems.

1.1 Contributions

These two major shifts have greatly increased the amount of research interest and the 

potential for reducing power and energy consumption in computer systems. However, 

when we consider the importance of power-aware computing in more complex systems, 

as well as power savings techniques at the architectural and software levels, power 

modeling becomes a significant challenge. Because of this, my thesis research has had 

two major contributions.

•  First, we have addressed the problem of architectural-level power modeling by 

developing methodologies for estimating power on top of architectural perfor­

mance simulators. This work has led to the development of two tools: Wattch 

[21], a publicly available tool based on SimpleScalar [24], and PowerTimer [22], 

a tool used within IBM Research.

•  Second, my research has utilized these modeling tools to develop techniques for 

reducing power in high-performance computing systems. These techniques have 

focused on reducing both average power and maximum power.
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Chapter 1: Introduction and Contributions 3

1.1.1 Architectural-level Power Modeling

Estimating the power dissipation of a computing system generally requires transistor- 

level circuit schematics and a detailed circuit simulation environment such as SPICE 

[55]. This poses two major problems for modeling power at the architectural level. 

First, circuit-level simulation is extremely slow, requiring orders of magnitude more 

time per instruction than architectural-level performance simulation. Second, archi­

tectural level studies are generally performed in the planning stages of the design 

before the circuit and RTL designs have begun to take shape.

To overcome these problems, intelligent abstractions must be developed. In this 

research, we developed analytical power models for common hardware structures that 

are present in typical microprocessors. These structures include register files, caches, 

content-addressable memories, and interconnect. These power models are param- 

eterizable, allowing structures with various sizes and attributes to be instantiated. 

Finally, the power models are tightly integrated into a traditional architectural-level 

performance simulator. Cycle-level activity and utilization statistics from the per­

formance simulator are combined with the power models of the hardware structures 

to provide power estimates. This framework provides accurate power estimates on a 

per-cycle basis with approximately a 30% simulation time overhead over performance 

simulation alone. I have also developed a similar framework using industrial simula­

tors and power models extracted from a commercial microprocessor at IBM. Finally, 

my research has focused on the validation of both of these frameworks and will con­

tinue to do so as improvements are made to the modeling methodology. Establishing 

a solid power modeling methodology is critical for allowing architects to rapidly ex­

plore large design spaces and to consider methods to reduce power dissipation in the 

planning stage of the design.
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Chapter 1: Introduction and Contributions 4

1.1.2 Techniques for Power-Aware Design

A primary goal of developing accurate and efficient power modeling methodologies 

is to assist in the development of techniques for power-efficient design. In this the­

sis, I will describe several techniques including value-based clock gating and dynamic 

thermal management. Value-based clock gating seeks to disable the upper portion 

of functional units based on dynamic information gathered about the values being 

executed. This technique capitalizes on the disparity between the bitwidth require­

ments of address and data calculations. This disparity increases when considering 

processors with wide datapaths, and we demonstrated that in 64-bit processors this 

technique can reduce the power dissipation of the functional units by over 50%, which 

can lead to full chip power savings of roughly 5-10%. I have investigated practical 

implementations of this technique as well as extensions into the memory hierarchy.

We have also investigated the benefits of dynamic thermal management. This 

is a method to reduce the cost of thermal packaging of microprocessors by reducing 

the effective maximum power dissipation of the processors. This technique is based 

on the observation that the maximum chip power dissipation is achieved only under 

extreme circumstances that do not typically occur in most applications. With the 

use of on-chip thermal sensors, the operating system or microarchitecture can use 

various techniques to dynamically trade small amounts of performance for reduced 

power dissipation when these unusual circumstances occur. We demonstrate that for 

many applications the thermal packaging requirements can be reduced substantially 

while maintaining performance.

1.2 Organization

Chapter 2 will discuss a methodology for architectural-level power modeling and the 

energy models in the context of the Wattch tool. Chapter 3 describes the PowerTimer
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Chapter 1: Introduction and Contributions 5

tool that uses this methodology in the context of industrial simulators and energy 

models. Chapter 4 discusses the model validation of these two tools. This chapter 

also seeks to quantify the robustness of the relative accuracy of these models. Chapter 

5 discusses value-based clock gating, a technique targeting average power dissipation. 

Chapter 6 discusses dynamic thermal management, a technique targeting maximum 

power dissipation in high-performance microprocessors. Chapter 7 will summarize 

the major contributions of this thesis, discuss areas of future research, and offers 

conclusions.
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Chapter 2

Power Modeling -  Wattch

Research in the area of high-performance, power-efficient computer architectures is 

still in the preliminary stages. A major obstacle for such research has been the lack 

of infrastructure that analyzes and quantifies the power ramifications of different 

architectural choices. Creating such infrastructure requires balancing the need for 

low-level detail and accuracy against the need for higher-level abstractions offering 

simulator speed and portability.

This chapter will present Wattch, a framework for analyzing and optimizing mi­

croprocessor power dissipation at the architectural-level. Wattch’s power estimates 

are based on a suite of parameterizable power models for different hardware struc­

tures and on per-cycle resource usage counts generated through cycle-level simula­

tion. In Chapter 3, I will also discuss PowerTimer, a tool that uses a a similar core 

methodology, although its energy models are derived from circuits used in an existing 

commercial, high-performance microprocessor design.

Wattch is 1000X or more faster than existing layout-level power tools, and yet 

maintains accuracy within 10% of their estimates as verified using industry tools on 

leading-edge designs. We have performed a validation study on Wattch and Power­

Timer. This analysis is presented in Chapter 4 where we present several validations 

of Wattch’s accuracy and discuss the robustness of these simulators to error.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2: Power Modeling -  Wattch 7

Wattch is intended to be a complement to existing lower-level tools; it allows 

architects to explore and cull the design space early on, using faster, higher-level 

tools. It also opens up the field of power-efficient computing to a wider range of 

researchers by providing a power evaluation methodology within the portable and 

familiar SimpleScalar framework.

Binary Binary I B inar

* <~on ~ Common ConfigConfig 1 Config 2

W attch W attch

Binary 1 Binary 2

Common Config

W attch W attch

Watts-1 

Scenario A:

Walts-2
T

W atts-1 

Scenario B:
Watts-2

Microarchitectural tradeoffs Compiler Optimizations

Wattch

Config I

W attch

Binary

Array
Structure?

Custom
Structure?

Use Current 
Models

Additional Hardware?

Estimate Power 
of Structure

Watts-2Watts-I 

Scenario C:
Hardware Optimisations

Figure 2.1: Three scenarios for using architectural-level power analysis.

Figure 2.1 shows three possible usage flows for Wattch. Scenario A applies to 

cases where the user is interested in comparing several design configurations that 

are achievable simply by varying parameters for hardware structures that we have
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Chapter 2: Power Modeling - Wattch 8

modeled. Scenario B is for software or compiler development, where a single hardware 

configuration is used and several programs are simulated and compared. The third 

usage scenario highlights Wattch’s modularity. Additional hardware modules can be 

added to the simulator. In some cases, these hardware models follow the template 

of a hardware structure we already handle. For these cases (i.e., array structures) 

the user can simply add a new instantiation of the model into the simulator. For 

other types of new hardware, the model will not fit any already developed, but it is 

relatively easy to plug new models into the Wattch framework. In Section 2.3, we 

demonstrate case studies in which the power simulator can be used to perform these 

three types of power analysis.

2.1 Related Work

Related research falls into two categories. First, we touch on some relevant work on 

architectural-level techniques for reducing power consumption, and second, we discuss 

related strategies for estimating power consumption at the architectural level.

Prior work in architectural-level techniques for power reduction has mainly focused 

on caches [7; 50; 52; 87]. This focus can be attributed to two factors. First, embedded 

microprocessors, historically the main focus of low-power design, frequently devote a 

large portion of their power budget to caches, in some cases up to 40% [62]. Second, 

since caches are regular structures, they are somewhat easier to model than other 

units, and thus, it can be easier to quantify power savings in caches.

Some work on architectural-level power reduction has addressed other areas of the 

processor. For example, Manne et al. showed how branch prediction confidence esti­

mators can be used to control branch speculation in order to reduce power consump­

tion [59]. This work presents results in terms of the amount of needless speculative 

work saved per pipeline stage, as an indicator of power savings. Other prior work has
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Chapter 2: Power Modeling -  Wattch 9

discussed the power benefits of value-based clock gating in integer ALUs [17] which 

will be discussed in Chapter 4. In both of these prior papers, a simple measure of 

the proposed strategy’s power effectiveness can be offered by quantifying some type 

of work that is “saved” . In one case, for example, this is the number of fruitless spec­

ulative cycles that were saved; in the other case, it is the number of result bits that 

need not be computed. While such work-saved measures are accurate and very use­

ful for individual techniques, apples-to-apples comparisons of different power-saving 

techniques require a single common power metric. This is our motivation for creating 

an architectural-level power simulator.

There has also been related work in architectural-level power estimation tools 

developed about the same time as Wattch and PowerTimer. Published at ISCA in 

2000 simultaneously with Wattch, SimplePower [94] is a tool in which capacitance 

data was generated from switch-level simulation of the functional unit designs; thus, 

the models are not easily parameterizable. This simulator is primarily focused on 

single-issue embedded microprocessors, and does not model out-of-order hardware, 

so it is difficult for us to compare the speed or accuracy of our approach with this 

related work.

Cai et al. in 1999 and 2000 have proposed two models for architectural power- 

estimation based on SimpleScalar. First, the Cai-Lim model [27], proposes power- 

density based estimates which are combined with activity factors observed within 

SimpleScalar. The second model, Tempest [33], introduces mixed-mode simulation 

which can either use power-density based estimates or analytical estimates.

Zyuban et al. in 2000 have also proposed a SimpleScalar based model which uses 

analytical estimates to and explore multi-clustered architectures for power-performance 

efficiency [99; 101].

Numerous low-power research studies, as well as next-generation power/performance 

modeling efforts including the PowerAnalyzer project at the University of Michigan
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Chapter 2: Power Modeling -  Wattch 10

and the University of Colorado and the Liberty/MESCAL project at Princeton have 

used portions of the above simulators in their code base.

Lower-level power tools such as PowerMill [88] and QuickPower [61] operate on 

the circuit and Verilog level. While providing excellent accuracy, these types of tools 

are not especially useful for making architectural decisions. First, architects typically 

make decisions in the planning phase before the design has begun, but both of these 

tools require complete HDL or circuit designs. Second, the simulation runtime cost 

for these tools is unacceptably high for architecture studies, in which the tradeoffs 

between many hardware configurations must be considered. The point of our work is 

not to compete with these lower-level tools, but rather to expose the basics of power 

modeling at a higher-level to architects and compiler writers. In a manner analogous 

to the development of tools for cycle-level architectural performance simulation, tools 

for architectural-level power simulation will help open the power problem to a wider 

audience.

Section 2.2 provides a detailed description of our power modeling methodology. 

An in-depth description of our validation strategy is described in Chapter 4. Section

2.3 provides three case studies detailing how Wattch can be used to perform microar- 

chitectural tradeoff studies for low-power designs, compiler tradeoffs for power, and 

hardware optimizations for low-power. In Section 2.4 we discuss future possibilities 

for research in the area of power-efficient architectures and provide conclusions.

2.2 Wattch Power Modeling Methodology

The foundations for our power modeling infrastructure are parameterized power mod­

els of common structures present in modern superscalar microprocessors. These power 

models can be integrated into a range of architectural simulators to provide power 

estimates. In this work we have integrated these power models into the SimpleScalar
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Chapter 2: Power Modeling -  Wattch 11

Figure 2.2: Overall Structure of Wattch.

architectural simulator [24].

Figure 2.2 illustrates the overall structure of Wattch and the interface between the 

performance simulator and the power models. In the following section we describe the 

power models in detail. We have performed both low-level and high-level validations 

of these models; we present these validation results in Section 4.2.

2.2.1 Detailed Power Modeling Methodology

The main processor units that we model fall into four categories:

•  Array Structures: Data and instruction caches, cache tag arrays, all register

files, register alias table, branch predictors, and large portions of the instruction

window and load/store queue.

•  Fully Associative Content-Addressable Memories: Instruction window/reorder 

buffer wakeup logic, load/store order checks, and TLBs, for example.

• Combinational Logic and Wires: Functional Units, instruction window selection 

logic, dependency check logic, and result buses.

• Clocking: Clock buffers, clock wires, and capacitive loads.

In CMOS microprocessors, dynamic power consumption (Pd) is the main source of 

power consumption, and is defined as: P<j as CVdda/ .  Here, C is the load capacitance, 

Vdd is the supply voltage, and /  is the clock frequency. The activity factor, a, is a 

fraction between 0 and 1 indicating how often clock ticks lead to switching activity 

on average. Our model estimates C  based on the circuit and the transistor sizings as
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Chapter 2: Power Modeling - Wattch 12

described below. Vdd and /  depend on the assumed process technology. In this work, 

we use the .35um process technology parameters from [69].

The activity factor is related to the benchmark programs being executed. For 

circuits that pre-charge and discharge on every cycle (i.e., double-ended array bitlines) 

an a of 1 is used. The activity factors for certain critical subcircuits (i.e., single-ended 

array bitlines) are measured from the benchmark programs using the architectural 

simulator. The vast majority of the nodes that have a large contribution to the 

power dissipation fall under one of these two categories. For subcircuits in which we 

are unable to measure activity factors with the simulator (such as the internal nodes 

of the decoder) we assume a base activity factor of .5 (random switching activity). 

Finally, our higher-level power modeling selectively clock-gates unneeded units on 

each clock cycle, effectively lowering the activity factor.

The power consumption of the units modeled depends very much on the particular 

implementation, particularly on the internal capacitances for the circuits that make 

up the processor. VVe model these capacitances using assumptions that are similar 

to those made by Wilton and Jouppi [96] and Palacharla, Jouppi, and Smith [69] in 

which the authors performed delay analysis on many of the units listed above. In 

both of the above works, the authors reduced each of the above units into stages and 

formed RC circuits for each stage. This allowed them to estimate the delay for each 

stage, and by summing these, the delay for the entire unit.

For our power analysis we perform similar steps, but with two key differences. 

First, we are only interested in the capacitance of each stage, rather than both R 

and C. Second, in our power analysis the power consumption of all paths must be 

analyzed and summed together. In contrast, when performing delay analysis, only the 

expected critical path is of interest. Table 2.1 summarizes our capacitance formulas, 

and the descriptions below elaborate on our approach.
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Chapter 2: Power Modeling - Wattch 13

Array Structures Our array structure power model is parameterized based on 

the number of rows (entries), columns (width of each entry), and the number of 

read/write ports. These parameters affect the size and number of decoders, the 

number of wordlines, and the number of bitlines. In addition, we use these parameters 

to estimate the length of the pre-decode wires as well as the lengths of the array’s 

wordlines and bitlines.

For the array structures we model the power consumption on the following stages: 

decoder, wordline drive, bitline discharge, and output drive (or sense amplifier). Here 

we only discuss in detail the wordline drive and bitline discharge. These two com­

ponents form the bulk of the power consumption in the array structures. Figure 2.3 

shows a schematic of the wordlines and bitlines in the array structure.

Node Capacitance Equation
Regfile Wordline 
Capacitance =

Cdiff(lVordLine Driver)
+ Cgate(C ell Access) * NumBitlines  
+  Cmetai * WordLineLength

Regfile Bitline 
Capacitance =

Cdifj (PreCharge)
+  Cdif/{CellAccess) * NumW dlines  
+  Cmetai * BLLength

CAM Tagline 
Capacitance =

Cgate(CompareEn) * NumberTags 
+ Cdiff{CompareDriver)
-F Cmetai * T LLength

CAM Matchline 
Capacitance =

2 * Cdiff{CompareEn) * TagSize  
+ Cdiff(MatchPreCharge)
+  Cdiff{MatchOR)
+  Cmetai* M  L Length

ResultBus 
Capacitance =

.5 * Cmetai * N uttiALU * ALU Height) 
+  Cmetai * [RegfileHeight)

Table 2.1: Capacitance equations of critical nodes.

Modeling the power consumption of the wordlines and bitlines requires estimating 

the total capacitance on both of these lines. The capacitance of the wordlines include
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Figure 2.3: Schematic of wordlines and bitlines in array structure.

three main components. These three components are the diffusion capacitance of the 

wordline driver, the gate capacitance of the cell access transistor times the number 

of bitlines, and the capacitance of the wordline’s metal wire.

The bitline capacitance is computed similarly. The total capacitance is equal 

to the diffusion capacitance of the pre-charge transistor, the diffusion capacitance 

of the cell access transistor multiplied by the number of word lines, and the metal 

capacitance of the bitline. The models that we have created provide the option to use 

single-ended or double-ended bitlines. In this work we assume that register file array 

structures use single-ended bitlines and that cache array structures use double-ended 

bitlines. Equations for the wordline and bitline capacitance are shown in Table 2.1.

Multiple ports on the array structure will increase the power consumption in 

three ways. First, there will be more capacitance on the wordlines because each
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additional port requires an additional transistor connection. Second, each addi­

tional port requires up to two additional bitlines (bit and bit'), each of which must 

precharge/evaluate on every cycle. Finally, each core cell becomes larger which leads 

to longer word and bitlines, incurring additional wire capacitance.

Transistor sizing plays an important role in the amount of capacitance within the 

various structures. We use the transistor sizings of [69; 96] wherever sizes are noted. 

Generally, transistors in array structures are kept relatively small to reduce the area. 

In our model, certain critical transistors are automatically sized based on the model 

parameters to achieve reasonable delays. For example, the wordline driver transistor 

is critical for driving the wordline high in a short amount of time. The width of this 

transistor is scaled based on the amount of capacitance on the wordlines. Because of 

the length of the word and bitlines, the internal wiring capacitance of these structures 

is significant.

Our analysis is similar to Wilton and Jouppi’s study of cache array structures [96]. 

That work analyzes the access and cycle times for on-chip caches. We modify the 

analysis to take into account multi-ported array structures such as the register alias 

table, register file, etc. In addition, Kamble and Ghose developed power models for 

cache arrays to study power optimizations within caches [50] and Zyuban and Kogge 

studied low-power circuit techniques for register file structures [100].

The physical implementation of some array structures may be very different from 

the logical structure. For example, caches may be banked in order to provide rea­

sonable delays. In this work we estimate the physical implementations for cache 

structures using the help of the Cacti tool [96]. Cacti is a tool developed to deter­

mine delay-optimal cache hardware configurations given cache parameters such as 

size, block size, and associativity. We perform similar analysis on branch prediction 

structures to make them as square as possible in the physical implementation.
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CAM Structures Our analysis of the CAM structures is very similar to that for 

array structures. However, in the CAM structure we model taglines and matchlines 

instead of bitlines and wordlines. Equations for the CAM tagline and matchline 

capacitance are shown in Table 2.1. Again we use a parameterized model which can 

be extended to the various CAM structures in the processor. We take into account 

the number of rows (number of tags), columns (number of bits per tag to match), 

and ports on the CAM. The analysis is similar to that for the array structures and 

follows the methodology taken in [69].

T»|VP Tqfl [)«l» Ram  Dil* T « |l ' r* ,W ' 
_ CtIL

prectuff*

tl

2l

Wl-down 
1 S i a t k

OR » ReaJy

Figure 2.4: Core cell of wakeup logic modeled as a CAM.

As an example, Figure 2.4 depicts the core cell of the instruction wakeup logic 

which we model in our CPU as a form of the CAM structure. As described above, the 

key sizing parameters in this CAM are: (i) the issue/commit width of the machine 

(number of match or tag lines in each core cell, depicted by the parameter W in the 

figure), (ii) the instruction window size (which impacts the CAM’s overall height) 

and (iii) the physical register tag size which equals logarithm base 2 of instruction 

window size (which impacts the CAM’s width). Vertically, each core cell is replicated 

InstructionWindowSize times. Horizontally, the number of cells will equal the number 

of bits in the physical register tag; they share a common wide-OR for the final match 

which signals that the instruction is ready to issue. We also model the wordlines 

which are used to write new tag values into the CAM structure; for simplicity, these
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lines are omitted from the figure.

Complex Logic Blocks Two of the larger complex logic blocks that we consider 

are the instruction selection logic (in the instruction window) and the dependency 

check logic (in the register renaming unit). We model circuit structures based on the 

selection logic described in [69] and the dependency check logic in [12].

We model the power consumption of result buses by estimating the length of the 

result buses using the same assumptions about functional unit height made in [70]. 

These lengths are multiplied by the metal capacitance per unit length. This equation 

is shown in Table 2.1.

Modeling the power consumption of the functional units (ALUs) at this high level 

would be difficult. Previous work has investigated the power consumption of various 

functional units [13; 98]. We scale the power numbers from these combinational 

structures for process and frequency in order to estimate the power consumption of 

the functional units.

Clocking The clocking network on high performance microprocessors can be the 

most significant source of power consumption. We consider three sources of clock 

power consumption:

•  Global Clock Metal Lines: Long metal lines route the clock throughout the 

processor. We model a modified H-tree network in which the global clock signal 

is routed to all portions of the chip using equivalent length metal wires and 

buffers in order to reduce clock skew. This is similar to that used in the Alpha 

21264 [36].

•  Global Clock Buffers: Very large transistors are used to drive the clock through­

out the processor in a timely manner. We estimate the size and number of these 

transistors from [15; 36] which describes the methodology used in the Alpha
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21164 and 21264 for designing the global clock buffers.

•  Clock Loading: We consider both explicit and implicit clock loading. Explicit 

clock loads are the values of the gate capacitances of pre-charge transistors 

and other nodes that are directly connected to the clock within the units that 

we model. Implicit clock loads include the load on the clock network due to 

pipeline registers. Here we use the number of pipeline stages in the machine 

and estimate the number of registers required per pipestage.

The models described above were implemented as a C program using the cacti 

tool [96] as a starting point. These models use SimpleScalar’s hardware configuration 

parameters as inputs to compute the power consumption values for the various units 

in the processor. A summary of major hardware structures and the type of model 

used for each is given in Table 2.2.

Hardware Structure Model Type
Instruction Cache 
Wakeup Logic 
Issue Selection Logic 
Instruction window 
Branch Predictor 
Register File
Translation Lookaside Buffer 
Load/Store Queue 
Data Cache
Integer Functional Units 
FP Functional Units 
Global Clock

Cache Arrav (2x bitlines) 
CAM
Complex combinational 
Array/CAM
Cache Array (2x bitlines) 
Array (lx  bitlines) 
Array/CAM 
Array/CAM
Cache Array (2x bitlines) 
Complex combinational 
Complex combinational 
Clock

Table 2.2: Common CPU hardware structures and the model type used by Wattch.
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2.2.2 SimpleScalar Interface

The power models are interfaced with SimpleScalar, which keeps track of which units 

are accessed per cycle and records the total energy consumed for an application. We 

use a modified version of SimpleScalar’s sim-outorder to collect results.

SimpleScalar provides a simulation environment for modern out-of-order proces­

sors with 5-stage pipelines: fetch, decode, issue, writeback, and commit. Speculative 

execution is also supported. The simulated processor contains a unified active instruc­

tion list, issue queue, and rename register file in one unit called the reservation update 

unit (RUU) [84]. Separate banks of 32 integer and floating point registers make up 

the architected register file and are only written on commit. We have extended Sim­

pleScalar to provide for a variable number of additional pipestages between fetch and 

issue bringing the number of pipestages more in line with current microprocessors. In 

this study, we assume three additional pipestages between fetch and issue, and seven 

cycles of mispredict penalty.

One Cycle: Power/Performance Simulation

Fetch Dispatch Issue/Execute Writeback/Commit

Performance ♦CadieHit?
.Bpred
Lookup?

♦Inst Window 
Fun?

.Oapandanaas
Satbtiad?
.Rasaurcas?

.Commit Bandwidth?

Power
(Units
Accessed
Counters)

♦l-cacha
.Bprad

♦Ranama TaMa 
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.Rag. File

.Inal. Window 

.RagFila 
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.O-Cacfta 
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.Rag. Fila 
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Compute Power 
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Power Models

Figure 2.5: One Cycle in Wattch.

Our power-oriented modifications track which units are accessed on each cycle 

and how. For example, if a particular cycle involves reading the instruction cache,
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selecting some ready instructions from the RUU, reading on two ports of the register 

file, and performing two integer additions, then counters in the simulator will record 

these events and a power estimate for each of these structures will be recorded on each 

cycle of the simulation. This is illustrated in Figure 2.5. Some of the power models 

vary the estimated power based on the number of ports used, as described in Section 

2.2.2. As with most simulation frameworks, we hope that broader distribution of the 

framework will lead users to create an even richer variety of power modeling modules 

over time.

Section 2.3.1 describes further details of the baseline hardware parameters selected 

and the benchmarks we use.

Conditional Clocking Styles

One key issue that arises in estimating power concerns how to scale power consump­

tion for multi-ported hardware units. Current CPU designs increasingly use condi­

tional clocking to disable all or part of a hardware unit to reduce power consumption 

when it is not needed. In this work we consider three different options for clock gating 

to disable unused resources in multi-ported hardware. (More options can clearly be 

developed later; we give these as initial examples.)

The first and simplest clock gating style assumes the full modeled power will 

be consumed if any accesses occur in a given cycle, and zero power consumption 

otherwise. For example, a multi-ported register file would be modeled as drawing full 

power even if only one port is used. This assumption is realistic for many current 

CPUs that choose not to use aggressive conditional clocking. The second possibility 

assumes that if only a portion of a unit’s ports are accessed, the power is scaled 

linearly. For example, if two ports of a 4-port register file are used in a given cycle, 

the power estimate returned will be one-half of the power compared to if four ports 

are used. Wattch tracks how many ports are used on each hardware structure per
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cycle and scales power numbers accordingly. In practice, it may be impossible to 

totally shut off the power to a unit or port when it is not needed, so a small fraction 

of its total power may still be active. With this in mind, we also present a third 

option in which power is scaled linearly with port or unit usage, except that unused 

units dissipate 10% of their maximum power, rather than drawing zero power. This 

number was chosen as it represents a typical turnoff figure for industrial clock-gated 

circuits.

50 i ■  All or Nothing Clk Gating
□  Linear Clk Gating w / 10%
□  Linear Clk Gating

30 i

Figure 2.6: Power consumption of benchmarks with conditional clocking on multi­
ported hardware. The first bar assumes simple clock gating where a unit is fully on 
if any of its ports are accessed on that cycle, or fully off otherwise. The second bar 
assumes clock gating where the power scales linearly with port usage, and disabled 
ports consume 10% of their maximum power. The third bar assumes ideal clock 
gating where the power scales linearly with port usage as in the second bar, but 
disabled units are entirely shut off.

Figure 2.6 shows the power dissipation for the eight SPECint95 and four of the 

SPECfp95 benchmarks for the three styles of conditional clocking. The maximum 

power for this configuration (similar to the 21264) was 58.4W. Future processors 

are likely to move towards the more aggressive style to reduce the average power 

dissipation. We expect that there will be more variability in the power consumption of 

the benchmarks when more clock gating is used. This assumption is supported by this
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figure: for the simple clock gating style, the maximum variation of the benchmarks 

from the average is 36%. The variations for the more advanced clock gating techniques 

are 54% and 66%. The amount of clock gating in current processors falls somewhere 

between the styles that we consider.

Simulation Speed

Wattch is intended to run with overheads only moderately larger than other Sim­

pleScalar simulators. It first computes the base power dissipation for each unit at 

program startup, which is a one-time cost. These base power costs are then scaled 

with per-unit access counts. For arithmetic units, we only charge power for the units 

that would be used each cycle; a cycle that performs two integer additions will not 

be charged for the multiply unit. In addition to the access counts, the simulator also 

scales power estimates for multi-ported hardware based on the style of clock gating 

chosen from the options given in Section 2.2.2.

Our simulation speed measurements are for our modified version of SimpleScalar/AXP’s 

sim-outorder running on a Pentium-II 450MHz PC using RedHat Linux version 6.0.

The simulation speed of sim-outorder without power modeling was approximately 

105K instructions per second. With our current methodology which updates the 

power statistics every cycle according to access counts, we see roughly a 30% over­

head on average compared to performance simulation alone. That is, our simulation 

speed drops to roughly 80K instructions per second. Given the ability to gauge power 

at a fairly high level, we feel this overhead is quite tolerable. It can be further re­

duced, however, by updating power statistics every few cycles. This would require 

loosening the accuracy of the port count statistics and the statistics on the usage of 

different functional units.

As a comparison to lower level tools, running PowerMill on a 64-bit adder for 100 

test vectors takes approximately one hour. In the same amount of time, Wattch can
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simulate a full CPU running roughly 280M SimpleScalar instructions and generate 

both power and performance estimates.

2.3 Case Study

In this section, we provide three case studies that demonstrate how Wattch can be 

used to perform architectural or compiler research. When performing power studies, 

a variety of metrics are important depending on the goals. Our simulator provides 

results for several of these metrics:

•  Power: The average and maximum per-cycle power consumption of the proces­

sor are important because power translates directly into heat. With on-chip 

thermal sensors, techniques such as instruction cache throttling can be used to 

reduce the number of cycles in which the power consumption is significantly 

above the average [78]. Large cycle-by-cycle swings in the power dissipation 

(i.e., power glitches) are also important because they cause reliability problems. 

Our cycle-level power simulator is capable of analyzing these types of problems.

•  Performance: The performance ramifications of an architectural proposal, whether 

positive or negative, are important for any architecture study. With Wattch, 

performance is measured in terms of number of cycles for program execution.

•  Energy: The overall energy consumption of a program is equal to power dissipa­

tion multiplied by the execution time. Overall energy consumption is important 

for portable and embedded processors, where battery life is a key concern.

•  Energy-Delay Product: The energy-delay product, proposed by Gonzalez and 

Horowitz [40], multiplies energy consumption and overall delay into a single 

metric. This produces a metric that does not give unwarranted preference to 

solutions that are either (1) very low-energy but very slow, or (2) very fast but 

very high power.
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In the following subsections we present three case studies which demonstrate how 

the simulator infrastructure can be used for architecture and compiler research stud­

ies. The case studies illustrate the three possibilities shown in Figure 2.1. The main 

point of these case studies is to demonstrate the methodology for rapid exploration 

of these ideas, rather than to give details on each of the examples themselves. Be­

fore getting into the case studies, we explain our baseline hardware configuration and 

benchmarks.

2.3.1 Simulation Model Parameters

Unless stated otherwise, our results in this chapter, as well as for the rest of this 

thesis, model a processor with the configuration parameters shown in Table 2.3. These 

baseline configuration parameters roughly match those of the Alpha 21264 processor. 

The main difference is that the 21264 has a separate active list, issue queue, and 

rename register file while the SimpleScalar simulator uses a unified instruction window 

called an RUU. For technology parameters, we use the process parameters for a .35um 

process at 600MHz. In this section, we use Section 2.2.2’s aggressive clock gating style 

(linear scaling with number of active ports) for all results.

Benchmark Applications

We chose to evaluate our ideas on programs from the SPECint95 and SPECfp95 

benchmark suites. SPEG95 programs are representative of a wide mix of current 

integer and floating-point codes. We have compiled the benchmarks for the Alpha 

instruction set using the Compaq Alpha cc compiler with the following optimization 

options as specified by the SPEC Makefile: -migrate -stdl -05  -ifo -non_shared.

For each program, we simulate 200M instructions. We select a 200M instruction 

window not at the beginning of the program by using warmup periods as discussed
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Parameter Value
Processor Core

RUU size 
LSQ size 
Fetch Queue Size 
Fetch width 
Decode width 
Issue width 
Commit width 
Functional Units

80 instructions 
40 instructions 
8 instructions 
4 instructions/cycle 
4 instructions/cycle 
4 instructions/cycle (out-of-order) 
4 instructions/cycle (in-order)
4 Integer ALUs 
1 integer multiply/divide 
1 FP add, 1 FP multiply 
1 FP divide/sqrt

Branch Prediction
Branch Predictor 

BTB
Return-address stack 
Mispredict penalty

Combined, Bimodal 4K table 
2-Level IK table, lObit history 
4K chooser 
1024-entry, 2-way 
32-entry 
7 cycles

Memory Hierarchy
LI data-cache 

LI instruction-cache 

L2

Memory
TLBs

64K, 2-way (LRU)
32B blocks, 1 cycle latency 
64K, 2-way (LRU)
32B blocks, 1 cycle latency 
Unified, 2M, 4-way (LRU) 
32B blocks, 12-cycle latency 
100 cycles
128 entry, fully associative 
30-cycle miss latency

Table 2.3: Baseline Configuration of Simulated Processor
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in [81].

2.3.2 A Microarchitectural Exploration

One important application of Wattch is for microarchitectural tradeoff studies that 

account for both performance and power. For example, users may be interested 

in evaluating sizing tradeoffs between different hardware structures. Clearly, the 

architectural decisions made when power is considered may differ from those based 

solely on performance. One possible study which we consider in this section is to 

evaluate size tradeoffs between the RUU and data cache. This example demonstrates 

Scenario A from Figure 2.1. The baseline processor configuration is that from Table 

2.3 and our simulations vary the sizes of the RUU and D-cache. For all simulations, 

the Load/Store Queue is set to half the size of the RUU. We have collected these 

results for the SPECint95 and several of the SPECfp95 benchmarks. As we will 

discuss below, the results typically fall into two main categories of behavior, and we 

present results for one representative benchmark from each category: qcc and turb3d.

Figures 2.7, 2.8 and 2.9 show the results for the gcc benchmark. The three graphs 

show performance (in instructions per cycle), average power dissipation, and energy- 

delay product for the benchmark. Similarly, Figures 2.10, 2.11 and 2.12 show the 

same results for the tnrb3d benchmark.

The IPC graphs show that gcc gets significant performance benefit from increasing 

the data cache size. It only begins to level off at roughly 64KB. In contrast, turb3d 

gets relatively little performance benefit from increasing the data cache size, but is 

highly sensitive to increases in the RUU size.

Although the performance contours are fairly different for these two benchmarks, 

the power contours shown in Figures 2.8 and 2.11 are quite similar. Both show steady 

increases in average power as the size of either unit is increased.

Despite the similarity in the average power graph, the two benchmarks do have
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strikingly different energy characteristics, as shown in Figures 2.9 and 2.12. The 

energy-delay product combines performance and power consumption into a single 

metric in which lower values are considered better both from a power and performance 

standpoint. The energy-delay product curve for gcc reaches its optimal point for 

moderate (64KB) caches and small RUUs. This indicates that although large caches 

continue to offer gcc small performance improvements, their contribution to increased 

power begins to outweigh the performance increase. RUU size offers little benefit to 

gcc from either a performance or energy-delay standpoint.

For turb3d, energy-delay increases monotonically with cache size, reflecting the fact 

that larger caches draw more power and yet offer this benchmark little performance 

improvement in return. Moderate-sized RUU’s offer the optimal energy-delay for 

turb3d, but the valley in the graph is not as pronounced as for gcc.

Overall, the point of this case study is to demonstrate how the power simulator 

and the resulting graphs shown can help explore tradeoff points taking into account 

both power and performance related metrics.

2.3.3 Power Analysis of Loop Unrolling

This section gives an example of how a high-level power simulation can be of use 

to compiler writers as well. We consider a simple case study which examines the 

effects of loop unrolling on processor power dissipation. Loop unrolling is a well- 

known compiler technique that extends the size of loop bodies by replicating the 

body n times, where n is the unrolling factor. The loop exit condition is adjusted 

accordingly. In this section, we consider a simple matrix multiply benchmark with 

200x200 entry matrices. VVe have used the Compaq Alpha cc compiler to unroll the 

main loops in the benchmark, and we consider several unrolling factors.

Figures 2.13 shows the results for the execution time and power/energy results 

for loop unrolling. As one would hope, the execution time and the number of total
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Figure 2.7: IPC for gcc when varying RUU and Data Cache size.
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Figure 2.8: Power for gcc when varying RUU and Data Cache size.

Figure 2.9: Energy-Delay Product for gcc when varying RUU and Data Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2: Power Modeling - Wattch 29

M6KB ,,|KB

Figure 2.10: IPC for turb3d when varying RUU and Data Cache size.

Figure 2.11: Power for turb3d when varying RUU and Data Cache size

Figure 2.12: Energy-Delay Product for turb3d varying RUU and Data Cache size
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instructions committed decreases. This is because loop unrolling reduces loop over­

head and address calculation instructions. The power results are more complicated, 

however, which makes the tradeoffs interesting in a power-aware compiler.

Figure 2.14 shows a breakdown of the power dissipation of individual processor 

units normalized to the case with no unrolling. There are two important side-effects 

of loop unrolling. First, loop unrolling leads to decreased branch predictor accuracy, 

because the branch predictor has fewer branch accesses to “warm-up” the predictors 

and because mispredicting the final fall-through branch represents a larger fraction 

of total predictions.

Another side-effect of loop unrolling is that removing branches leads to a more 

efficient front-end. The fetch unit is able to fetch large basic blocks without being 

interrupted by taken branches. This, in turn, provides more work for the renaming 

unit and fills up the RUU faster. In fact, with this example the RUU becomes full 

for an average of 85% of the execution cycles after we move from an unrolling factor 

of 2 to 4. The fetch queue, which connects the fetch unit to the renaming hardware 

is also affected, and is full for an average of 73% of the cycles at an unrolling factor 

of 4.

Thus, the average fetch unit power dissipation decreases for two reasons. First, 

because the branch prediction accuracy has decreased, there are more misprediction 

stall cycles in which no instructions are fetched. The second reason is that at larger 

unrolling factors, the fetch unit is stalled during cycles when the instruction queue and 

RUU are full. The reduced number of branch instructions also significantly reduces 

the power dissipation of the branch prediction hardware. (Note that these stall cycles 

would increase the total energy required to run the full program, but this graph shows 

average power.)

The renaming hardware, on the other hand, shows a small increase in power 

dissipation at an unrolling factor of two. This is because the front-end is operating at
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full-tilt, sending more instructions to the renamer per cycle. As the fetch unit starts 

to experience more stalls with unrolling factors of 4 and beyond, the renamer unit 

also begins to remain idle more frequently, leading to lower power dissipation.

While the varied power trends in each unit are somewhat complicated, the over­

all picture is best seen in Figure 2.13. The total instruction count for the program 

continues to decrease steadily for larger unrolling factors, even though the execution 

time tends to level out after unrolling by four. The combined effect of this is that 

energy-delay product continues to decrease slightly for larger unrolling factors, even 

though execution time does not. Thus, a power-aware compiler might unroll more ag­

gressively than other compilers. This simple example is intended to highlight the fact 

that design choices are slightly different when power metrics are taken into account; 

Wattch is intended to help explore these tradeoffs.

2.3.4 Memoing To Save Power

Another important application for the Wattch infrastructure is in evaluating the po­

tential hardware benefits of hardware optimizations. In this section, we consider result 

memoing, a technique that has been previously explored for performance benefits [30; 

83]. Memoing is the idea of storing the inputs and outputs of long-latency operations 

and re-using the output if the same inputs are encountered again. The memo table is 

looked up in parallel with the first cycle of computation, and the computation halts 

if a hit is encountered. Thus memoing can reduce multi-cycle operations to one-cycle 

when there is a hit in the memo table.

We consider the power and performance benefits of this technique. Power con­

sumption in the floating point units is reduced during memo table hits. On the 

other hand, the memo tables dissipate additional power. We base our analysis on 

[30], which showed that a small 32-entrv, 4-way set associative table is capable of 

achieving reasonable hit rates.
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Azam et al. have investigated a similar technique for saving power within integer 

multipliers [6]. Their work did not model the additional power dissipation of reads 

and writes to the cache structure (only the tag comparison logic) and concentrated 

on integer and multimedia benchmarks. The point of this section is to demonstrate 

the methodology for using Wattch to perform such a study.

We have inserted memo tables in parallel with the floating-point and integer mul­

tipliers (4 cycles), the floating point adder (4 cycles), and the floating point-divider 

(16-cycles, unpipelined). Citron’s study examined the SPECfp95, Perfect, and a se­

lection of multimedia and DSP applications finding that the multimedia applications 

have the lowest local entropy in result values and hence the highest hit rates. Since 

Citron’s multimedia benchmarks were not readily available, we have examined a se­

lection of benchmarks from the SPECfp95 suite. As in Citron’s work, we do not enter 

“trivial” operations such as multiply/divide by 0/1 into the table, because we assume 

that simpler hardware could recognize and capitalize on these opportunities.

The modifications to the power simulator infrastructure for the new hardware 

were not complex. The behavior of the memo tables was implemented and memo- 

table-lookup and memo-table-write routines were inserted in the simulator pipeline. 

Both of these routines also serve as the access counters for the memo tables. The 

memo tables were modeled as simple cache array structures using the same power 

models that the other arrav structures use.
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Figure 2.15: Performance and Power Effects of Memoing Technique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2: Power Modeling -  Wattch 34

Figure 2.15 shows the performance and power results for the memoing technique. 

The benchmarks showed an average speedup of 1.7% and an average power improve­

ment of 5.4%. The larger power benefits of the memoing techniques are most likely 

due to the dynamically scheduled out-of-order execution core of the simulated pro­

cessor. In an out-of-order processor, the delay of long-latencv operations can often 

be hidden by finding other instructions to execute, thus the performance benefits of 

removing long-latency operations are not too large. However, stopping these opera­

tions after one cycle of execution can have a significant impact on power dissipation. 

This is most apparent in mgrid, which shows almost no performance benefit, but just 

over an 8% power benefit.

2.4 Chapter Summary

This chapter has described Wattch, a simulator framework that can be used to eval­

uate a wide range of architectural and compiler techniques. Wattch has the benefit 

of low-level validation against industry circuits, while opening up power modeling to 

researchers at abstraction levels above circuits and schematics. In addition, because 

of the fully parameterizable power models that have been developed, Wattch is ideally 

suited for exploring entirely brand new microarchitectures.

Wattch still has room for improvement and we hope that exposure and distribution 

to the architectural community will lead to the development of additional modules. 

Additional accuracy validations are important, and we plan to compare the models 

against lower-level tools on more designs. Speed-accuracy tradeoffs for signal activity 

factors are another area we will consider in the future.

Extensions to the simulator infrastructure and the creation of additional mod­

ules are topics of future research. The simulator infrastructure could be extended 

to consider different hardware organization styles. Additional power modules could
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be developed with different circuit-implementation styles targeting different power- 

performance targets. Modeling off-chip communication is also an important module 

to be developed. Additional work can also focus on more automatic transistor sizing 

and the effects of future process technologies, including leakage power dissipation.

We see a wide range of power studies that can be performed with Wattch. First, 

many old techniques may take on a new light when power is considered as a metric. 

The memoing case study described in Section 2.3.4 is one example of this. Other 

interesting techniques to study with power as a metric would be value-prediction 

[37] and instruction pre-processing [48]. The effects of the compiler techniques and 

operating system control on power dissipation, including the use of power dissipa­

tion as feedback in a profiling compiler, are another possible research area. Finally, 

Wattch can be used in power studies which explore techniques that focus on micro- 

architectural solutions to lower-level power problems. One example of this is dynamic 

thermal management techniques to reduce power dissipation when thermal emergen­

cies occur due to high-power sections of applications. An evaluation of this technique 

using Wattch will be discussed in Chapter 6. Another example would be the evalu­

ation and development of solutions for large, short-term, current spikes due to clock 

gating, which can cause problems with chip reliability.

Exploring these classes of ideas in the power domain will open up new research 

possibilities for architects. The Wattch simulator infrastructure described in this 

chapter offers a starting point for such research efforts.
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PowerTimer

The Wattch framework presented in Chapter 2 was one of the first tools to link 

a traditional architectural performance simulator with energy models. This link is 

accomplished by sending both static information describing the simulated inicroarchi- 

tecture and dynamic information about the run-time characteristics of applications 

to the energy models. This chapter describes the PowerTimer infrastructure [22], an 

effort to apply the Wattch methodology to industrial performance simulators with 

energy models developed from circuits built for a high-performance commercial mi­

croprocessor.

PowerTimer is an ongoing project within IBM Research to develop a power- 

performance modeling toolkit, developed to aid in the evaluation and definition of 

future power-efficient, PowerPC™ processors. The power-performance modeling 

methodology described in the previous sections of this chapter is adapted for use 

within the modeling framework of a real, server-class processor development project. 

The key new contributions in this power-performance modeling tool are:

•  Energy models that are derived from real, circuit-level power simulation data, 

but are then driven by microarchitecture-level parameters of interest. These 

higher-level abstractions are suitable for conducting power-performance tradeoff 

studies to define the follow-on design points within a given product family.

36
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Figure 3.1: Block Diagram of PowerTimer.

Technology parameters and scaling equations are additional inputs to the model. 

•  A web-based graphical user interface, which allows one to quickly characterize 

the fundamental tradeoffs between performance growth and power-related cost, 

based on prior, one-time simulation data collected in a spreadsheet database.

Using this new modeling toolkit, we evaluate a current generation, high-end Pow­

erPC processor design point from the viewpoint of power-performance efficiency. As 

part of this evaluation, we examine the sensitivity of such efficiency metrics with re­

spect to individual (and combinations of) microarchitecture-level parameters: cache 

size and geometry parameters, queue/buffer sizes, number of ports to various storage 

resources, various other bandwidth parameters, etc.

3.1 PowerTimer: An Energy-Aware Performance 

Simulation Toolkit

Figure 3.1 shows the high-level block diagram of PowerTimer, our energv-model- 

enabled performance simulator. The basic methodology is similar to earlier models 

like Wattch [21].

The energy models are derived from circuit-level power simulation data, collected 

on a detailed, macro-by-macro basis. These models are controlled by two sets of 

parameters: (a) technology/circuit parameters, which allow appropriate scaling from
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one CMOS generation to the next; and (b) microarchitecture-level parameters: vari­

ous queue/buffer sizes, pipe latencies and bandwidth values. These latter parameters 

also drive the base performance simulator in the usual manner. The energy models 

can be used in two different modes. First, the performance simulator can be used 

standalone, to produce detailed CPI and resource utilization statistics. These can 

then be processed through the energy models to generate average, unit-wise power 

numbers. Second, the energy models can be embedded in the actual simulation code, 

so that they are “looked up” as needed on a cycle-by-cycle basis. This mode allows 

one to view the cycle-by-cycle energy characteristics in more detail; but the average 

statistics at the end of the run would obviously be the same as in the first mode.

3.1.1 Energy Model Construction

In the Wattch simulator [21], and in other similar toolkits [94; 99], analytical ca­

pacitance models were developed for various high-level block-types, such as RAMs, 

CAMs and other array structures, latches, buses, caches, and ALUs. While some of 

the characterizing parameters are gross length and width values which a logic-level 

designer or microarchitect can relate to, others are at a much lower (circuit or physical 

design) level. In the PowerTimer work, the goal is to form unit-specific energy models 

controlled by parameters familiar to a high-level designer or microarchitect. Thus, for 

example, once a characterizing equation has been formed for one of the issue queues, 

one is able to play “what-if” games in PowerTimer, by simply varying the queue size 

as normally done in microarchitectural performance simulation. The major difference 

between PowerTimer and Wattch is in the formation of energy models. PowerTimer’s 

energy models are formed from empirical data collected from an existing, commercial 

microprocessor. In Wattch, low-level analytical capacitance equations are generated 

for major nodes within common hardware structures. Thus Wattch takes a top-down 

approach using analytically derived capacitance equations from known structures of
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specific modules. PowerTimer is more of a bottom-up approach which uses existing, 

low-level circuit macros to generate higher-level energy models for microarchitectural 

units.

Powtr Ettknalt

Figure 3.2: PowerTimer Energy Models.

Figure 3.2 depicts the derivation of the energy models in more detail. The energy 

models are based on circuit-level power analysis that has been performed on structures 

in a current, high performance PowerPC processor. The power analysis has been 

performed at the macro level; generally, multiple macros combine to form one micro- 

architectural level structure (super-macro). For example, the fixed-point issue queue 

(one super-macro) might contain separate macros for storage memory, comparison 

logic, and control. Power analysis has been performed on each macro to determine 

the macro’s power as a function of the input switching factor. The hold power, or 

power when no switching is occurring, is also generated. These two pieces of data 

allow us to form simple linear equations for each macro’s power. The energy model for 

a super-macro is determined by summing the linear equations for each macro within 

that structure. YVe have generated these power models for all microarchitecture-level 

structures modeled in our research simulator [64; 65).

In addition to the models that specify the power characteristics for particular 

super-macro (such as the fixed-point issue queue), we can derive power models for 

more generalized structures; for example, a generalized issue queue model. These

Energy Modtts

Sub-Units (uArctvlevI Structures)

Power=C1'SF-*HoldPower Macrol

Macro2Powa»=C2'SF+HoldPower

MacroN|Powef=Cn*SF+HoHPowar
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generalized models are useful for estimating the power cost of additions to the base­

line microarchitecture. The generalized model is derived by analyzing the power 

characteristics of structures within the baseline microarchitecture. For example, the 

fixed-point, floating-point, logical-op, and branch-op queues have very similar func­

tionality and power characteristics and the energy analysis for these queue structures 

has been used to derive a generalized issue-queue power model based on parameters 

such as the number of entries, storage bits, and comparison operations.

Since we are interested in determining power-performance tradeoff analysis for 

future microarchitectures within a particular product family, we must determine a 

method of scaling the power of microarchitectural structures as the size of these 

structures increases. The scaling factor depends on the particular structure; for ex­

ample, the power of a cache array will scale differently than that of an issue queue. In 

addition, as resources increase in size, they necessarily cause other structures to be­

come larger. For example, as the number of rename registers increases, the number of 

tag bits within each entry of the issue queues increases. Generally, as we increase the 

number of entries in a structure, there will be a proportional increase in the power. 

For this reason, we use linear scaling as a basis for many of the structures that we 

consider. In addition, we have performed detailed analysis on the scaling of queue 

and mapper structures. For these structures, we have determined the average power 

per storage bit and per comparison operation. As the queues and mappers increase 

in size, we compute the number of storage bits and comparisons that occur for the 

larger structures. We also use previously published work on power scaling within 

cache arrays which we discuss in Section 3.2.3.

3.1.2 Web-Based Interface and Power-Performance Metrics

In order to thoroughly explore the modeled design space, we selected 19 workloads 

(8 SPECint95, 10 SPECfp95, and TPC-C) each of which was evaluated for over
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75 hardware configurations. Analyzing this amount of data is difficult and a GUI 

makes the results of our analysis more useful. We developed a web-based back­

end analysis tool which allows the user to select the benchmarks of interest and the 

microarchitectural parameter(s) to vary as well as the technology parameters such as 

frequency, voltage, and feature size.

The tool also allows the selection of various power-savings features such as the style 

of conditional clocking within the microarchitecture. Finally, the tool provides the 

choice of five power-performance metrics: Average CPI, average power dissipation, 

C P hpow er, (C P I)2*power, and (C P I)3*power. The latter three metrics correspond 

to energy, energy-delay product [31; 40], and energy * delay2 [16]. In the remainder 

of this section we will present our power-performance results as (CPI)2 * power.

3.2 Power-Performance Evaluation Examples

In this section, we first provide a high-level description of the processor model assumed 

in our simulation toolkit. Then, we present some example experimental results with 

analysis and discussion. The results were obtained using our current version of Pow­

erTimer, which works with pre-silicon performance models used in defining future 

PowerPC structures.

3.2.1 Base Microarchitecture Model

We assume a generic, parameterized, out-of-order superscalar processor model adopted 

in a research simulator called Turandot [64; 65]. The overall pipeline structure (as 

reported in [64]), is repeated here in Figure 3.3. The modeled microarchitecture is 

similar in complexity to a current generation microprocessor (e.g. [34; 63] ). As 

described in [64], this research simulator was calibrated against a pre-RTL, detailed, 

latch-accurate processor model (referred to as R-model in [64]). The R-model is a
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Branch

Figure 3.3: Processor Organization Modeled by the Turandot Simulator.

custom simulator, written in C + +  (with mixed VHDL “interconnect code”). There is 

a 1-to-l correspondence of signal names between the R-model and the actual VHDL 

(RTL) model. However, the R-model is about two orders of magnitude faster than 

the RTL model and is considerably more flexible. Many microarchitecture param­

eters can be varied, albeit within restricted ranges. Turandot, on the other hand 

is a classical trace/execution-driven simulator, written in C, which is 1-2 orders of 

magnitude faster than R-model. It supports a much greater number and range of 

parameter values.

We report power-performance results using the same version of R-model that was 

used in [64]. That is, we first used our energy models in conjunction with the R-model: 

this ensured accurate measurement of the resource utilization statistics within the ma­

chine. To circumvent the simulator speed limitations, we used a parallel workstation 

cluster; also, we post-processed the performance simulation output and fed the av­

erage resource utilization statistics to the energy models to get the average power 

numbers. This is faster than the alternative of looking up the energy models on every

with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3: PowerTimer 13

cycle. While it would have been possible to get instantaneous, cycle-by-cycle energy 

consumption profiles through such a method, it would not have changed the average 

power numbers for entire program runs. Having used the detailed, latch-accurate ref­

erence model for our initial energy characterization, we were able to look at the unit- 

and queue-level power numbers in detail in order to understand, test and refine the 

various energy models. Currently, we have reverted to using an energy-model-enabled 

Turandot model, for fast CPI vs. Power tradeoff studies with full benchmark traces. 

Turandot allows us to experiment with a wider range and combination of machine 

parameters. In future publications and talks based on PowerTimer, we plan to report 

these results in detail.

3.2.2 Workloads Used in the Study

In this section, we report experimental results based on the SPEC95 benchmark 

suite and a commercial TPC-C trace. All workload traces are PowerPC-based. The 

SPEC95 traces were generated using the tracing facility called Aria within the MET 

toolkit [65]. The particular SPEC trace repository used in this study was created by 

using the full reference input set. However, sampling was used to reduce the total trace 

length to 100 million instructions per benchmark program. A systematic validation 

study to compare the sampled traces against the full traces was done, in finalizing 

the choice of exact sampling parameters. The TPC-C trace used is a contiguous (i.e. 

unsampled) trace collected and validated by the processor performance team at IBM 

Austin. It is about 180 million instructions long.

In the following three sections we present examples of the use of the Power­

Timer simulation infrastructure. The results show the average CPI and average 

(C P I)3 * power for the traces described above. Each SPEC data point was obtained 

by averaging across the benchmark suite. Note, however, that we have excluded apsi 

from the SPECfp results due to a problem with these simulation runs.
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3.2.3 Data Cache Size and the Effect of Scaling Techniques
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Figure 3.4: Variation of Performance and Power-Performance with Cache Size.

In this section we evaluate the relationship between performance, power, and LI 

data cache size. We vary the cache size by increasing the number of cache lines per 

set while leaving the linesize and cache associativity constant. Figure 3.4a and 3.4b 

show the results of increasing the cache size from the baseline architecture (points 

labeled lx  on the x-axes). Figure 3.4a illustrates the relation between the cache size 

in the first-level data cache and the relative CPI for the workloads that we studied. 

The CPI value for each cache size is computed as a ratio, relative to the base lx 

CPI for that workload. Figure 3.4b shows the relation when we consider the metric 

(C P I)3 * power. From Figure 3.4a, it is clear that the small CPI benefits (note the 

small range on the relative CPI plot) of increasing the data cache are outweighed by 

the increases in power dissipation due to larger caches.

In Figure 3.4b, we show the results with two different scaling techniques. The first 

technique assumes that power scales linearly with the cache size. As the number of 

lines is doubled, the power of the cache is also doubled. The second scaling technique 

is based on data from [53] which studied energy optimizations within multi-level cache
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architectures. In [53], data is presented for cache power dissipation for conventional 

caches with sizes ranging from 1KB to 64KB.

In the second scaling technique, which we call “non-lin” in Figure 3.4b, the cache 

power is scaled with the data showing power/performance results for many cache 

sizes presented in [53]. The increase in cache power by doubling cache size using 

this technique is roughly l.46x, as opposed to the 2x with the simple linear scaling 

method. Obviously the choice of scaling technique can greatly impact the results. It 

is clear, however, that with either scaling choice, conventional performance-focused 

cache organizations will not scale in a power-efficient manner. (Note that the curves 

shown in Figure 3.4b assume a fixed circuit/technology generation; they are intended 

to show the effect of adding more cache to the current design.)

3.2.4 Number of Completion Buffers
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Figure 3.5: Variation of Performance and Power-Performance with Number of Com­
pletion Buffers.

In the target microarchitecture, the number of completion buffers determines the 

total number of instructions that can be active within the machine. The completion
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table is very similar to a re-order buffer in that it tracks instructions as they dispatch, 

issue, execute, wait for exceptions, and complete. Figures 3.5a and 3.5b show the 

effects of varying the number of completion buffers on performance and the power- 

performance metric. From Figure 3.5a, it is evident that little additional performance 

is gained by increasing the number of buffers past the current design point (lx). When 

considering (C P /)3 * power in Figure 3.5b, we see that power-efficiency is slightly 

degraded by increasing the number of entries due to a roughly 3% increase in the 

core’s power dissipation.

3.2.5 Ganged Sizing
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Figure 3.6: Variation of Performance and Power-Performance with Core Size (ganged 
parms).

The out-of-order superscalar processors we consider rely on queues and buffers 

to efficiently decouple instruction execution to increase performance. The depth of 

the pipeline and the sizes of the resources required to support decoupled execution 

(queues, rename registers, completion table) combine to determine the performance 

of the machine. Because of this decoupled execution style, increasing the size of one
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resource without regard to the other resources in the machine may quickly create 

a performance bottleneck. Thus, in this section we consider the effects of varying 

multiple parameters rather than just a single parameter.

Figure 3.6a and 3.6b show the effects of varying all of the resource sizes within the 

processor core. This includes issue queues, rename registers, branch predictor tables, 

memory disambiguation hardware, and the completion table. For the buffers and 

queues, the number of entries in each resource is scaled by the values specified in the 

charts (0.6x, 0.8x, 1.2x, and 1.4x). For the instruction cache, data cache, and branch 

prediction tables, the size of the structures are doubled or halved at each data point. 

From Figure 3.6a, we can see that performance is increased by 5.5% for SPECfp, 

9.6% for SPECint, and 11.2% for TPC-C as the size of the resources within the core 

is increased by 40% (except for the caches which are 4x larger). The configuration 

had a power dissipation of 52%-55% higher than the baseline core. Figure 3.6b, shows 

that the most power efficient core microarchitecture is somewhere between the lx  and 

1.2x cores.

3.3 Chapter Summary

We have described PowerTimer: a research power-performance simulator designed 

to help with the definition and evaluation of follow-on products within the high- 

end PowerPC microprocessor family. Based on this model, we have evaluated power 

and performance tradeoffs using SPEC95 workloads and a TPC-C trace. We have 

presented a few selected experimental results from our analysis repository to illustrate 

the kinds of tradeoffs that one may be able to study using this toolkit. A web- 

based interface allows users to view specific power-performance tradeoff curves of 

their choice. This allows users to evaluate the worth and wisdom of making specific 

microarchitecture-level enhancements to an existing design point. The tool allows
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one to evaluate whether a certain aspect of the design is inherently power-efficient 

or not. For example, in an initial, voltage-invariant “technology remap” scenario, we 

may like to know whether simply increasing the cache sizes, without perturbing the 

core engine would buy us enough performance to counterbalance any power increase.

Compared to VVattch, PowerTimer uses a very similar methodology for power 

estimation, although its energy models are based on existing circuits for an industrial 

microprocessor. PowerTimer’s models are best suited for exploring microarchitectural 

tradeoff decisions building off of this core microarchitecture.

PowerTimer allows one to experiment with a large number of design parameters 

and there are multiple choices available in terms of selecting a power-performance 

efficiency metric. We have presented just a few examples in this section. For example, 

one can study the effectiveness of various flavors of conditional clocking to see how 

the sensitivity curves are affected. Also, the use of technology scaling parameters, 

allows the user to explore the future design space in a realistic manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Power Model Validation

Validation is a critical part in the process of developing a model or simulator for any 

type of system. This phase is important to give the users of the model information 

about how reliable the model is under different operating conditions. This is especially 

important when abstractions have been used within the model to provide superior 

simulation speed, improved design space flexibility, or faster model construction.

Validation of architectural performance simulators is a challenging problem. Val­

idating early-stage architectural power-performance simulators is even more difficult. 

In Section 4.1 we discuss the types of modeling error that we would like to quantify. 

In Section 4.2, we will describe three forms of validation of the relative and absolute 

accuracy of the Wattch infrastructure. In Section 4.3, we focus our validation ef­

forts on quantifying the robustness of the relative accuracy of our power-performance 

simulators. We discuss why relative accuracy is sufficient for many interesting experi­

ments, and we present results showing the effects of inserting artificial errors into our 

power models to demonstrate the relative accuracy for both Wattch and PowerTimer.

49
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4.1 Types of Modeling Error

The two types of accuracy that we would like from an architectural-level power- 

performance simulator are relative and absolute. With relative accuracy, the simulator 

can estimate the proper ratio of power dissipation among all of the major components 

of the modeled architecture. Essentially, the simulator provides an accurate estimate 

of the fraction of the total power that each component uses. Absolute accuracy, on 

the other hand, requires relative accuracy but also requires that the magnitude of 

each component (or the total chip power) be estimated accurately.

250
idealized bound

200
simulator

100

"optimal" design point true h/w m easurem ents

1 2 3 4 5 6 7 8 9  10

Superscalar width W

Figure 4.1: Relative accuracy in a design tradeoff study.

Achieving relative accuracy is much easier than achieving absolute accuracy, espe­

cially during the early-stages of the design process. This is because relative accuracy 

can be maintained despite errors in low-level technology parameters, incorrect as­

sumptions about circuit-design styles, clocking network design methodologies, etc. 

Absolute accuracy will be degraded due to all of these conditions.

A simulator that ensures good relative accuracy still provides quite a bit of use­

ful information to an architect. For example, design tradeoff studies with the goal
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of choosing architectural parameters to achieve an optimal power-performance effi­

ciency can easily be performed. Figure 4.1 demonstrates this with an example using 

contrived data. In this figure, a metric of power efficiency is plotted against the 

superscalar width of a processor allowing the CPU designer to choose the optimal 

superscalar width. The bottom-most curve in this chart is the MIPS/YVatt of the 

processor as measured from a true-hardware design. The middle curve shows the val­

ues that the power-performance simulator gave during the architectural design stage. 

The top curve shows an upper-bound on power which could be generated through ar­

chitected test cases or simple technology' scaling equations. The point of this example 

is to show that while in some cases the absolute error can be quite significant, because 

the simulator maintains good relative accuracy, the chip architect could choose the 

correct design point, in this case a processor with a superscalar width of three.

This example demonstrates how relative accuracy is extremely useful for a chip 

architect’s design decisions. This is not to say that absolute accuracy is not important 

at all. Absolute accuracy is primarily needed to estimate full chip-power for planning 

package and system power budgets. However, good relative accuracy, combined with 

useful upper-bounding techniques, could also help CPU designers with this problem.

4.2 Model Validation

Validating the power models is crucial because fast power simulation is only useful if 

it is reasonably accurate. In this section we provide three methods of validation. The 

first is a low-level check to compare the capacitance values generated from our model 

with those of real circuits. The second validation level aims at quantifying the rela­

tive accuracy of our model. Namely, we compare the relative power weights that our 

model generates with experimentally-measured results from published works on in­

dustry chips. The final validation technique seeks to quantify the absolute magnitude
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accuracy of our models. With this method we compare the maximum processor power 

reported in published works with the power results of similar processor organizations 

generated from our models.

4.2.1 Validation 1: Model Capacitance vs. Physical Schemat­

ics

The parameterized power models presented in Section 2.2 obtain power dissipation 

estimates by calculating the capacitance values on critical nodes within common 

circuits. Thus, a low-level method for validating the models is to compare the ca­

pacitance value computed by the model, against circuit design tool calculations of 

capacitance values for industry schematics.

In this section, we describe this type of validation for a 128-entry, 6-1-bit wide 

register file structure with 8 read ports and 6 write ports. The physical register 

file schematic was selected from the actual design for one of Intel’s IA-64 products. 

This type of large array structure is common in modern microprocessors and hence 

provides a good sample for our study.

% Change in Capacitance
Gate Diffusion InterConn. Total

Wordline (r) 
Wordline (w) 
Bitline (r) 
Bitline (w)

1.11
-6.37
2.82
-10.96

0.79
0.79
-10.58
-10.60

15.06
-10.68
-19.59
7.98

8.02
-7.99
-10.91
-5.96

Table 4.1: Percentage difference between lower-level tool capacitance values and the 
values estimated by our model.

Table 4.1 presents the results for validating the register file. We studied both 

the read and write nodes for the bitlines and wordlines in the register file. The 

table breaks down the capacitance for each of these into gate capacitance, diffusion
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capacitance, and interconnect capacitance. For each entry, we present the percentage 

difference between the capacitance value estimated from a circuit-level capacitance 

extraction tool and the one calculated by our model. Most of the capacitance error 

rates are within +/-10%. The largest sources of error were within the interconnect 

capacitance. There are two reasons for this. First, the capacitance of polysilicon wires 

is difficult to model, because the lengths of these wires vary with the physical layout. 

Second, it is difficult to match the exact lengths of the interconnects in the physical 

schematic with the modeled nodes. For example, the wire in the bitline node in the 

physical schematic may extend beyond the length of the edge of the array structure, 

whereas our model assumes that the wire ends directly on the array boundary. Still, 

the total capacitance values are within 6-11% for the four nodes that were studied.

Array structures comprise roughly 50% of the total modeled chip power dissipa­

tion. Similar low-level validation could be performed on other hardware structures 

such as CAM arrays. We expect that the results will be similar, since the methodology 

for modeling these units is identical.

4.2.2 Validation 2: Relative power consumption by structure

Comparing low-level capacitance values is the most precise means of validating a 

power simulator. This method of validation has shown the models to be accurate 

within 10%, which is similar to what has been reported by the CACTI authors for 

analytical delay models [96] and later for analytical power models [76]. Amrutur and 

Horowitz have also studied analytical power and delay models for SRAMs [4].

To validate our models at a slightly higher level, we present a second set of val­

idation data. This data compares relative power of different hardware structures 

predicted by our model against published power breakdown numbers available for 

several high-end microprocessors. The downside to this comparison is that we have
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no way of knowing whether the design style we model for each unit matches the de­

sign style that they actually use. In spite of this downside, it is reassuring to see that 

these power breakdowns track quite well. As shown in Tables 4.2 and 4.3, the relative 

power breakdown numbers for our models are within 10-13% on average of reported 

data.

Hardware Structure Intel Data Model
Instruction Fetch 22.2% 21.0%
Register Alias Table 6.3% 4.9%
Reservation Stations 7.9% 8.9%
Reorder Buffer 11.1% 11.9%
Integer Exec. Unit 14.3% 14.6%
Data Cache Unit 11.1% 11.5%
Memory Order Buffer 6.3% 4.7%
Floating Point Exec. Unit 7.9% 8.0%
Global Clock 7.9% 10.5%
Branch Target Buffer 4.7% 3.8%

Table 4.2: Comparison between Modeled and Reported Power Breakdowns for the 
Pentium Pro®.

Hardware Structure Alpha 21264 L Model
Caches 16.1% 15.3%
Out-of-Order Issue Logic 19.3% 20.6%
Memory Management Unit 8.6% 11.7%
Floating Point Exec. Unit 10.8% 11.0%
Integer Exec. Unit 10.8% 11.0%
Totai Clock Power 34.4% 30.4%

Table 4.3: Comparison between Modeled and Reported Power Breakdowns for the 
Alpha 21264.

Tables 4.2 and 4.3 compare breakdowns of Watt ch's power consumption for dif­

ferent hardware structures, with those from published data for the Intel Pentium 

Pro® and (then Compaq) Alpha 21264 CPUs [41; 59[. This power consumption is
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shown for “maximum power” operation, when all of the units are fully active. This 

mode of operation represents our worst-case power estimates; we assume all of the 

ports on all of the units are fully active, with maximum switching activity. We did 

not actually modify SimpleScalar’s internal structure to resemble these processors. 

Instead we used the worst-case power estimates from our models for the hardware 

configurations of the processors. The parameter configurations for our models are set 

based on published Intel and Alpha 21264 parameters [41; 43].

The power breakdowns track fairly well. For example, the Intel data in Table 4.2 

is an exact or near match for several units. These include the data caches, instruc­

tion fetch and out-of-order control logic. The average difference between the power 

consumption of our modeled structures and the reported data was 13.3% for the Intel 

processor.

The relative power proportions for the Alpha 21264 are again similar to the re­

ported data, with an average difference of 10.7%.

One unit which shows some inaccuracy in our current model is the global clock 

power for the Intel processor; our model predicts it to be 10% of total chip power, 

while the published data suggests it is less: 8%. This difference could be because 

the clock power model we use is based on an aggressive H-tree style that was used in 

Alpha 21264 [36], but not in the Intel processor.

The Alpha 21264 has a significantly higher percentage of total clock power than 

Intel: 34% for the Alpha compared to 8% for the Intel processor. The main reason 

for this large difference is simply the method of accounting that is used for clock 

power by the two groups. The clock power category for 21264 includes all clock 

capacitance including the clock nodes within individual units. On the other hand, 

the Intel method for clock power accounting only counts clock power as the global 

clock network. Clock nodes that are internal to various hardware structures are 

counted towards the power dissipation of those units. When we model these two
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different chips, we adjust our clock power accounting method to match that of the 

respective company’s data reporting.

Finally, note that the power proportions we discuss here are normalized to the 

hardware structures that we consider. For example, since we do not model Intel’s 

complex x86 to micro-op decoding, we do not report the instruction decode unit 

power consumption, which consumes 14% of the chip power.

4.2.3 Validation 3: Max power consumption for three CPUs

In this section we perform a third form of validation in which we compare the pub­

lished maximum power numbers for three commercial microprocessors with the values 

produced by our models for similar configurations. This allows us to evaluate both 

the relative and absolute accuracy of our power models. While such a comparison is 

difficult without exact process parameter information, general power trends can be 

seen based on the hardware organizations of these machines. Table 4.4 describes the 

details of the three processors that we consider.

Figure 4.2: Maximum power numbers for three processors: Model and Reported.

100
90

80
70

-•-M odel
Reported

■,/

30

20
10
0

Pentium  Pro MIPS R10K Alpha 21264

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Power Model Validation

Processor Alpha
21264

Pentium
Pro

MIPS
R10000

Processor Core
Instr. YVindow(s) 20 INT 

15 FP
20 UOPs 16 INT 

16 MEM 
16 FP

Physical Registers 2x80-INT 
72-FP

40 UOPs 64-INT 
64-FP

Memory Order Queue 32 20 8
Fetch width per cycle 4 3 4
Decode width per cycle 4 6 4
Issue width per cycle 6 3 4
Commit width per cycle 4 3 4
Functional Units 4 Int 4 Int 3 Int

2 FP 1 FP 3 FP
Branch Prediction

Local History Table 1024x10 N/A N/A
Local Predict 1024x3 512x4 512x2
Global History Register 12 N/A N/A
Global Predict 4096x2 N/A N/A
Choice Predict 4096x2 N/A N/A
BTB IK entry 

2-wav
512 entry 
4-wav

32 entry

Return-address stack 32 entry N/A N/A
Memory Hierarchy

LI Dcache Size 64K 8K 32K
LI Dcache Assoc. 2-wav 2-wav 2-way
LI Icache Size 64K 8K 32K
LI Icache Assoc. 2-way 4-way 2-way
DTLB Size (full assoc) 128 64 64
ITLB Size (full assoc) 128 32 64

Process Specifications
Feature Size ,35um .35um .35um
Vdd 2.2V 3.3V 3.3V
MHz 600 200 200

Table 4.4: Configuration of Processors
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Figure 4.2 shows the results for the maximum power dissipation for the three pro­

cessors that we considered. In all three cases, YVattch’s modeled power consumption 

was less than the reported power consumptions, on average 30% lower. There are 

a few reasons for this systematic underestimation. First, we have concentrated on 

the units that are most immediately important for architects to consider, neglecting 

I/O  circuitry, fuse and test circuits, and other miscellaneous logic. Second, circuit 

implementation techniques, transistor sizings, and process parameters will vary from 

company to company. On the other hand, the models are general enough that they 

could be tuned to a particular processor’s implementation details. It is reassuring 

to see that the trends already track published data for several high-end commercial 

processors.

4.3 Robustness of Relative Accuracy

In the remainder of this chapter we will provide quantitative results for both VVattch 

and PowerTimer to demonstrate how design tradeoff studies can be performed despite 

the presence of different types of error in the low-level power models. These results 

give some insight into the robustness of the relative accuracy of the power models 

and demonstrate the extent to which a design tradeoff study can withstand error in 

the low level power models.

4.3.1 Design Criteria

When performing a design tradeoff study, a methodology must first be established 

for deciding when to choose a particular design point over another design point. 

When viewing design tradeoff curves visually, we would like to choose the “knee” 

of the curve so as to pick the point that is close to optimal without reaching the 

point of diminishing returns. To quantify this tradeoff selection, we propose the
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acceptable range window as a method to quantify the selection of design points from 

raw power/performance data.

Acceptable Range Window

The experiments in this chapter quantify the amount of acceptable error within a 

power/performance simulator tolerated before different design points are chosen. The 

acceptable range window forms a group of points which meet the criteria for selection. 

Generally, we choose the lowest cost point within the acceptable range window for 

implementation.

Two different definitions of the acceptable range window are considered:

•  +/-x%  of absolute at optimal choice {range 1)

•  +/->•% of (worst-choice - optimaLchoice) for this design study (range2)

W orst C hoice

W orst • O ptim al

$
I
©
tS

R angel A bsolute at 
optim al

O ptim al ChoiceRange2

256K64K 128K16K 32K

Figure 4.3: Example of acceptable range windows.

The derivation of the acceptable range window is shown graphically in Figure 4.3. 

In this figure, the absolute at the optimal choice and the range of the worst.choice - 

optimal-choice are shown. The rangel and range2 windows are also shown.

For each design tradeoff experiment, two checks are performed. First, we check 

for overlap between the acceptable range windows of the baseline simulator and the
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modified simulator. Second, we check if the window still suggests the same lowest 

cost point for the modified simulator.

In Figure 4.3, the 64K and 128K design choices are optimal for both criteria, but 

the 256K design choice is only optimal under the range2 criteria. However, both 

criteria choose the same least cost design point at 64K.

4.3.2 Wattch

We use Wattch as the baseline simulator to perform the first set of studies. Four 

distinct types of error are considered that could affect the power models. While all 

of these types of error disturb the absolute accuracy of the simulator, this study 

quantifies the effect on the relative accuracy of the simulator by investigating several 

design tradeoff ppstudy scenarios.

The four types of error considered are as follows:

•  Error within a unit that is independent of the design tradeoff experiment.

•  Error within a power model that is used in the structure under study as well as 

in independent structures.

•  Error solely within the unit under study.

•  Error in the amount/type of clock gating style used in the simulator.

Three typical design tradeoff studies were considered for each of these four er­

ror conditions. These design tradeoff studies investigate energy-delay product for 

the number of RUU-entries, the size of the LI Data Cache, and the size of the LI 

Instruction Cache.

The results are shown for both the rangel and range2 windows with x=y =5%.
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Example 1: Error in an Independent Unit

We will first consider a simple experiment which has error in the power estimate for 

a unit that is totally independent of the unit under investigation in the design study. 

For example, error in the ALU power model or the global clock power, is mostly 

independent of the power model for the RUU or the LI caches. While the absolute 

accuracy of the model suffer quite a bit under these conditions, the relative accuracy 

of the model for this particular design study will be less severely affected.

Figures 4.4, 4.5, and 4.6 show two graphs each for the vortex application while 

varying the number of RUU entries, D-Cache size, and I-Cache size. In each of 

the graphs there are five curves showing the power and energy-delay product trends 

while varying the microarchitectural parameters. The five lines labeled -.2x through 

2x refer to the amount of additional power dissipation inserted into the model. The 

amount of power added or subtracted is equal to the ratio given multiplied by the 

total chip power of the baseline case with an 80-entry RUU, and 64KB D- and I- 

Caches. For example, if the baseline power dissipation estimate was 30W, the .2x 

point adds 6W additional power and the -.2x point subtracts 6W of power from the 

total chip power.

The first graph in each figure shows the power dissipation while varying both 

conditions. Since the additional power dissipation added in this experiment is inde­

pendent of the RUU or cache power models, it does not affect the relative accuracy 

of this curve and only shifts the curves up and down by the corresponding amounts.

The second graph in each figure shows the energy-delay product while varying the 

microarchitectural parameters and the amount of error. The energy-delay product 

factors in the IPC, performance, for the various microarchitectural choices. Because 

of this, the energy-delay product curves are skewed by the IPCs of the various design 

points.

Although the relative accuracy of the power dissipation curves is not disturbed,
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Figure 4.4: Power and EDP for vortex varying indep. unit and RUU entries.
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Figure 4.5: Power and EDP for vortex varying indep. unit and D-Cache size.
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Figure 4.6: Power and EDP for vortex varying indep. unit and I-Cache size.
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Acceptable range windows under independent scaling error ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark -,2x -.lx No Error (Ox) .lx .2x
compress-rl 16-32 16-32 16-32 entries 32-48 32-48
gcc-rl 16 16-32 16-32 entries 16-32 16-32
go-rl 16 16 16 entries 16 16-32
ijpeg-rl 16-48 32-48 32-80 entries 32-112 32-128
m88ksim-rl 16 16 16 entries 16-32 16-32
vortex-rl 16-64 16-64 32-80 entries 32-80 32-96

(a) RUU-entries

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-rl 32K-128K 32K-128K 32K-128K 32K-128K 32K-128K
gcc-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
go-rl 16K-64K 16K-64K 16K-64K 16K-64K 32K-64K
ijpeg-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
m88ksim-rl 16K-32K 16K-32K 16K-32K 16K-64K 16K-64K
vortex-rl 16K-32K 16K-32K 16K-32K 16K-64K 16K-64K

(b) LI Data Cache

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
gcc-rl 64K 64K 64K 64K-128K 64K-128K
go-rl 32K-64K 32K-64K 32K-64K 32K-64K 32K-64K
ijpeg-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-rl 32K-64K 32K-64K 32K-64K 32K-64K 32K-64K
vortex-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.5: Optimal design choice decisions under indepent scaling ratios
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Acceptable range windows under independent scaling error ratios
Range‘2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-r2 16-32 32 32 entries 32 32
gcc-r2 16 16 16 entries 16-32 16-32
go-r2 16 16 16 entries 16 16
ijpeg-r2 32 32 32 entries 32 32
m88ksim-r2 16 16 16 entries 16 16
vortex-r2 32 32 32 entries 32 32,64

(a) RUU-entries

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-r2 64K 64K 64K 64K 64K
gcc-r2 16K-32K 32K 32K 32K 32K-64K
go-r2 32K-64K 32K-64K 32K-64K 32K-64K 32K-64K
ijpeg-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark -.2x -.lx No Error (Ox) .lx .2x
compress-r2 16K 16K 16K 16K L16K
gcc-r2 64K 64K 64K 64K 64K-128K
go-r2 32K 32K 32K-64K 32K-64K 32K-64K
ijpeg-r2 16K 16K 16K 16K 16K
m88ksim-r2 32K 32K 32K 32K 32K-64K
vortex-r2 64K 64K-128K 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.6: Optimal design choice decisions under indepent scaling ratios
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the variation in 1PC among design points, combined with the additional independent 

unit power dissipation, can lead to differences in the energy-delay product design 

tradeoff choices. Tables 4.5 and 4.6 show the acceptable range windows for optimal 

EDP designs for the RUU, LI D-Cache, and LI I-Cache under the independent error 

scaling ratios described above with the rangel and range2 design criteria.

Each table shows the acceptable range windows for the baseline case with no error 

(Ox scaling) and the cases for -.2x through .2x. Bold entries in the table indicate 

acceptable range windows with a deviation from the baseline case. If a deviation 

occurs on the left-side of the acceptable range window, a different lowest-cost design 

point would be chosen. For example in Table 4.5, the lowest cost RUU size for ijpeg 

within the acceptable range windows is 32 entries with the baseline case. However, 

at -.2x scaling the design choice would be 16-entries. In general, range2 has fewer 

deviations in design choices, because of the tighter design criteria.

Figures 4.7, 4.8, and 4.9 show the percent difference from the optimal design 

choice for the various microarchitectural choices and the amount of error inserted. 

The y-axis of these figures plot the percent difference between the design point and 

the optimal (lowest energy-delay) design point. The x-axis shows the amount of 

additional independent unit error that is inserted, and the lines plotted show the 

different design points under consideration. For example, in Figure 4.7 the 32-entry 

curve is always equal to zero, because this is the optimal energy-delay design point 

for this experiment under all of the error conditions.

These figures show that for microarchitectural design points that are smaller than 

optimal, the difference from the optimal point increases with additional independent 

unit error. As the microarchitectural design points become larger than the optimal 

design choice, the difference from optimal decreases with additional independent unit 

error. This occurs because as the total power dissipation becomes larger (when the

permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Power Model Validation 66

20%

15%

S  10%

- 1 1 2  
— 1285%

0%
.2x-.2x -.1x Ox 1 x

Independent unit Error

Figure 4.7: Design optimality for vortex varying independent error and RUU entries.
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Figure 4.8: Design optimality for vortex varying independent error and D-Cache size.
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Figure 4.9: Design optimality for vortex varying independent error and I-Cache size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Power Model Validation 67

error increases) the additional performance benefit achieved by increasing the mi- 

croarchitectnral structure is magnified. Thus, the smaller design points are farther 

from optimal as the error increases, and the larger design points will become closer 

to optimal as the error increases.

In these curves, any point that is less than 5% corresponds to an entry in the 

acceptable range window with the rangel criteria. Discrepancies in the acceptable 

range window occur when a curve has some points above and some points below the 

5% threshold. Curves with a steeper slope are more affected by the independent unit 

error, because they are more likely to have some points that fall above and below the 

threshold.

Example 2: Error in Bitline Capacitance

A second major class of experimental inaccuracy in power models is error that occurs 

in a model that is used within many microarchitectural structures. For example, the 

cache power models is used in the LI instruction and data caches, the L2 cache, and 

the branch predictor tables. Error in the cache power model would affect the power 

estimates for many of these units.

In this example, we consider bitline capacitance, a component that will have an 

effect on many microarchitectural structures in our processor model. Bitline capaci­

tance estimates are used within the array structure models for caches and register files. 

The errors in bitline capacitance affect all three of the microarchitectural parameters 

under study, as well as several independent structures.

Figures 4.10, 4.11, and 4.12 show the power and energy-delay product for the 

vortex application while varying the number of RUU entries, D-Cache size, and I- 

Cache size. The five curves shown are similar to the ones in the previous section, but 

each of these curves shows a different ratio for the bitline capacitance scaling that 

was used. Again, significant deviations are difficult to see from these curves even with
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Figure 4.10: Power and EDP for vortex varying bitline error and RUU entries.

Figure 4.11: Power and EDP for vortex varying bitline error and D-Cache size.
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Figure 4.12: Power and EDP for vortex varying bitline error and I-Cache size.
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0.6x and 1.4x scaling of the bitline capacitance estimates.

Tables 4.7 and 4.8 show the acceptable range windows for the design choices for 

the RUU, Ll-DCache and Ll-ICache under the same bitline scaling. These tables 

show the benchmark with the rangel (rl) and range2 (r2) acceptable range window 

calculations. For many of the benchmarks with these three design tradeoff studies, 

the error in bitline capacitance had no effect. However, in a few cases the acceptable 

range window did change. In only one case, compress's Ll-Dcache design choice under 

rangel, did the least-cost design choice change. In this case, with 0.6x scaling, a 32K 

cache is chosen, while with the lx scaling a 16K cache is chosen as the least-cost 

design choice.

Figures 4.13, 4.14, and 4.15 show the difference from design optimality for the 

design tradeoff selections. Again, any point on these curves that is less than 5% 

corresponds to an entry in the acceptable range window with the rangel criteria. 

The relatively small slopes of most of the curves demonstrates that the bitline error 

will have a small effect on the design tradeoff choices.

Example 3: Error in Dependent Unit Scaling Factors

We now consider the effect of error solely associated with the unit under consideration 

in the design study. These experiments explore this source of error by explicitly scaling 

the power estimate for the individual structures (RUU and LI Caches) by lx  through 

2x. This type of error could exist if the wrong subbanking scheme was assumed, if a 

different circuit-design style was chosen for that particular structure, etc.

Figures 4.16, 4.17, and 4.18 show the power and energy-delay product for the 

vortex application while varying the number of RUU entries, D-Cache size, and I- 

Cache size. Each of the five curves again shows the energy-delay product as that 

particular unit’s power estimate scales by lx  through 2x. This type of error clearly 

affects the design tradeoff study. As the amount of scaling increases, instead of just
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Acceptable range windows under bitline error ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark .6x ,8x No Error (lx) 1.2x 1.4x
compress-rl 16-48 16-48 16-48 entries 16-48 16-48
gcc-rl 16-64 16-64 16-64 entries 16-48 16-48
go-rl 16-64 16-64 16-48 entries 16-48 16-48
ijpeg-rl 32-80 32-80 32-80 entries 32-80 32-64
m88ksim-rl 16-64 16-64 16-64 entries 16-64 16-64
vortex-rl 32-80 32-80 32-80 entries 32-80 32-80

(a) RUU-entries

Benchmark .6x .8x No Error (lx) l.2x 1.4x
compress-rl 32K-128K 16K-128K 16K-128K 16K-128K 16K-128K
gcc-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
go-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
ijpeg-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
m88ksim-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-32K
vortex-rl 16K-64K 16K-64K 16K-32K 16K-32K 16K-32K

(b) Li Data Cache

Benchmark .6x .8x No Error (lx) 1.2x 1.4x
compress-rl 64K-128K 64K-128K 64K 64K 64K
gcc-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
go-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
ijpeg-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
m88ksim-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
vortex-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.7: Optimal design choice decisions under bitline error ratios
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Acceptable range windows under bitline error ratios
Range2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark .6x .8x No Error (lx) 1.2x 1.4x
compress-r2 32 32 32 entries 32 32
gcc-r2 32 32 32 entries 32 32
go-r2 16-32 16-32 16-32 entries 16-32 16-32
ijpeg-r‘2 32 32 32 entries 32 32
m88ksim-r2 32 32 32 entries 32 32
vortex-rl 32 32 32 entries 32 32

(a) RUU-entries

Benchmark .6x .8x No Error (lx) 1.2x 1.4x
compress-r2 64 K 64K 64K 64K 64K
gcc-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
go-r2 32K-64K 32K-64K 32K-64K 32K 32K
ijpeg-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark ,6x .8x No Error (lx) 1.2x 1.4x
compress-r2 64K 64K 64K 64K 64K
gcc-r2 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K
go-r2 64K-128K 64K-128K 64K 64K 64K
ijpeg-r2 64K-128K 64K-128K 64K 64K 64K
m88ksim-r2 64K-128K 64K-128K 64K-128K 64K-128K 64K
vortex-r2 64K-128K 64K-128K 64K-128K 64K-128K 64K-128K

(c) Ll Instruction Cache

Table 4.8: Optimal design choice decisions under bitline error ratios
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Figure 4.13: Design optimality for vortex varying bitline error and RUU entries.
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Figure 4.15: Design optimality for vortex varying bitline error and I-Cache size.
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RUU Entries

Figure 4.16: Power and EDP for vortex varying RUU-scale-factor and RUU entries.
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Figure 4.17: Power and EDP for vortex varying DCache-sf and D-cache size.
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Figure 4.18: Power and EDP for vortex varying ICache-sf and 1-cache size.
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shifting the results, the curves begin to separate as more scaling is applied.

The acceptable range windows quantify the disturbance to the design tradeoff 

study. With a 1.25x scaling factor, there is very little change in the acceptable 

range windows for the three design tradeoff studies with these applications. Only 

compress with the range2 window resulted in a different design decision; with the 

baseline simulator a 64K I-Cache is chosen and with the 1.25x scaling, a 32K I-Cache 

is chosen.

Moving to the 1.5x and larger scaling factors, more design decisions change. Vortex 

under the rangel and compress under the range2 window need a smaller number of 

RUU-entries.

Errors that only involves the unit under study in a design tradeoff experiment will 

be more likely to cause a different design choice to be made. This occurs because the 

additional scaling on the microarchitectural structure, in the absence of the scaling in 

other independent units, causes the structure in the tradeoff experiment to become a 

larger share of the overall chip pie.

Figures 4.19, 4.20, and 4.21 show the difference from design optimality for the 

various scaling ratios. The curves with steep slopes that are near the 5% range cor­

respond to the entries highlighted in the previous tables. For example, in Figure 4.19 

the 16-entry curve falls below 5% only under the 1.5x - 2x scaling factor conditions.

Clock Gating

This section considers the effect of Wattch’s three base clock gating modes on the 

design tradeoff study. The first mode is simple clock gating, where a unit consumes 

100% power if any port is active on a cycle, and can only be gated off if no ports are 

in use. The next mode is ideal clock gating where power is linearly proportional to 

the number of ports in use. The last mode is aggressive clock gating which is similar 

to ideal, but disabled ports consume some additional power.
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Acceptable range windows under scaling ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-rl 16-32 entries 16-32 16-32 16-32 16-32
gcc-rl 16-32 entries 16-32 16-32 16 16
go-rl 16 entries 16 16 16 16
ijpeg-rl 32-80 entries 32-64 32-64 32-48 32-48
m88ksim-rl 16 entries 16 16 16 16
vortex-rl 32-80 entries 32-64 16-64 16-64 16-48

(a) RUU-entries

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-rl 32K-128K 32K-128K 16K-64K 16K-64K 16K-64K
gcc-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-32K
go-rl 16K-64K 16K-64K 16K-64K 16K-64K 16K-64K
ijpeg-rl 16K-64K 16K-64K 16K-32K 16K-32K 16K-32K
m88ksim-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark No Error (lx) 1.25x 1.5x l.75x 2x
compress-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K
gcc-rl 64K 64K 64K 64K 64K
go-rl 32K-64K 32K-64K 32K-64K 32K-64K 32K
ijpeg-rl 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksim-rl 32K-64K 32K-64K 32K-64K 32K 32K
vortex-rl 64K-128K 64K-128K 64K-128K 64K-128K 64K

(c) LI Instruction Cache

Table 4.9: Optimal design choice decisions under scaling ratios
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Acceptable range windows under scaling ratios
Range2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-r2 32 entries 32 32 16-32 16-32
gcc-r2 16 entries 16 16 16 16
go-r2 16 entries 16 16 16 16
ijpeg-r2 32 entries 32 32 32 32
m88ksim-r2 16 entries 16 16 16 16
vortex-r2 32 entries 32 32 32 32

(a) RUU-entries

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-r2 64K 32K-64K 32K-64K 32K-64K 32K-64K
gcc-r2 16K-64K 16K-64K 16K-64K 16K-64K 16K-32K
go-r2 32K-64K 32K-64K 32K 32K 32 K
ijpeg*r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
m88ksirn-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark No Error (lx) 1.25x 1.5x 1.75x 2x
compress-r2 16K 16K 16K 16K 16K
gcc-r2 64K 64K 64K 64K 64K
gor2 32K-64K 32K 32K 32K 32K
ijpeg-r2 16K 16K 16K 16K 16K
m88ksim-r2 32K 32 K 32K 32K 32K
vortex-r2 64K-128K 64K-128K 64K-128K 64K 64K

(c) LI Instruction Cache

Table 4.10: Optimal design choice decisions under scaling ratios

with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: Power Model Validation ~~

25%

i  20% :
I
| 15%

8 10%

a 5%

o%
.2x1.75x1.5x1.25X1 x

(base)

— 16 
» 32 
- 4 8  

64 
- 8 0  
- 9 6  
— 112 
— 128

Scaling Factor
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Figure 4.24: EDP and optimality for vortex varying clock gating and I-Cache size.
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Figures 4.22, 4.23, and 4.24 show the energy-delay and the optimality analysis for 

vortex while varying the clock gating style and the RUU, D-Cache, and I-Cache sizes. 

There are some changes in the optimal design points under different clock gating 

conditions. These changes are particularly noticeable with the I-Cache experiment 

at the 16K size. Vortex incurs a large number of I-Cache misses with small I-Caches, 

resulting in many opportunities for it to be clock gated in the simulator. This causes 

a noticeable difference with the three clock gating strategies. The RUU figure also 

has noticeable changes particularly at the 16-entry and 32-entry design choices.

Tables 4.11 and 4.12 show the acceptable range windows for the design choices for 

the RUU, Ll-DCache and Ll-ICache while varying the clock gating strategy. These 

tables show that the choice of clock gating style can have an effect on the design 

choices for these microarchitectural structures. The lowest-cost RUU sizing within 

the acceptable range windows varies considerably depending on the simple, ideal, 

or aggressive clock gating settings. For the I-Cache and D-Cache tables, there are 

fewer differences primarily because since there are fewer ports on these structures, 

the different clock gating strategies have smaller effects.

4.3.3 PowerTimer

In the next study, we use PowerTimer to perform similar experiments. One of the 

potential sources of inaccuracy in PowerTimer is the scaling ratio factors used as the 

size of the microarchitectural structures increases or decreases. Chapter 2 discusses 

these scaling factors. For most structures, power increases proportionally to the 

number of entries in a structure. For example, if the number of entries in an issue 

queue doubles, the power consumption doubles. For cache structures, the power 

increases by 1.46x for every doubling of the cache size as suggested by the circuit 

experiments in [53].
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Acceptable range windows under clock gating schemes 
Rangel Criteria

Benchmark simple ideal aggressive
compress-rl 16-32 entries 16-32 16-48
gcc-rl 16-48 entries 16-48 16-64
go-rl 16-48 entries 16-32 16-48
ijpeg-rl 32-64 entries 16-64 32-80
m88ksim-rl 16-64 entries 16-48 16-64
vortex-rl 32-64 entries 16-64 32-80

(a) RUU-entries

Benchmark simple ideal aggressive
compress-rl 32K-128K 32K-256K 16K-128K
gcc-rl 16K-64K 16K-64K 16K-64K
go-rl 16K-64K 16K-64K 16K-64K
ijpeg-rl 16K-64K 16K-64K 16K-64K
m88ksim-rl 16K-32K 16K-64K 16K-64K
vortex-rl 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark simple ideal aggressive
compress-rl 64K-128K 64K 64K
gcc-rl 64K-128K 64K-128K 64K-128K
go-rl 64K-128K 64K 64K-128K
ijpeg-rl 64K-128K 64K-128K 64K-128K
m88ksim-rl 64K-128K 64K-128K 64K-128K
vortex-rl 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.11: Optimal design choice decisions under different clock gating schemes
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Acceptable range windows under clock gating schemes 
Range2 Criteria

Benchmark simple ideal aggressive
com press-r2 32 entries 16 32
gcc-r2 32 entries 16-32 32
go-r2 32 entries 16 16-32
ijpeg-r2 32 entries 32 32
m88ksim-r2 32 entries 16-32 32
vortex-r2 32 entries 32 32

(a) RUU-entries

Benchmark simple ideal aggressive
compress-r2 64K 64K-128K 64K
gcc-r2 16K-32K 16K-32K 16K-32K
go-r2 32K-64K 32K-64K 32K-64K
ijpeg-r2 16K-32K 16K-32K 16K-32K
m88ksim-r2 16K-32K 16K-32K 16K-32K
vortex-r2 16K-32K 16K-32K 16K-32K

(b) LI Data Cache

Benchmark simple ideal aggressive
compress-r2 64K 64K 64K
gcc-r2 64K-128K 64K 64K-128K
go-r2 64K-128K 64K 64K
ijpeg-r2 64K-128K 64K 64K
m88ksim-r2 64K-128K 64K 64K-128K
vortex-r2 64K-128K 64K-128K 64K-128K

(c) LI Instruction Cache

Table 4.12: Optimal design choice decisions under different clock gating schemes
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Scaling Factors

Figures 4.25, 4.26, and 4.27 show the energy-delay for the aggregate of SPECint95 

while varying the scaling ratios and the core size, Ll D-Cache size, and the size of 

the global completion table (GCT). Figures 4.26 and 4.27 show the scaling factors of 

1.2x-2.8x (with a baseline of 2x), and Figure 4.25 shows scaling factors from 0.876x 

through 2.044x with a baseline of 1.46x.

Figure 4.27 shows results as we vary the size of the core by scaling all of the issue 

queues, renamers, and other major microarchitectural structures in the core while 

leaving the caches constant. Core3 is the baseline core; core4 scales the size of every 

structure by 1.2x and core5 by 1.4x. Similarly core2 and corel reduce the size of the 

core by scaling by 0.8x and 0.6x.

Tables 4.13 and 4.14 show the acceptable range windows for the 8 individual 

SPECint95 applications. For the Ll D-Cache experiment, although the acceptable 

range windows do change in some cases, all of the design choices remain the same 

with 1.168x through 2.044x scaling ratios. At 0.876x scaling, go chooses a larger cache 

size under both range definitions.

The completion buffer experiment demonstrates several cases where the design 

tradeoff choice changes. At 1.6x and 2.4x scaling, go, peri, and vortex choose different 

numbers of GCT entries under the range2 criteria. At the 2.8x scaling there are even 

more differences. For example, go would choose a 0.6x size GCT with 2x scaling, 

but would choose a lx  size GCT with 2.8x scaling. Under the rangel criteria, the 

design tradeoff choices remain the same. This is because the GCT is a relatively 

small structure in the overall chip’s power dissipation so the differences in this design 

tradeoff only show up with the range2 criteria.

The core size experiment changes the size of many structures, so it is likely that 

this experiment will be especially susceptible to varying scaling ratios. With the 

1.6x and 2.4x scaling, compress, go, m88ksim, and peri had different acceptable range
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Acceptable range windows under scaling ratios
Rangel Criteria

Bold entries indicate a deviation from the baseline

Benchmark .876x 1.168x Baseline (1.46x) 1.752x 2.044x
compress-rl lx-2x lx-2x lx lx lx
gcc-rl lx-2x lx lx lx lx
go-rl 2x lx-2x lx-2x lx lx
ijpeg-rl lx-2x lx lx lx lx
li-rl lx-2x lx lx lx lx
m88ksim-rl lx-2x lx lx lx lx
perl-rl lx-2x lx lx lx lx
vortex-rl lx-2x lx-2x lx lx lx

(a) Data Cache Size

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-rl .6x-1.4x .6x-l.4x .6x-1.4x .6x-1.4x 6x-1.2x
gcc-rl .6x-1.4x .6x-1.4x .6x-1.4x .6x-1.4x 6x-1.2x
go-rl .6x-1.4x .6x-l.4x .6x-1.4x .6x-1.4x 6x-1.2x
ijpeg-rl 6x-1.4x 6x-1.4x .6x-1.2x .6x-1.2x .6x-l
li-rl .8x-1.4x .8x-1.4x .8x-1.4x .8x-1.4x ,8x-1.2x
m88ksim-rl .6x-1.4x .6x-1.4x .6x-1.4x .6x-1.4x ,6x-1.2x
perl-rl .6x-1.4x .6x-1.4x ,6x-1.4x .6x-1.4.x 6x-1.2x
vortex-rl .8x-1.4x .8x-1.4x .8x-1.4x .8x-1.4x .8x-1.2x

(b) Completion Table Size (GCT)

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-rl c2,c4 c2-c4 c2-c3 c3 c3
gcc-rl c4 c3-c4 c3 c3 c3
go-rl c4 c4 c2-c4 c3 c3
ijpeg-rl c3-c4 c3-c4 c3 c3 c3
li-rl c3-c4 c3-c4 c3 c3 c3
m88ksim-rl c2-c4 c2-c4 c2-c3 c3 c3
perl-rl c2,c4 c2-c4 c3 c3 c3
vortex-rl c4 c3-c4 c3 c3 c3

(c) CORE Size

Table 4.13: Optimal design choice decisions under scaling ratios
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Acceptable range windows under scaling ratios
Range2 Criteria

Bold entries indicate a deviation from the baseline

Benchmark ,876x 1.168x Baseline (1.46x) 1.752x 2.044x
com press-r2 lx-2x lx-2x lx-2x lx lx
gcc-r2 lx-2x lx-2x lx-2x lx lx
go-r2 2x ix-2x lx-2x lx-2x lx-2x
ijpeg-r2 lx-2x lx-2x lx-2x lx lx
li-r2 lx-2x lx-2x lx-2x lx lx
m88ksim-r2 lx-2x lx-2x lx-2x lx lx
perl-r2 lx-2x lx-2x lx lx lx
vortex-r2 lx-2x lx-2x lx-2x lx-2x lx

(a) Data Cache Size

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-r2 ,8x .8x .8x .8x-lx lx
gcc-r2 .8x .8x .8x lx lx
go-r2 .8x .8x ,6x-.8x .6x lx
ijpeg-r2 .6x .6x .6x .6x .6x
li-r2 .8x .8x .8x .8x lx
m88ksim-r2 ,8x .8x .8x 8x-lx lx
perl-r2 .8x,1.2x .8x .8x-lx lx lx
vort,ex-r2 1.2x 1.2x lx lx lx

(b) Completion Table Size (GCT)

Benchmark 1.2x 1.6x Baseline (2x) 2.4x 2.8x
compress-r2 c2,c4 c2-c3 c2-c3 c3 c3
gcc-r2 c4 c3-c4 c3 c3 c3
go-r2 c4 c4 c3-c4 c3 c3
ijpeg-r2 c3-c4 c3-c4 c3 c3 c3
li-r2 c3-c4 c3 c3 c3 c3
m88ksim-r2 c2-c4 c2-c3 c3 c3 c3
perl-r2 c4 c2-c4 c3 c3 c3
vortex-rl c3-c4 c3-c4 c3-c4 c3 c3

(c) CORE Size

Table 4.14: Optimal design choice decisions under scaling ratios
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windows and design choices. At the 1.2x ratio, gcc and vortex also had different design 

choices.

It is also interesting to consider the design choices that are made when taking 

SPECint95 as an aggregate. For the Ll D-Cache and GCT size experiments, although 

the acceptable range windows changed slightly, the same minimum cost design points 

are chosen for all scaling ratios. When considering the choice of the core size, however, 

the change is more drastic. At 1.2x scaling, the core size of 4 would be chosen. At 

1.6x scaling, the acceptable range window was between core2 and cored, so core2 is 

the minimum cost choice. With 2x-2.8x scaling ratios, core3 is chosen.

4.4 Chapter Summary

We have presented details on the power models and simulator infrastructure required 

to perform architectural-level power analysis. We have verified these power models 

against industrial circuits and found our results to be generally within 10% for low- 

level capacitance estimates. We have also shown the relative accuracy of the models, 

which is especially important for architectural and compiler research on tradeoffs 

between different structures, is within 10-13% on average.

One limitation of the power models within Wattch is that they do not necessarily 

model all of the miscellaneous logic present in real microprocessors. Furthermore, 

different circuit design styles can lead to different results. Hence, the power models 

will not necessarily predict maximum power dissipation of custom microprocessors. 

The methodology for modeling this extra logic or other circuit design styles is the 

same as what we have done thus far; there is no inherent limitation to the models 

that prevents this additional hardware from being considered. Another limitation of 

the models is that the most up-to-date industrial fabrication data is not available 

in the public-domain, which can lead to variations in the results. The models will
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be most accurate when comparing CPUs of similar fabrication technology. This is 

reasonable for architects considering tradeoffs on a particular design problem, where 

the fab technology is likely to be a fixed factor.

In this chapter, we have also considered the robustness of the relative accuracy 

of VVattch and PowerTimer. VVe have investigated the primary potential sources of 

error within these tools and demonstrated how design tradeoff studies can tolerate 

some error while still leading to the choice of the same design point.

When performing a design tradeoff study, it is most important to provide accurate 

power models for the unit under consideration in the study. Error in independent 

units will not affect the study, and errors that can affect multiple units could also 

have small disturbances because relative accuracy is maintained. However, errors 

that affect only the unit under study can lead to errors in the relative accuracy of the 

power model and incorrect design choices in some cases.
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Value Based Clock Gating

The first half of this dissertation has discussed a framework for estimating power 

dissipation at the architectural level, several schemes to validate the accuracy of 

the models, and some simple case studies demonstrating its usage. The rest of this 

thesis will discuss the application of these models to exploring techniques for high- 

performance, power/thermal-efficient design. In this chapter, we will discuss one such 

technique which can reduce the average power of a microprocessor, value-based clock 

gating.

In recent years there has been a shift towards 64-bit instruction sets in major 

commercial microprocessors. The increased word widths of these processors were 

largely motivated because addresses were getting larger; however, the size of the 

actual data has not increased as quickly. As high-end processor word widths have 

made the shift from 32 to 64 bits, there has been an accompanying trend towards 

efficiently supporting subword operations. Subword parallelism, in which multiple 8- 

or 16-bit operations are performed in parallel by a 64-bit ALU, is supported in current 

processors via instruction set and organizational extensions. These include the Intel 

MMX [71], HP MAX-2 [57], and Sun VIS [93] multimedia instruction sets, as well as 

vector microprocessor proposals such as the TO project [5].

All of these ideas provide a form of SIMD (single instruction-multiple data) parallel

88
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processing at the word level. These instruction set extensions are focused primarily on 

enhancing performance for multimedia applications. Such applications perform large 

amounts of arithmetic processing on audio, speech, or image samples which typically 

only require 16-bits or less per datum. The caveat to this type of processing is that 

thus far these new instructions are mainly used only when programmers hand-code 

kernels of their applications in assembler. Little compiler support exists to generate 

them automatically, and the compiler analysis is limited to cases where programmers 

have explicitly defined operands of smaller (i.e., char or short) sizes.

This chapter proposes hardware mechanisms for dynamically exploiting narrow 

width operations without programmer intervention or compiler support. By detecting 

“narrow bitwidth” operations dynamically, we can exploit them more often than with 

a purely-static approach. Thus, our approach will remain useful even as compiler 

support improves.

We have explored two optimizations that take advantage of the core “narrow width 

operand” detection that we propose. For both techniques, we explore both a basic and 

extended version of the optimization. The basic approach only operates in cases that 

it is guaranteed to succeed. In the extended version of the proposals, we demonstrate 

speculative techniques that can improve the efficiency of the optimizations.

The first optimization that we propose watches for small operand values and 

exploits them to reduce the amount of power consumed by the integer unit. This is 

accomplished by an aggressive form of clock gating. Clock gating has previously been 

shown to significantly reduce power consumption by disabling certain functional units 

if instruction decode indicates that they will not be used [40]. The key difference of 

our work is to apply clock gating based on operand values. When the full width of a 

functional unit is not required, we can save power by disabling the upper bits. With 

this method we show that the amount of power consumed by the integer execution 

unit can be reduced for the SPECint95 suite with little additional hardware.
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The second proposed optimization improves performance by dynamically recogniz­

ing, at issue time, opportunities for packing multiple narrow operations into a single 

ALU. With this method the SPECint95 benchmark suite shows an average speedup of 

4.3%-6.2% depending on the processor configuration. The MediaBench suite showed 

an average speedup of 8.0%-10.4%. Since this optimization falls outside the scope 

of this dissertation, I refer readers to previously published work which describes this 

optimization in detail [17; 19].

The primary contributions of this work are a detailed study of the bitwidth re­

quirements for a wide range of benchmarks and two proposals for methods to exploit 

narrow width data to improve processor power consumption and performance. In 

Section 5.1 we further discuss the motivations for our work and place it in the con­

text of prior work in multimedia instruction sets, power savings, and other methods 

of using dynamic data. Section 5.2 describes the experimental methodology used to 

investigate our optimizations. Section 5.3 details the power optimization technique 

based on clock gating for operand size and presents results on its promise. In Section 

5.4, we describe speculative techniques to improve the benefits of value based clock 

gating. Finally, Section 5.6 concludes and discusses other opportunities to utilize 

dynamic operand size data in processors.

5.1 Motivation

5.1.1 Application Bitwidths

In this study we show that a wide range of applications frequently calculate using 

small operand values. Figure 5.1 illustrates this by showing the cumulative percentage 

of integer instructions in SPECint95 in which both operands have values that can 

be expressed using less than or equal to the specified bitwidth. (Section 5.2 will
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Figure 5.1: Bitwidths for SPECint95 on 64-bit Alpha.

discuss the Alpha compiler and SimpleScalar simulator used to collect these results.) 

Roughly 50% of the instructions had both operands less than or equal to 16-bits. We 

will refer to these operands as narrow width; an instruction execution in which both 

operands are narrow width is said to be a “narrow-width operation” . Since this chart 

includes address calculations, there is a large jump at 33-bits. This corresponds to 

heap and stack references. (Larger programs than SPEC might have this peak at a 

larger bitwidth.) The data demonstrate the potential for a wide range of applications, 

not just multimedia applications, to be optimized based on narrow-width operands. 

While other such work, e.g., narrow bitwidth transformations to a protein-matching 

application [3], required algorithm or compiler changes, we focus here on hardware- 

only approaches.

5.1.2 Observing and Optimizing Narrow Bitwidth Operands

The basic tenet behind the optimizations proposed here is that when operations are 

performed with narrow-width operands, the upper bits of the operation are unneeded. 

To decrease power dissipation, clock gating can disable the latch for these unneeded 

upper bits. Alternatively, to improve performance, we propose “operation packing” ,
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in which we issue and execute several of these narrow operations in parallel within the 

same ALU. In either case, the crux in exploiting narrow-width operands lies in recog­

nizing them and modifying execution. Section 5.3 will discuss hardware approaches 

for tagging result operands as ‘narrow-width” as they are produced, and for storing 

these tags along with source operands as we stage subsequent instructions waiting for 

issue.

Figure 5.2: Percentage of instructions whose operand precision changes from less than 
16-bit to greater than 16-bit over a single program run. Data is presented for both 
perfect and realistic branch prediction.

5.1.3 Disadvantages of Static Compiler Analysis

Part of the motivation for this work was the fact that static analysis of input operand 

sizes has several disadvantages. First, RISC instruction sets, such as the Alpha 

instruction set that we consider in this study, typically do not include instructions 

that specify the operand size information for each operation. For example, the Alpha 

ISA does not include add instructions that operate on 8-bit or 16-bit quantities. 

Thus the compiler could not embed operand size information without instruction set 

extensions. More importantly there are many cases where it is impossible to know 

what the true operand bitwidths (as opposed to the declared operand sizes) will be

□  perfect 
■  realistic

With permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5: Value Based Clock Gating 93

until run-time. Actual operand sizes depend very much on the input data presented. 

Operand sizes for particular instructions can also vary over the program run even 

with the same input data, which makes the task of the compiler even more difficult.

Figure 5.2 shows the percentage of PC values where operand width changes as 

the instruction is executed repeatedly within a single run. In particular, the figure 

shows how often an instruction fluctuates from having less than 16-bit operands to 

greater than 16-bit operands as it executes repeatedly within a single program run. 

Figure 5.2 thus demonstrates some of the difficulty that a compiler would encounter in 

determining the operand-widths of operations statically. In particular, it is interesting 

to note that with perfect branch prediction, the instruction operand sizes are far more 

predictable than with realistic branch prediction. This is because with perfect branch 

prediction only the true execution path is seen. With imperfect branch prediction, 

uncommon paths, like error conditions, may be executed (but not committed) if 

the branch predictor points that way. Along these paths, operand statistics may be 

markedly different. Compile time analysis must conservatively analyze all potential 

paths to ensure that operations can truly be packed. This may include uncommon 

error conditions and other extreme cases. As a result, the compiler runs into much 

of the same diverse operand values as seen by imperfect branch prediction.

Overall, compiler dataflow analysis for operand sizes must be conservative about 

possible operand values. Programmer hints about operand sizes can aid the compiler. 

It is unrealistic, however, to assume that programmers will provide these hints on 

codes other than small multimedia kernels.

From Figure 5.1 it is clear that many opportunities exist to exploit narrow-width 

data for subword parallelism and aggressive clock gating. Searching for subword 

parallelism in applications is somewhat analogous to the search for instruction-level 

parallelism (ILP) in applications. In the late 80s and early 90s, most general purpose
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superscalar microprocessors were statically scheduled, and the compiler was respon­

sible for uncovering ILP in programs. Current microprocessors implement aggressive 

dynamic scheduling techniques to uncover more ILP. This evolution was necessary 

to feed the wider-issue capabilities of these processors. In a similar manner, more 

subword parallelism can be uncovered with the dynamic approaches wc propose than 

if one relies solely on compiler techniques.

5.1.4 Related Work

The notion of disabling the clocks to unused units to reduce power dissipation in high 

performance microprocessors has been discussed in [41; 89]. In the CAD community, 

similar techniques have been demonstrated at the logic level of design. Guarded 

evaluation seeks to dynamically detect which parts of a logic circuit are being used 

and which are not [90]. Logic pre-computation seeks to derive a pre-computation 

circuit that under special conditions does the computation for the remainder of the 

circuit [2]. Both of these techniques are analogous to conditional clocking, which can 

be used at the architectural level to reduce power by disabling unused units.

There has been other work in specializing for particular operand values at run­

time. The PowerPC 603 includes hardware to count the number of leading zeros of 

input operands to provide an “early out” for multicycle integer multiply operations. 

This can reduce the number of cycles required for a multiply from five for 32-bit mul­

tiplication to two for an 8-bit multiplication [38]. At a higher level, value prediction 

seeks to predict result values for certain operations and speculatively execute addi­

tional instructions based on these predicted operand values [58]. Memoing is another 

high-level technique that exploits data redundancy to eliminate power dissipation of 

long-latency integer and floating point operations [6]. Memoing is the idea of storing 

the inputs and outputs of long-latency operations and re-using the output if the same 

inputs are encountered again.
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Finally, there has also been other work in detecting and exploiting narrow bitwidth 

operations. Razdan and Smith propose a hardware-programmable functional unit 

which augments the base processor’s instruction set with additional instructions that 

are synthesized in configurable hardware at compile time [74]. Since all synthesized 

instructions must complete in a single cycle, bitwidth analysis is performed at compile 

time to highlight sequences of narrow-width operations that are the best candidates 

for implementation. Stephenson et al. have developed a compiler framework that 

detects bitwidth requirements for integers and memory addresses by statically prop­

agating information back and forth in the dataflow graph [86]. Stefanovic use a 

run-time profiling tool to analyze the bitwidth requirements of applications under 

different accounting models for measuring bitwidth requirements [85].

Tong et al. have proposed sacrificing computational accuracy for reduced power 

consumption [91], Their analysis shows that certain floating point programs suffer 

very little loss of accuracy with a significant reduction in bit-width. They propose 

minimizing the bit-width representation of floating-point data to reduce power con­

sumption in the floating point unit. Our work differs from this technique, because 

we include hardware structures to dynamically detect opportunities to capitalize on 

narrow bitwidth operations ensuring that program will produce the same results as 

without the optimization.

5.2 Methodology

In Sections 5.3 and 5.4 of this chapter we present the results for the low power op­

timizations that we propose for dynamically exploiting small operand values. This 

section lays the groundwork by detailing the experimental methodology used for ob­

taining those results.
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5.2.1 Simulator

We have used a modified version of SimpleScalar’s sim-outorder to collect our results. 

In Section 2.3.1 the simulator and parameters are discussed.

Most of the changes made to the simulator for this study are localized to the issue 

and decode stages. In the decode stage, bitwidths are calculated for dynamic data and 

stored in the reservation station entry to be used during the issue stage. In the issue 

stage, this data is used to decide if instructions can be issued and executed in parallel 

based on the data from the decode stage. While these changes reflect the simulator 

implementation, subsequent sections discuss how our ideas would be implemented in 

an actual processor.

5.2.2 Benchmark Applications

A goal of this study is to demonstrate and exploit the prevalence of operations with 

narrow bitwidths even in applications outside the multimedia domain. For this reason 

we evaluate the SPECint95 suite of benchmarks as well as several benchmarks from 

the MediaBench suite [56]. For the power optimization we also consider eight of the 

SPECfp95 benchmarks.

We have compiled the benchmarks using the DEC/Compaq cc compiler with the 

following optimization options as specified by the SPEC Makefile: -migrate -stdl 

-05  -ifo -non-shared. In particular, the -05 setting, along with numerous other 

optimizations, provides vectorization of some loops on 8-bit and 16-bit data (char 

and short).

For this study we used the reference inputs for the SPEC95 suite. We did not 

want to use the test or training inputs because our data-specific optimizations might 

be unfairly helped by smaller data sets. Using the reference inputs, the SPEC95 

benchmarks run for billions of instructions, which, if simulated fully, would lead to
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Benchmark Family #  of Warmup Insns. or Description Input Data
ccl SPECint 221M cccp.i
peri SPECint 601M scrabble game
Upeg SPECint 824M vigo.ppm
compress SPECint 2576M bigtest.in
m88ksim SPECint 26M dhrystone
li SPECint 271M All inputs
vortex SPECint 2451M persons. Ik
go SPECint 926M 9stone21
applu SPECfp 1410M applu.in
apsi SPECfp 1400M apsi.in
fpppp SPECfp 1000M natoms.in
hydro2d SPECfp 375M hvdro2d.in
mgrid SPECfp 1410M mgrid.in
su2cor SPECfp 2500M su2cor.in
turb3d SPECfp 1000M turb3d.in
wave5 SPECfp 1410M \vave5.in
adpcm Media 16 bit PCM < -  > 4-bit ADPCM coder clinton. pcm
mpeg2 Media MPEG digital compressed format encoding rec%d
gsm Media Audio and speech encoding with GSM std. clinton.pcm
g721 Media Voice compression using the G.721 standard clinton.pcm

Table 5.1: Characteristics of the SPEC95 and Mediabench benchmarks studied.
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excessively long execution times. Thus we have adopted a methodology similar to 

that described in [81]. We warm up the architectural state using a fast-mode cycle- 

level simulation that updates only the caches and branch predictors during each cycle. 

The warmup period also avoids the effects of smaller operand sizes that are prevalent 

within program initialization. Using the results of [81] to identify representative 

sections of the program run based on cache and branch prediction statistics, we then 

simulate a 100 million instruction window using the detailed simulator. Table 5.1 lists 

the reference input that we have chosen for the SPEC95 benchmarks, and the number 

of instructions for which we warm up the caches and branch predictor. Table 5.1 also 

describes the applications chosen from the MediaBench suite. For the MediaBench 

suite, gsm, g721, and mpeg2-decode were run to completion while mpeg2-encode was 

simulated for 100 million instructions after a 500M instruction warmup period.

5.3 Proposal: Value Based Clock Gating

5.3.1 Clock Gating

Dynamic power dissipation is the primary source of power consumption in CMOS 

circuits. In CMOS circuits, dynamic power dissipation occurs when changing input 

values cause their corresponding output values to change. Only small leakage currents 

exist as long as inputs are held constant. Clock gating has been used to reduce power 

by disabling the clock and thereby disabling value changes on unneeded functional 

units. In static CMOS circuits, disabling the clock on the latch that feeds the input 

operands to functional units essentially eliminates dynamic power dissipation. Power 

consumption on the critical clock lines is also saved because the latch itself is disabled. 

In dynamic or domino CMOS circuits, the same effect can be obtained by disabling 

the clocks that control the pre-charge and evaluate phases of the circuit. The use of
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clock gating may introduce additional clock skew and can complicate timing analysis 

which provide challenges for circuit designers performing the implementation. Despite 

these difficulties, conditional clocking is commonly used in current microprocessors 

[41].

Currently most work on clock gating has focused on using the decoded opcode to 

decide which units can be disabled for a particular instruction. For example, nop’s 

allow most of the units to be disabled since no result is being computed. As another 

example of opcode-based clock gating, consider an “add byte” instruction. Since the 

opcode guarantees that only the lower portion of the adder is needed, the top part of 

the functional unit can be disabled.

Proposed Architecture

Our approach proposes a more aggressive clock gating approach and quantifies its 

benefits. At run-time, it determines instances when, based on the input operands, 

the upper bits of an operation are not needed; in those cases, it disables the upper 

portion of the functional unit. The key differences from prior approaches are that (1) 

our approach is operand-based, not opcode-based, and (2) our approach is dynamic, 

not static. (One could, of course, use our method in addition to prior opcode-based 

approaches.) Different runs of the program, or even different executions of the same 

instruction, can dissipate different amounts of power depending on the operands seen.

There are several different possible hardware implementations for this technique. 

Figure 5.3 is a diagram of one possible implementation. This unit recognizes that the 

upper bits of both input operands are zeros. For example, in an addition operation, 

if both input operands have all zeros in their top 48 bits, these bits do not have to be 

latched and sent to the functional units. We already know that the result of this part 

of the addition will be zero, and thus zeros can be multiplexed onto the top 48 bits 

of the result bus, rather than computed via the adder. In this architecture the low
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16 bits are always latched normally. The high 48 bits are selectively latched based 

on a signal that accompanies the input operand from the reservation stations or the 

bypass network. This signal, called zero\8 in Figure 5.3, denotes that the upper 48 

bits are all zeros and is created by zero detection logic when the result was computed. 

Since some operands come directly from the cache, there must also be a zero-check 

during load instructions. We believe such zero-detect hardware and corresponding 

flags within the reservation stations are already present in some processors; it is 

used, for example, to recognize divide-by-zero exceptions early. However, in some 

processors it may not be possible to perform zero-detects on incoming loads, and in 

these cases the hardware will not recognize an opportunity to gate the clock. For the 

SPECint95 suite, 13.1% of power saving instructions have one or more operands that 

come directly from a load instruction; these are the instructions that would be missed 

if zero-detect were omitted on loads. The percentages for the media benchmarks are 

much lower at 1.5%.

The gated clock signal used to disable the upper 48 bits of the functional unit 

is generated based on the zero48 signals of the respective operands and is combined 

with an AND gate in parallel with data bypass multiplexing. In the case of functional 

units designed with static logic this signal can be used to disable the upper 48 bits 

of the preceding latches thus effectively reducing the switching activity to zero. For 

functional units design with dynamic logic, the zero48 signal would be placed into 

the latches and used in the next cycle to disable the clock on the upper 48 bits of the 

functional unit.

In Figure 5.3 the zero48 signal is generated after the functional unit completes the 

specified operation. In processors with architecturally visible zero-flags such as the 

Intel x86, Motorola 68K, and IBM/Motorola PowerPC architectures, this approach 

would be feasible because there would be no additional serial delay introduced. How­

ever, in other architectures in which adding a zero-detect in the execute stage would
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affect cycle time, another implementation is possible. This implementation relies on 

the fact that if we know that the two source operands of an operation are 16 bits or 

less, then it is relatively easy to determine whether or not the result will be 16 bits or 

less. For example, with an arithmetic operation, if the carry-out signal of the 16th bit 

is zero and the two source operands are 16 bits or less, then we know that the result 

will be 16 bits or less. Thus, the zero48 signal can be computed after the carry-out 

of the 16th bit is generated, well before the final adder result is finished. Finally, in 

some cases a designer might not want to insert the zero48 signal into the register file 

or reservation stations. In this case, the 48-bit zero-detects could be inserted after 

register fetch while waiting for the bypass results to be returned. This relies on the 

fact that register read generally takes place in the first half the cycle and writeback 

occurs in the second half of the cycle.

In order for any power saving technique to be useful, it must save more power 

than it consumes. In our technique, the new power dissipated is mainly in the zero- 

detection logic and in widening the mux onto the result bus. The primary power 

savings stems from selectively clock-gating the functional units based on the results 

of the zero-detection logic. In the following subsections we evaluate these costs and 

benefits in more detail.
□A n* a  Lope IStoft CMm* O Coapm

Figure 5.4: Operations with both operands 16 bits or less.
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Bitwidth Analysis of Benchmarks

The success of our approach relies on the frequent occurrence of narrow bitwidth 

operands. Figure 5.4 shows, for each benchmark, the percentage and type of opera­

tions whose input operands are both less than or equal to 16 bits. (Both operands 

must be small in order for the clock gating to be allowed.) The breakdown by op­

eration type is another important metric. Intuitively, disabling the upper bits on an 

adder or multiplier will save more power than turning off the upper bits on the less 

power-hungry logical functions. Figure 5.4 shows that for most benchmarks, arith­

metic and logical operations dominate the number of narrow-width operations. In 

most of the benchmarks multiplies are rather infrequent although they do account for 

6% of the narrow-width operations in gsm.

Recall that Figure 5.1 illustrated how address calculations result in many oper­

ations with bitwidths of 33. Roughly 94% of SPECint95 compute operations had 

bitwidth requirements of 33 or less with 37% occurring at the 33-bit mark. From this 

data it makes sense to include a second control signal for clock gating of operands 

that are 33 bits or less. The zero detect logic can be shared so that the extra hard­

ware requirements are minimal. This modification is also useful for optimizing the 

multiplication of two 16-bit numbers. In these cases a 32-bit result can occur, so 

the 33-bit mux onto the result bus would be used as shown in Figure 5.5. Figure 

5.5 also shows the expanded clock gating architecture with clock gating at the 16-bit 

and 33-bit boundaries. The operand latches have been further partitioned and an 

additional clock gating signal is generated. In sections 5.3.3 and 5.3.4 we discuss the 

choice of the bitwidths to clock gate in more detail.

Negative numbers provide another source of narrow-width data for operand-based 

clock gating to exploit. In the Alpha architecture that we considered in this study, 

the fundamental datum is the 64-bit quadword. Quadword integers are represented 

with a sign bit occupying the most significant bit [11]. Numbers are expressed in two’s
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complement form which simplifies arithmetic operations. The techniques presented in 

this work rely on determining when data requires less than the full word width of the 

machine. For positive numbers, this can be accomplished by performing a zero detect 

on the high order bits. For negative numbers in the two’s complement representation, 

leading l ’s signify the same thing that leading 0’s do for positive number - essentially 

unneeded data. Thus a ones detect computation (simply an AND of the high-order 

bits) must be performed in parallel with the zero detect computation to detect narrow 

bitwidth negative numbers. An additional signal does not need to be stored in the 

register file because this information can be derived by sampling one of the higher 

order bits. Figure 5.5 shows the zero and ones-detect logic which creates the signals 

narrow31 and narrowJS (analogous to the zero48 from Figure 5.3).

5.3.2 Power Results: Overview

Device 32-bit 48-bit 64-bit
Adder (CLA) 105 158 210
Booth Multiplier 1050 1580 2100
Bit-wise Logic 5.8 8.7 11.7
Shifter 4.4 6.6 8.8
Zero-Detect - 4.2 -

Additional Muxes - 3.2 -

Table 5.2: Estimated power consumption of functional units at 3.3V and 500Mhz 
(mVV).

The amount of power that is saved by our approach depends on both the type 

and frequency of narrow-width operations. In order to quantify the amount of power 

saved, we use previously-reported research to estimate the amount of power that 

various functional units use [13; 28; 67; 98]. From these sources we obtain power 

estimates assuming dynamic logic and relatively fast carry look-ahead adders. We 

assume that the power scales linearly with the number of bits of the units based
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[66]. We assume that the multiplier is pipelined with its power usage scaling linearly 

with the operand size. Again, the zero-detect for 33 bits can be computed within 

the 48-bit zero-detect so no additional power is consumed. Table 5.2 summarizes the 

values that we have assumed for different size devices. The functional units in current 

high-end microprocessors are likely to use even more power. For this analysis though, 

the important factor is the ratio of the respective functional units to each other.

QTolfti Saved. Ib b itru u ll  

■ T o tal Saved 33 btt result 

QToU l E i tn  Power Urad

I M Li
* /  * ^  ^  *  /  /  /  /  /  /  /  /

Figure 5.6: Net power saved by clock gating at 16 and 33 bits. Total extra used is the 
amount used by zero detection and multiplexing. Net savings is equal to the amount 
saved at 16 bits plus the amount saved at 33 bits minus the amount used.

Figure 5.6 summarizes the amount of power saved and expended by the integer 

execution units. We arrived at these numbers by determining the amount of power 

saved and expended per operation executed and multiplying by the average issue 

rate. These results include all loads, stores, branches, and other integer execution 

unit instructions that are not part of the set of instructions that our optimization 

applies to. Among the SPECint95 benchmarks, our technique saves the most power 

for ijpeg and go. Ijpeg has a large number of narrow-width arithmetic operations. 

Go includes a large number of address calculations and is helped the most by adding 

the extra signal to detect 33-bit operations. The media benchmarks tend to save
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even more power than the SPECint95 benchmarks. This is primarily because of the 

larger number of arithmetic operations. GSM, in particular, has a relatively large 

number of narrow bitwidth multiply operations. The amount of power used by the 

zero detection circuitry is small and nearly constant for all benchmarks. In no case 

does the amount of power used for zero detection exceed the amount of power saved.
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Figure 5.7: Power usage of integer unit.

Figure 5.7 shows the total amount of power that is saved by the integer unit with 

our optimization. For the baseline system, we assume that all operations use the 

amount of power that a 64-bit device would use. (We assume basic clock gating in 

which, for example, multipliers are turned off for add instructions and vice versa.) 

For the SPECint95 benchmark suite, the average power consumption of the integer 

unit was reduced by 54.1%. For the media benchmarks, the reduction was 57.9%.

While a 50-60% power reduction seems exceptional, it is important to note that 

the integer unit’s contribution to total power varies depending on the CPU. In some 

high-end CPUs much of the power is spent on clock distribution and control logic, and 

thus the integer unit represents only about 10% of the power dissipation [41). In such a 

processor, our optimizations will lead to 5-6% power reductions on average. As control 

is streamlined, either in DSPs or via explicitly-parallel instruction computing (EPIC) 

as in future Intel processors [35], the integer unit is a larger factor in the processor’s
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total power dissipation, as much as 20-40% [54]. In these cases, the total power savings 

from our technique will approach 20%. In all processors, our approach promises a 

relatively easy way to prune power from the integer unit where this is important. 

We also note that our power savings estimates are somewhat conservative. The clock 

gating technique also reduces the switch capacitance seen by the clock distribution 

network, and this can lead to a further power reduction. Although this effect can be 

significant, it cannot be quantified without a chip floorplan.

5.3.3 Selecting Gating Boundaries

In the previous subsections, data has been presented for clock gating at 16-bit and 

33-bit boundaries. The choice of the 33-bit mark was motivated because the empirical 

data demonstrated that a large number of operations exist with both source operands 

33 bit or less, primarily due to address calculations. The reason for choosing the 16-bit 

mark is more arbitrary and reflects the need to balance two tradeoffs in the selection of 

the boundary at which to clock gate. First, if the boundary is chosen to be too large, 

the amount of power saved will not be as significant as possible. On the other hand, 

if the boundary is selected to be too small, not enough operations will be eligible for 

clock gating at that boundary.

In this subsection, we systematically investigate the selection of the clock gating 

boundary. In this analysis, we limit the number of boundaries that are clock gated to 

one or two. We also assume that the power dissipation of the functional units scales 

linearly at the bit-level. In the next section, we investigate the potential for clock 

gating at more than two points with finer granularities.

Figure 5.8 shows the integer unit power reduction by having one clock gating 

boundary at the specified bitwidths. The data is shown as a percentage power re­

duction relative to the original integer unit power. Clearly, if we are only allowed 

to clock gate at one point, we should clock gate at 33 bits. Clock gating at points
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Figure 5.8: Integer unit power reduction by selecting to gate at one bitwidth.

beyond 33 bits does not make sense for this set of benchmarks, because they rarely 

utilize the upper portion of the functional units. Section 5.3.5 will discuss floating 

point benchmarks in more detail. Future applications written for 64-bit CPUs may 

use larger values more frequently, but we typically expect this usage to grow slowly 

from the 33-bit mark as addressing needs grow.
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Figure 5.9: Integer unit power reduction by clock gating at 33 bits as well as at the 
specified bitwidth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^9318994494159318945499^69



Chapter 5: Value Based Clock Gating 110

Figure 5.9 shows the power savings assuming that we now are able to clock gate at 

two points. One of the two points is always chosen to be 33 bits, capturing the large 

number of address calculations. The second point varies, with each bar measuring 

the total amount of power saved by clock gating at that bitwidth as well as at 33 

bits. Figure 5.9 demonstrates that choosing the clock gating point to be anywhere 

from ten to seventeen results in very little difference in the total amount of power 

saved. Thus our original choice of clock gating at 16 bits was reasonable. On the 

other hand, certain benchmarks display a preference for clock gating at a particular 

bitwidth. This can affect the total amount of power saved significantly. For example, 

the optimal selection of clock gating boundary for m88ksim is 5 bits. Clock gating at 

this bitwidth would save approximately 10% more power than our default selection 

of 16 bits.

5.3.4 Selecting the Number of Clock Gate Boundaries

In the previous subsection we investigate the optimal selection of clock gating bound­

aries for one and two points. In this subsection, we investigate the potential for clock 

gating at multiple points at finer granularities. For example, instead of clock gating 

just at 16 bits and 33 bits, as in our original proposal, another choice might be to 

clock gate four bitwidths: the 8-bit, 16-bit, 24-bit, and 33-bit boundaries.

Figures 5.10 and 5.11 show the percent of the integer unit power saved by clock 

gating at the specified granularities for the SPECint95 and multimedia benchmarks. 

In these figures, the last bar assumes clock gating at only the 33-bit boundary. The 

second to last bar is similar to our original proposal, in which we clock gate at 16- 

bits and 33-bits. The remaining three bars show the improvement by clock gating at 

additional, finer granularities. These figures show the diminishing marginal returns 

for clock gating as we approach 1 bit of granularity. The data suggests that our 

original proposal with two boundaries at 16 and 33 is close to optimal. If additional
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Figure 5.10: Percent of integer unit power saved with varying clock gating granulari­
ties.
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Figure 5.11: Percent of integer unit power saved with varying clock gating granulari­
ties.
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boundaries are desired, then 8-bit boundaries provide slightly better power savings.

5.3.5 Value-based Clock Gating in Floating Point Bench­

marks

In this section we discuss value-based clock gating within floating point benchmarks. 

Here we will consider clock gating on both integer data, as in the previous sections, 

and within certain types of floating point operations.

Clock Gating Integer Code in Floating Point Benchmarks

Floating point benchmarks often contain a significant percentage of integer code in 

addition to floating point operations. Integer code in floating point benchmarks is 

often used for loop index variables and address computations. In the integer bench­

marks that we studied, roughly 50% of the instructions are integer computations that 

are available for clock gating. In the floating point benchmarks approximately 25% 

of the instructions are integer computations. The integer computations within these 

benchmarks tend to have a larger percentage of arithmetic operations which consume 

more power than the other classes of instructions. Thus the power consumption 

within the integer unit is significant within these benchmarks.

Figure 5.12 presents the data for functional width analysis on the integer code 

within SPECfp95. This graph is similar to Figure 5.1 in which we present the data 

for SPECint95. The main difference between the two graphs is that the spike at 

33 bits is larger, corresponding to the fact that address calculations will be a larger 

percentage of the integer code than within floating point programs. Still, about 37% 

of the operations require 16 bits or less to perform their computation.

We next present data on the power saved by clock gating the floating point bench­

marks. We assume that we will definitely want to clock gate at the 33 bits. Figure
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Figure 5.12: Bitwidths for integer computation in SPECfp95 on 64-bit Alpha.
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Figure 5.13: SPECfp95 integer unit power reduction by clock gating at 33 bits as well 
as at the specified bitwidth.
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5.13 shows that the optimal mark for placing the second clock gating mark is at the 

11-bit mark. However, the difference between choosing the 11-bit mark and the 16- 

bit mark that we chose before is only 2%, so we can use 16-bits to keep the same 

hardware structure as the original proposal for the integer benchmarks.
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Figure 5.14: SPECfp95 power usage of integer unit.

Figure 5.14 shows the total power used by the integer assuming the baseline and 

clock gated configurations. The percentage savings of the clock gated configuration 

is still over 50%. However, as expected the total power used and saved within the 

integer unit is less than before. Hence the optimization would have less of an effect 

on the overall power dissipation of the processor for these floating point programs.

Clock Gating Floating Point Operations

Applications with floating point code tend to have higher overall power dissipation. 

This is because floating point operations are much more complex and hence use more 

power. For example, floating point programs tend to have a larger number of power 

hungry multiplication operations. We will focus on these multiplication operations 

in this section for two reasons. First, in floating point arithmetic, multiplication is 

simpler than addition and subtractions in that it does not require shifting an operand 

to align them before performing the computation. Essentially, the mantissas of the
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input operands are multiplied together and the exponents of the input operands are 

added together. Second, since multiplication is more expensive in terms of power 

dissipation there is more potential for power savings.
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Figure 5.15: Bit width analysis of the 52-bit mantissa in double precision floating 
point multiplication

According to IEEE Standard 754, 64-bit double-precision, floating point arith­

metic uses a mantissa of 52 bits, an exponent of 11 bits, and one sign bit [47]. We 

consider clock gating on input operands of the 52-bit integer multiplication operation 

that occurs in double precision multiplication. In single precision operations, the 

lower 29 bits are all zeros. Single precision multiplication uses the same functional 

units as double precision multiplication and would present many additional opportu­

nities for clock gating. However, we do not consider them here because traditional 

opcode-based clock gating techniques would be sufficient to capture these situations.

Figure 5.15 presents the bit width analysis for the 52-bit mantissa in double pre­

cision floating point multiplication. Most often the operations require nearly the full 

52 bits of precision. However, roughly 10% of the operations require less than 4 bits 

of precision. Despite the small number of instructions that are amenable to clock 

gating, being able to clock gate nearly the full width of the multiplication saves an
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Figure 5.16: FP multiplier power reduction by selecting one clock gating point in the 
52-bit mantissa.

appreciable amount of power. Figure 5.16 shows the power saved by selecting one 

clock gating point within the 52-bit mantissa. By selecting gating at the 4-bit bound­

ary, approximately 9% (18mVV) can be saved. This compares to about 125mVV saved 

by clock gating operations in the integer benchmarks, and about 100mVV saved by 

clock gating integer operations in the floating point benchmarks.

5.4 Speculative Approaches for Exploiting Narrow- 

Width Operands

The power optimization discussed in Section 5.3 requires that both input source 

operands be less than 16-bits to operate most efficiently. For the power optimization, 

if the first input operand is less than 16-bits and the second operand is greater than 

16-bits, yet still less than 33-bits, it will be clock gated at the 33-bit mark rather than 

the more optimal 16-bit mark.

The requirement that both input operands be less than 16-bits excludes a large
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number of arithmetic operations used for memory addressing, loop incrementing, etc. 

In many of these cases, one of the input operands may be very large, while the 

other is quite small. When this is true, it is possible that adding them will result 

in a carry that ripples into the highest bits, but in practice, such large ripple carries 

occur infrequently. Based on this observation, we present extensions here to value 

based clock gating that allows the optimization to proceed speculatively assuming 

that there will be no overflow from the 16-bit operation; the high 48 bits of the larger 

source operand can be muxed onto the result bus to proceed into the destination RUU 

stations. However, in the rare cases that there is overflow from the 16-bit addition, the 

instruction can be squashed and subsequently re-executed as a full-width instruction. 

Such a situation could be handled in a similar manner to “replay traps” , which are 

already available for other reasons in the Alpha 21164 and other CPUs [15].

5.4.1 Replay Clock Gating for Arithmetic Operations with 

Varying Operand Sizes

In this section we investigate the benefits of speculatively clock gating operations at 

the 16-bit mark when one source operand is less than 16-bits and the other source 

operand is greater than 16-bits. We will call this technique replay clock gating.

When the replay clock gate operation succeeds, the power savings are similar 

to those previously presented. We must also, however, account for the cases when 

the 16-bit addition has carry-out and the instruction must be re-executed. These 

replay overflows incur both a performance and a power penalty. Because of this, we 

would like the percentage of instructions that overflow the 16-bit boundary to be 

low. Figure 5.17 demonstrates that for most of the benchmarks this is true. This 

figure shows the percentage of replay clock-gated operations that overflowed the 16- 

bit boundary. For the SPECint95 benchmark suite, about 9% of the speculatively
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Figure 5.17: Percentage of replay clock gated instructions that overflow the 16-bit 
boundary.

clock gated instructions did have overflow. The multimedia benchmarks, having more 

regular data types and ranges, had a overflow rates of only 2%. Compress (33%) and 

ccl (18%) had the highest overflow rates.
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Figure 5.18: Net savings with and without replay clock gating.

In computing the net power saved via replay clock gating, we attempted to charge 

operations with a power cost when they overflow and need to be re-executed. VVe also 

took into account the power cost of re-issuing instructions in the previous pipeline 

stage that were dependent on the squashed instruction. Computing the amount of
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power used when re-executing is fairly straightforward; we simply charge the instruc­

tion with the cost of a second add (usually 33-bits, assuming 33-bit clock gating was 

valid). Estimating the amount of additional power consumed to re-issue the depen­

dent instruction is more difficult and depends heavily on the actual implementation 

details of the processor. We used the VVattch infrastructure discussed in Chapter 2 

to provide these estimates.

Figure 5.18 shows the net savings with and without replay clock gating. The net 

savings with replay includes the amount of additional power saved on replay clock 

gated instructions as well as an estimate for the amount of extra power dissipated due 

to replay overflows. The amount of additional power saved was approximately 12% 

for SPECint95 and 21% for the multimedia benchmarks. However, as expected the 

benchmarks did not perform uniformly. In fact, the net savings for compress was 20% 

lower when using replay clock gating; its unusually large number of replay overflows 

incur additional power consumption. Figure 5.19 shows the two components of the 

additional power used when replay overflow occurs. The power used to re-execute 

instruction is about 2-3X higher.
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Figure 5.19: Additional power used when replay overflow occurs.

In addition to consuming additional power, re-issuing and executing instructions
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can lead to performance degradation. All of the benchmarks we considered, except 

compress, performed within 0.5% of the baseline system when using replay clock 

gating. Compress suffered a 4% performance degradation due to the large number of 

replay overflows.

Overall, replay clock gating has mixed results. For most of the applications in the 

benchmark suite, the additional power savings benefits are attractive. However, for 

compress the performance degradation is noticeable.

While speculatively applying clock gating has mixed results, we found that spec­

ulative approaches for operation packing are quite successful [19]. We call this tech­

nique replay packing. Replay packing achieved speedups of 4.3%-6.2% for SPECint95 

and 8.0%-10.4% for the multimedia benchmarks. This is a significant improvement 

over the non-speculative version of the operation packing optimization.

5.4.2 Summary of Results

Sections 5.3 and 5.4 have explored value based clock gating in order to exploit the 

detection of narrow-width operations at run-time. We discussed both speculative and 

non-speculative versions of the optimization.

For this optimization, the non-speculative version of the clock gating optimization 

seems like the best choice. While the speculative optimization saved approximately 

20% more power, performance may be sacrificed for some applications, since instruc­

tions must be re-issued after a misspeculation.

The speculative technique is most successful when the 16-bit overflow rate is low 

as shown in Figure 5.17. Overflow confidence predictors could be used to decrease 

the overflow rates by recording the 16-bit overflow history of arithmetic operations to 

determine whether it is expected to be useful to perform the replay gating/packing. 

This would decrease the replay overflow rate and hence the benefits of replay clock 

gating.
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5.5 Value-Based Clock Gating in an Industry Con­

text

This chapter discusses the potential benefits and possible implementation of value- 

based clock gating and operation packing. This study was performed within an aca­

demic environment and while many details were considered, industrial circuit design 

styles and pipeline designs could have an impact on this technique. In this section 

we discuss the results of a study on the analysis and one potential implementation of 

value-based clock gating within a high-performance Itanium™(IA64) processor fam­

ily microprocessor design. This study was conducted as part of a summer internship 

project at Intel Corporation.

5.5.1 IA64 Bitwidth Analysis

Bitwidth

Figure 5.20: Bitwidths for SPECint95 for IA64 and 64-bit Alpha.

In Figure 5.20 we compare the bitwidth analysis that was performed on the Alpha 

ISA during the academic study with a similar analysis that was performed at Intel 

on the IA64 ISA using an internal research simulator. The results of the analysis are
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very similar up to the 20-bit mark. Around this region, there are two small spikes 

which show the percent of integer compute operations which required 20 and 28-bits 

to perform their computation. These points most likely correspond to the location 

where the IA64 compiler used in this study performed address calculations. This 

compares to the 33-bit mark with the Alpha compiler and ISA. Note that the results 

depend on whether or not the binaries are generated to take advantage of the entire 

64-bit address space. For this study, we used SPECint95 binaries generated from the 

IA64 research compiler.
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Figure 5.21: Breakdown of Bitwidths for SPECint95 for IA64 and 64-bit Alpha.

Figure 5.21 shows the bitwidth and operation type breakdown for SPECint95 with 

the IA64 ISA. About 80% of the comparison, shift, and logic operations occur at the 

16-bit mark or below, while roughly 35% of the pure addition operations occur at the 

16-bit mark or below.

Overall, the bitwidth analysis on the IA64 ISA was very similar to the Alpha ISA. 

This suggests that a similar value-based clock gating implementation can be useful for 

IA64 processors, although the exact location of the value-gating mark may change. 

For example, it may be sufficient to perform value-gating at the 28-bit mark instead
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64-bit Adder Randomized Zeros Ijpeg Stream
Upper 32 Disabled 42.6% 34.7% 37.5%
Upper 48 Disabled 62.4% 53.8% 58.8%
Selective Gating N/A N/A 46.3%

Table 5.3: Reduction in power dissipation for a 64-bit adder under various gating 
schemes

of the 33-bit mark.

5.5.2 Value Based Clock Gating Implementation

Circuit-level analysis was performed to determine how much power could poten­

tially be saved with value-based clock gating under a variety of operating conditions. 

These experiments were performed with PowerMill, a commercial circuit-level power- 

estimation tool. The circuit and layout design for the 64-bit arithmetic units within 

the high-performance IA64 processor design was used for this study. The average 

power dissipation for 100 test vectors as reported by PowerMill.

Three different input streams were applied to the adders under three different 

gating conditions. The three different input streams are randomized inputs, a stream 

where all of the inputs are zeros, and a stream which was captured from arithmetic 

computations within the ijpeg application (and had a representative mix of arithmetic 

computation values). The three gating conditions that we consider are where the 

upper 32-bits are disabled for every operation, where the upper 48-bits are disabled 

for every operation, and where the upper bits are disabled selectively (either 32- or 

48-bits disabled) based on the inputs (for the ijpeg stream).

Table 5.3 shows the results from this circuit-level analysis. These results show 

the decrease in power dissipation relative to the unmodified 64-bit adder. With ran­

domized inputs, disabling half of the adder reduced the power dissipation by slightly 

less than half. Disabling three-fourths of the adder reduced the power by 62%. This
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reflects the fact that there is some additional logic that is not disabled so the power 

dissipation does not decrease directly proportionally to the amount of bits being 

disabled.

The second column of results in Table 5.3 demonstrates the reduction in power 

dissipation when the input stream of zeros is sent to this adder. Because of the 

dynamic logic in this adder, there is significant power dissipation under this input 

stream.

The last column in the table shows the power dissipation under the stream of 

arithmetic operations captured from the ijpeg application. The row labeled selective 

gating shows the results assuming that a value gating signal exists which disables 

either the upper 32-bits or upper 48-bits depending on the actual values in the stream. 

With this scheme, selective gating saves roughly half of the power of this arithmetic 

unit.

Finally, we performed a power and delay analysis of zero detection circuitry which 

would be required to generate the value based clock gating signals. The power dissi­

pation of a 64-bit zero-detect operation was less than 1% of the power dissipation of 

the 64-bit adder, suggesting that the power overhead of generating the gating signals 

is small.

Figure 5.22 shows the major pipestages in the microprocessor which would be 

affected by value based clock gating. We consider a possible implementation for the 

value-based clock gating signals. In this implementation, 48-bit zero detection logic is 

inserted after the values are fetched from the register file. This location was selected 

because there is some slack time available while waiting for the bypass values to feed 

into the value-select mux that writes into the execute stage pipeline registers. This 

allows value-gating signals to be generated for values that are fetched directly from 

the register file.
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For values that come from the time critical bypass path, two solutions were consid­

ered. First, the gating signal could be generated within the flag generation circuitry 

which is already performed with the ALU after the value is computed. Second, a 

small optimization can be used to simplify the generation of the gating signal for 

these bypass values. We recognize that if the two source inputs to the adder are 16- 

bits or less, the results of the arithmetic operation will be 16-bits or less if there is no 

carry-out from the 16-bit stage of the adder. Using this optimization, a gating signal 

can be generated for bypass values with 1 gate delay following the 16-bit carry-out 

signal of the adder which can be performed before the final 64-bit value is computed.

We have proposed an implementation of value-based clock gating which does not 

affect any critical timing paths in a high-performance commercial microprocessor. 

This implementation can save roughly 50% of the power within the arithmetic units. 

This analysis suggests that this could be a viable point-optimization within com­

mercial, high-performance microprocessors. Next we will consider possible methods 

to extend this technique to reduce power by performing value-based gating within 

register files and other memory structures.

5.5.3 Pervasive Value Gating: Wordline Disable

The optimizations that discussed so far have primarily focused on utilizing bitwidth 

information to reduce power within the integer functional units. A clear extension 

would be to save power on narrow-width values within the memory hierarchy. Poten­

tially there would be opportunity for more power savings with this approach because 

a large fraction of the overall chip power is dissipated within memory structures.

Our proposed optimization within the memory hierarchy focuses on selectively 

disabling wordlines at the narrow-bitwidth boundaries. Figure 5.23 shows a diagram 

of how gating bits could be used to save power by disabling the wordline at the 16- 

bit boundary. This mechanism saves power because the upper 48 bitlines are not
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Figure 5.23: Wordline disable scheme in a register file

activated on read operations. A similar technique could be performed to save power 

on write operations by gating the driving circuitry for the write bitlines.

Power can be reduced farther by disabling the pre-charge circuitry for the unnec­

essary (upper 48) bitlines. This scheme may be more difficult to implement because 

the pre-charge logic is often asserted before the register id has been decoded. This 

requires that an additional control bit accompany the register id indicating that the 

upper 48-bits were all Os.

Circuit level analysis was performed on a 128-entry, 64-bit register file to determine 

potential savings from various gating schemes. In this experiment, we compared 

schemes to disables the clock (pre-charge) circuits, the wordlines, and applying both 

simultaneously. These schemes were evaluated under the conditions where the register 

file values are initialized to all Is and all Os. Random values are then read and written 

to the register file for 100 cycles.
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Integer Register File Init to 0 Init to 1
Clock (pre-charge) disabled 
Wordlines disabled 
Both disabled

31.1%
30.1%
58.4%

26.0%
45.1%
66.0%

Table 5.4: Reduction in power dissipation of a 128-entry, 64-bit register file under 
various gating schemes (includes bitline, wordline, and precharge power)

Table 5.4 shows the reduction in power dissipation under the three gating con­

ditions. There is 30%-45% reduction in power dissipation when using the different 

gating techniques alone, but a 58-66% reduction when they are applied together. 

Still, this is somewhat less than the ideal 75% reduction corresponding to the ideal 

scenario where power reduction is directly proportional to the reduction in bits that 

are fetched from the register files.

Techniques to disable the wordlines and pre-charge circuitry in register files and 

caches can provide substantial savings in power dissipation throughout the processor, 

because these memory structures consume a large fraction of the overall chip power 

dissipation. Recently, other research efforts have also begun to explore value-based 

clock gating throughout the datapath and memory hierarchy [29; 95].

5.6 Chapter Summary

Recently there has been increased interest in supporting operations with operand 

widths smaller than the maximum supported by functional units in microprocessors. 

This interest stems first from the increasing use of multimedia applications, but also 

from the larger 64-bit word sizes on current microprocessors. Most of the past re­

search in this area has focused on increasing performance by discerning instructions 

with narrow width operands at compile time and generating code that allows such 

computations to occur with sub-word parallelism. From this research we can draw
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several conclusions.

• Compiler bitwidth analysis: Compile-time analysis of operand width is con­

strained by the fact that the operand range of instructions may vary over the 

course of a program run depending on the input data. In addition, the compiler 

must conservatively analyze all potential paths taken. Our work notes that cer­

tain uncommon paths may have markedly different operand size characteristics 

than the typical path through programs.

• Dynamic bitwidth analysis: In order to augment compile-time analysis, we 

present a technique to dynamically exploit narrow-width data. This technique 

reduces power in the integer execution unit with aggressive clock gating, after 

determining that the upper portion of functional unit is not needed. This 

results in a 45%-60% reduction in the integer unit’s power consumption for 

the benchmarks that we studied. This equates to a 5%-l0% full-chip power 

savings.

• Avenues to exploit narrow-width values: Value based clock gating and 

operation packing both rely on the same core mechanism to achieve their opti­

mization; namely they recognize that the upper bits in the input operands are 

not needed to perform the computation. Another area offering opportunities 

for dynamic recognition of low-precision operations is in the memory and I/O 

hierarchy. These opportunities include: (1) pin and bandwidth compression by 

recognizing that multiple pieces of low-precision data can share the same I/O 

pins and on-chip wiring, and (2) low power caches which save power by writing 

16-bits for the value and one signal bit indicating that the stored value is low 

precision rather than writing the full 64-bits.
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A key characteristic of our current proposal is that it requires only a small amount 

of hardware and no compiler intervention. Because of their common hardware re­

quirements, we foresee systems in which the choice of whether to use the power or 

performance optimization can also be made dynamically, based on thermal input or 

other mode controls. More broadly, they represent a further step towards operand- 

value-based optimization strategies throughout processors.
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Chapter 6

Dynamic Thermal Management

With the increasing clock rate and transistor count of today’s microprocessors, power 

dissipation is becoming a critical component of system design complexity. The value- 

based clock gating technique proposed in Chapter 5 reduces the average power, or 

energy, of the CPU. However, in addition to energy reduction, we will need to be­

gin to find solutions for thermal and power-delivery issues related to the maximum 

CPU power dissipation. These issues are becoming especially critical for very high- 

performance computing systems.

In this chapter, we investigate dynamic thermal management as a technique to 

control CPU power dissipation. With the increasing usage of clock gating techniques, 

the average power dissipation typically seen by common applications is becoming 

much less than the chip’s rated maximum power dissipation. For example, while the 

Alpha 21264 processor is rated as having a maximum power dissipation of 95W when 

running “max-power” benchmarks, the average power dissipation was found to be 

only 72W for typical applications [41]. However, system designers still must design 

thermal heat sinks to withstand the worst-case scenario.

We define and investigate the major components of any dynamic thermal manage­

ment scheme. Specifically we explore the tradeoffs between several mechanisms for 

responding to periods of thermal trauma and we consider the effects of hardware and

131
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software implementations. With appropriate dynamic thermal management, the CPU 

can be designed for a much lower maximum power rating, with minimal performance 

impact for typical applications.

6.1 Motivation

The system complexity associated with increased power dissipation can be divided 

into two main areas. First, there is the cost and complexity of designing thermal 

packaging which can adequately cool the processor. It is estimated that after exceed­

ing 35-40W, additional power dissipation increases the total cost per CPU chip by 

more than $1/W  [89]. The second major source of design complexity involves power 

delivery, specifically the on-chip decoupling capacitances required by the power dis­

tribution network.

EI Max Power 
■  Average Power

Alpha 21264 Intel PPro Intel Celeron VIAC3

Figure 6.1: Average vs. Maximum power in several microprocessors.

Unfortunately, these cooling techniques must be designed to withstand the max­

imum  possible power dissipation of the microprocessor, even if these cases rarely 

occur in typical applications. Figure 6.1 shows that the average power dissipation 

is often 30-50% less than the maximum rated chip power for many microprocessors.
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The increased use of clock gating and other power management techniques that tar­

get average power dissipation will expand this gap even further in future processors. 

This disparity between the maximum possible power dissipation and the typical power 

dissipation suggests dynamic thermal management techniques to ensure that the pro­

cessor does not reach these maximum power dissipation levels. That is, we seek to 

explore scenarios where the cooling apparatus is designed for a wattage less than the 

true maximum power, and dynamic CPU approaches guarantee that this designed-for 

level is never exceeded during a program run.

With many industrial designers predicting that power delivery and dissipation will 

be the primary limiters of performance and integration of future high-end processors, 

we feel that some form of dynamic thermal management will eventually be seen as 

a performance optimization, enabling larger chips to be built which would otherwise 

not be feasible [14; 41; 44; 89]. If die area and the number of transistors per chip 

become constrained by power density, techniques that can constrain the maximum 

possible power dissipation could allow designers to include more transistors per chip 

than would otherwise be possible, thus leading to increased performance.

In this work, we define and examine the generic mechanisms inherent in dynamic 

thermal management (DTM) schemes. Section 6.2 provides an overview and back­

ground on dynamic thermal management. We explore and compare the potential for 

hardware and software-based implementations of several dynamic thermal manage­

ment schemes. Section 6.3 discusses the methodology used in the remainder of the 

chapter. We then break thermal management systems into three components: trig­

gers, responses, and initiation policies, and discuss each of them in Sections 6.4, 6.5, 

and 6.6 respectively. The core of any DTM system is how it responds to a thermal 

emergency (e.g. frequency scaling, execution throttling, etc.). While this work pro­

vides data on a number of possible responses, we feel that further work may identify 

even more effective ones. Thus, Section 6.7 outlines a methodology for identifying
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promising new response techniques by comparing power and performance correlations. 

Finally, Section 6.8 offers conclusions.

6.2 Dynamic Thermal Management: Overview and 

Strategies

This chapter explores policies and mechanisms for implementing dynamic thermal 

management in current and future high-end CPUs. As we use it, the term dynamic 

thermal management refers to a range of possible hardware and software strategies 

which work dynamically, at run-time, to control a chip’s operating temperature. Tra­

ditionally, the packaging and fans for a CPU or computer system have been designed 

to maintain a safe operating temperature even when the chip was dissipating the 

maximum power possible for a sustained period of time, and therefore generating the 

highest amount of thermal energy. This worst-case thermal scenario is highly un­

likely, however, and thus such worst-case packaging is often expensive overkill. DTM 

allows packaging engineers to design systems for a target sustained thermal value 

that is much closer to average-case for real benchmarks. If a particular workload 

operates above this point for sustained periods, a DTM response will work to reduce 

chip temperature. In essence, DTM allows designers to focus on average, rather than 

worst-case, thermal conditions in their designs. Until now, techniques developed to 

reduce average CPU power have garnered only moderate interest among the designers 

of high-end CPUs because thermal considerations, rather than battery life, were their 

primary concern. Therefore, in addition to reducing packaging costs, DTM improves 

the leverage of techniques such as clock gating designed to reduce average power [17; 

89].
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The key goals of DTM can be stated as follows: (i) to provide inexpensive hard­

ware or software responses, (ii) that reliably reduce power, (iii) while impacting per­

formance as little as possible. Voltage and frequency scaling are two methods for 

DTM that have been implemented in current chips [62; 92]. Unfortunately, little 

work has been done on quantifying the impact of voltage or frequency scaling on 

application performance. This work seeks to address this need, while also propos­

ing other microarchitectural approaches for implementing DTM. We also propose a 

methodology based on performance and power correlations for seeking out new DTM 

responses.

6.2.1 Overview and Terminology

We are primarily concerned with reducing the maximum power dissipation of the pro­

cessor. From a pure hardware point of view, the maximum power dissipation occurs 

when all of the structures within the processor are active with maximum switch­

ing activity. However, mutual exclusions in the underlying control structures make 

this scenario impossible. In reality, the maximum power dissipation is constrained 

by the software program that can maximize the usage and switching activity of the 

hardware. Special max-power benchmarks can be written to maximize the switch­

ing activity of the processor. These benchmarks are often quite esoteric, perform no 

meaningful computation, and dissipate higher power than “real” programs. Thus, 

DTM techniques could be used solely to target power levels seen in maximum power 

benchmarks and would rarely be invoked during the course of typical applications. In 

this work, we also consider more aggressive DTM designs which seek to further reduce 

the amount of cooling hardware necessary in machines. In Section 6.4 we discuss the 

tradeoffs between cooling hardware and performance loss in more detail.

Figure 6.2 offers a motivating example of how dynamic thermal management 

(DTM) can work. This figure plots chip temperature versus time (in cycles). In
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Figure 6.2: Overview of Dynamic Thermal Management (DTM) technique.

this figure, there are three horizontal dashed lines. The top-most line shows the 

designed-for cooling capacity of the machine without DTM. The second line shows 

that the cooling capacity could be reduced if dynamic techniques were implemented, 

because DTM reduces the effective maximum power dissipation of the machine. Fi­

nally, the lowest horizontal line shows the DTM trigger level. This is the temperature 

at which the DTM techniques are engaged.

Figure 6.2 has two curves which show chip temperature for some sequence of 

code being executed on the machine. The upper, solid curve is executed on the 

machine without DTM, and the lower, dotted curve is executed on a machine that has 

implemented DTM. Both curves are the same until the DTM trigger level is exceeded. 

At this point, after a small delay to engage the response, the curves diverge. In the 

uppermost curve the chip temperature slowly increases and then falls back below the 

trigger level. The lower curve shows how DTM would affect the same sequence of 

code. In this case, the DTM response is able to reduce the power dissipation and 

hence the chip temperature; the temperature never exceeds the designed-for cooling 

capacity. Eventually, the temperature decreases (as in the non-DTM curve), and the 

response is dis-engaged with some performance delay relative to the non-DTM curve.
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Figure 6.3: Mechanisms for Dynamic Thermal Management.

Figure 6.3 breaks down a DTM instance into several components. First, DTM is 

triggered. The triggering event may be a thermal sensor, a power estimator, or other 

gauge which indicates when DTM is needed. Once the trigger goes off, there is some 

initiation delay while, for example, an operating system interrupt and handler are 

invoked to interpret the triggering event. Once the handler has been executed, some 

DTM response begins. For example, possible responses include voltage or frequency 

scaling [72], or some of the microarchitectural ideas we discuss in later sections. De­

pending on the type of response chosen, there may be some delay inherent in invoking 

it; we refer to this time as response delay. Once the response is in effect, the next issue 

concerns when to turn it off. Turning the response off as soon as the temperature dips 

below the threshold may be unwise; temperature may fluctuate around the threshold 

and warrant keeping the response turned on. We use the term policy delay to refer 

to the number of cycles we wait before checking to see if the temperature has dipped 

below the triggering level. Finally, once the DTM system has determined that the 

response should be turned off, there is often a shutoff delay while, for example, the 

voltage or frequency is readjusted.

Implementing an effective DTM system, therefore, involves several key design 

choices which we consider throughout the remainder of this chapter:

•  Selecting simple and effective triggers (Section 6.4),

•  Identifying useful response mechanisms (Section 6.5),
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•  Developing policies for when to turn responses on and off (Section 6.6).

6.2.2 Background and Related Work

Some dynamic thermal management techniques have previously been explored. For 

example, the G3 and G4 PowerPC microprocessors from Motorola include a thermal 

temperature sensor in hardware and an interrupt capability to notify software of when 

a particular temperature has been reached [75; 78]. The processor also includes an 

instruction cache throttling mechanism that allows the processor's fetch bandwidth 

to be reduced when the CPU reaches a temperature limit.

The Transmeta Crusoe processor includes “LongRun” technology which dynam­

ically adjusts CPU supply voltage and frequency to reduce power consumption [92]. 

While voltage and frequency tuning are quite effective at reducing power consumption 

since power scales linearly with clock frequency and with the square of the supply 

voltage, the delay in triggering these responses is necessarily higher than with mi- 

croarchitectural techniques that are more localized. One of the goals of this work 

is to provide an overall view for the tradeoffs between initiation delay, response de­

lay, and performance overhead for a number of techniques including both previously 

published techniques as well as ones newly-proposed in this thesis.

In addition to the fairly-recent Crusoe work, the ACPI (Advanced Configuration 

and Power Interface) specification likewise works to have hardware and software co­

operate to manage power dynamically [1]. Unlike our work or those described above, 

ACPI is very coarse-grained. That is, power management in ACPI involves actions 

like turning on or off I/O  devices or managing multiple batteries. Our work seeks 

to provide a much more fine-grained solution to thermal problems within the CPU 

itself. Recent work, including our own, has operated on different thrusts to explore 

this domain [18; 20; 46; 80]. These papers and our own work each focus on distinct
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classes of processor architectures. Rohou and Smith have also considered using tem­

perature feedback to guide the operating system in controlling CPU activity on a 

per-application basis [77].

Finally, we also note that the work by both Motorola and Transmeta is mainly 

geared toward improving battery life in portable machines. Our work, in contrast, 

has thermal packaging in high-end CPUs as its main thrust. This context is more 

performance sensitive than is power management for laptops. Our overall goal is to 

guarantee much lower worst-case power consumption, so that cheaper packaging can 

be used, with as little impact on performance as possible.

6.3 Methodology

We have used Wattch for the performance and power estimation results discussed 

in this chapter. Our results assume a model of a processor with the configuration 

parameters shown in Table 2.3. For technology parameters, we use the process pa­

rameters for a .35um process at 600MHz. We use Wattch’s aggressive clock gating 

style for all results. This models power scaling which is linear with the number of 

active ports on any particular unit.

6.3.1 Power vs. Temperature

Wattch provides per-cycle power estimates, but one challenge in this research has 

been translating these power estimates into chip-level temperature variations. The 

most accurate approach would be to develop a model for the chip packaging and heat 

sink in a microprocessor. We are currently discussing such models with packaging 

engineers, but have abstracted them for the research presented here. We use the 

average power over a suitably large chunk of cycles (10k, 100k, and 1M) as a proxy 

for temperature [73]. The Tempest project at Intel seeks to eventually provide a
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robust model to link power dissipation and chip temperature [33].

6.4 Dynamic Thermal Management: Trigger Mech­

anisms

Any dynamic response technique requires a trigger mechanism to engage the response 

during program execution. In this section, we consider two aspects of the trigger 

mechanism. First, we describe several possible trigger mechanisms for dynamic ther­

mal management. Second, we discuss the rationale for determining an appropriate 

trigger limit to use in the DTM system. Sections 6.5 and 6.6 discuss the other key 

parts of the system: response techniques and initiation mechanisms.

6.4.1 Trigger Mechanisms

For our experimental setup we use an abstraction of chip temperature by using the 

moving average of power dissipation for the last 10,000 cycles of the processor’s op­

eration. This trigger mechanism is similar to an on-chip temperature sensor. We will 

discuss the details of the temperature sensor as well as several other trigger mecha­

nisms that could be used as abstractions for temperature.

• Temperature Sensors for Thermal Feedback

In the PowerPC dynamic thermal management system, thermal feedback from 

an on-chip temperature sensor is used as the trigger mechanism [78]. In the 

proposed scheme, the temperature sensor compares the junction temperature 

with a user programmable threshold. If the value is exceeded an interrupt is 

triggered allowing the operating system to invoke a response mechanism. This 

is the basic trigger mechanism that we evaluate in Section 6.5 with a variety of 

response mechanisms.
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• On-chip Activity Counters

Another possible source of information regarding the current chip temperature is 

through the use of activity monitors or on-chip performance counters [26]. These 

devices record “activity factors” for various structures within the processor and 

thus provide a gauge of how much work is being done and, correspondingly, the 

thermal state of the machine.

• Dynamic profiling analysis

The runtime system of the machine can be responsible for determining when the 

application or user-behavior does not require the full resources of the computing 

system and then triggering a response. For example, operating systems often 

provide a wait process which is entered when there is no work to be performed, 

or address access information can be used to determine when the processor is 

idling [68].

In addition, certain real-time and user-interactive applications inherently set 

certain acceptable performance levels. These types of applications would allow 

dynamic thermal management to occur when the specified rate is exceeded [39].

• Compile-time trigger requirements

Static analysis at compile time can be used to estimate the performance of appli­

cations. In a similar manner, the compiler could estimate the high-power code 

segments and insert instructions specifying that DTM triggers should occur. In 

EPIC or VLIW where more of the parallelism is exposed by the compiler, this 

method would be more fruitful.

Comparing the viability of various trigger mechanisms is a topic for future research 

in this area. Relying exclusively on chip temperature sensors may have some draw­

backs. First, the temperature sensor only approximates the average chip temperature;
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multiple sensors may be needed on large chips. Second, there may be hysteresis be­

tween the temperature reading and the actual temperature. Pure hardware solutions 

also do not provide information about the workload; a combination of temperature 

sensors, activity counters, and software analysis may more effective than any of the 

techniques taken alone. For the results presented in this thesis, we use an abstracted 

trigger mechanism based on interrupts when modeled power reaches a a pre-set trig­

ger threshold. This approximates the situation of a CPU with a single temperature 

sensor.

6.4.2 Thermal Trigger and Emergency Settings

The second decision that must be made within the trigger mechanism is the pre-set 

trigger threshold. We will define a ‘thermal trigger” to be the temperature threshold 

at which the trigger mechanism initiates the response mechanism to begin to cool the 

processor’s temperature. A “thermal emergency” is a second temperature threshold 

set to a higher level and is used as a gauge of how successful the response mechanism 

was in dealing with the increase in temperature. Except where noted, in our simu­

lation environment thermal triggers and emergencies occur if the moving average of 

full chip power dissipation for the past 10,000 cycles exceeds the pre-set trigger and 

emergency wattage values. Likewise there are also triggers that indicate the CPU has 

returned to a safe temperature. At these trigger points, the CPU can begin returning 

to normal operation.

In the next two sections we present analysis for the case where the response 

is triggered when the 10k moving average exceeds 24W and a full-fledged thermal 

emergency is considered to occur when the 10k moving average exceeds 25W. In 

Section 6.4, we consider the effects of varying the trigger level and the 10k cycle 

thermal window, but for the rest of the results we will use these values. Table 6.1 

shows the percent of cycles that were above the thermal emergency threshold for the
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Benchmark Cycles in Emergency Average Power
go 1.0% 22.7W
ccl 1.6% 21.6W
ijpeg 32.7% 24.3 W
li 50.9% 24.8W
vortex 61.6% 24.6W
su2cor 70.5% 25.1W

' tomcatv 96.1% 25.5 W
fpppp 98.4% 32.9W

Table 6.1: Average Power and Percent of Cycles in Emergency for Simulated Processor

baseline system without DTM with the 24VV trigger. There are three main categories 

of applications; the remainder of our charts will be sorted as follows:

•  Mild Thermal Demands: The first two benchmarks have less than 10% of their 

cycles in thermal emergencies with average powers much less than the emergency 

level.

•  Intensive Thermal Demands: The second group of four benchmarks ranges from 

32% to 96%. Tomcutv fell into this class because its average power is only just 

above the emergency level.

•  Extreme Thermal Demands: Fpppp is the extreme case in which 98% of the 

cycles exceeded the thermal threshold and the average power was 7W above the 

threshold.

We selected this trigger setting and this set of applications so we could observe 

the impact of DTM in a range of scenarios with varying thermal demands. We have 

neglected compress and m88ksim in this analysis because neither application had any 

cycles exceeding the chosen emergency point.
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6.5 Dynamic Thermal Management: Response Mech­

anisms

In this section we consider the second basic mechanism within a dynamic thermal 

management architecture. The goal of designing a good DTM scheme is to reduce 

power with as small a performance loss as possible. A key part to realizing this goal 

is the response mechanism that throttles power dissipation in the system.

In this work, we consider five response mechanisms. Three of these are microarchi- 

tectural responses: I-cache-toggling, speculation control by restricting the number of 

unresolved branches, and decode bandwidth throttling (similar to Motorola’s I-cache 

throttling [78]). We also consider clock frequency scaling and a combination of clock 

frequency scaling and voltage scaling.

• Clock Frequency Scaling

Clock frequency scaling essentially trades a linear performance loss for a linear 

power savings. While in principle clock frequency scaling is trivial to imple­

ment, there may be delays incurred when changing clock rates. Furthermore, 

communicating with synchronous devices on the system bus may become more 

complicated.

• Voltage and Frequency Scaling

Transmeta’s LongRun technology performs dynamic clock frequency scaling 

along with dynamic voltage scaling to reduce power dissipation when neces­

sary [92]. Obviously this requires detailed timing analysis and careful attention 

to circuit design choices [23]. Furthermore, as future process technologies scale 

to lower base supply voltages, dynamic voltage scaling may become more diffi­

cult. This is especially true when standby leakage currents become important. 

Leakage currents are directly related to the supply voltage; lowering the sup­

ply voltage to dynamically reduce dynamic power would have a corresponding
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increase in the standby leakage current.

• Decode Throttling

The PowerPC G3 microprocessor uses a micro-architectural level dynamic ther­

mal management technique called instruction cache throttling to restrict the 

flow of instructions to the processor core [78]. This scheme relies on clock 

gating to reduce power dissipation as the flow of instructions is restricted. As 

motivation for selecting I-cache throttling instead of clock frequency scaling, the 

authors cite the difficulty in implementing dynamic clock control for the on-chip 

PLL as well as the fact the chip’s L‘2 cache interface operates at a different clock 

rate from the chip’s core.

•  Speculation Control

Speculation control is similar to Manne's work on speculative pipeline gating 

based on branch confidence estimation [42]. However, with the method proposed 

here, instead of basing the speculation control on branch confidence as in [42], 

we arbitrarily restrict the amount of speculation in the pipeline whenever a 

thermal trigger level is reached. To implement this, a counter is incremented 

whenever a branch is decoded and decremented whenever a branch resolves. If 

the counter exceeds a software-set limit, the decode stage stalls until enough 

branches have been resolved. The infrastructure for restricting the number of 

resolved branches is most likely already in place in most processors, since they 

limit the number of branches in the pipeline to restrict the additional state 

required for each active branch.

•  I-cache Toggling

We also propose a microarchitectural response technique called /-cache toggling. 

This response involves disabling the instruction fetch unit (I-cache and branch 

prediction) and using the instruction fetch queue to feed the pipeline. The fetch 

unit can be disabled every cycle, every other cycle, or at any specified interval
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as specified by the interrupt call.

Obviously other techniques, or combinations of techniques, could be used as the 

response mechanism. In Section 6.7, we discuss a systematic methodology for deter­

mining new response techniques.

Both the trigger and the various response mechanisms that have been discussed 

could be programmable, allowing system designers to specify thermal management 

levels based on the amount of heat-sink technology in the system. For example, 

more expensive high-end server systems could have higher trigger limits and allow 

more unresolved branches, while cheaper low-end desktop systems would have lower 

trigger limits corresponding to their smaller heat-sinks. In addition, the individual 

response mechanisms allow a variation in the amount of throttling to be performed.

6.5.1 Response Mechanism Results

We use two metrics to evaluate the DTM schemes. First, the scheme should reduce the 

number of cycles in which the processor's temperature exceeds the thermal emergency 

threshold. The second metric that we use is the overall performance loss that the DTM 

technique incurs. Since the schemes we evaluate rely on microarchitectural as well 

as frequency scaling techniques, we consider total execution time as our performance 

metric.

We present analysis for the case where the response is triggered when the 10k mov­

ing average exceeds 24W and a full-fledged thermal emergency is considered to occur 

when the 10k moving average exceeds 25W. We also assume here that the various re­

sponses are initiated by a 250-cycle interrupt from the operating system in a manner 

similar to that of the PowerPC, but in Section 6.6 we consider additional hardware 

support which improves the performance of thermal management by eliminating this 

operating system overhead.
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For the response that includes voltage scaling we assume a 10 microsecond delay 

to switch frequencies and a 20 microsecond response delay to switch voltages. During 

this delay the processor is stalled; this is consistent with the delay that Transmeta 

reports when switching between frequency and voltage states [60]. For the scaling 

techniques we set the policy delay to be 15 microseconds; in Section 6.6 we consider 

extending this delay to reduce the performance overhead of initiating the response. 

Finally, we assume that the processor voltage scales proportionally to what is reported 

in [60] for each frequency level. For example, when we scale frequency down by 

10%, voltage is scaled down by 4.2% for the combined voltage and frequency scaling 

technique.

2  0.4
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□  unrest
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Figure 6.4: Reduction in performance compared to baseline for microarchitecture 
techniques.

Figure 6.4 shows the overall program performance reduction from the baseline 

for the microarchitectural techniques. Figure 6.5 shows the same results for the 

frequency/voltage scaling based techniques. Within these figures the first two sets 

of bars correspond to the benchmarks with mild thermal demands. The next five 

bars have intensive thermal demands. Finally, we show the fpppp, the extreme case 

benchmark.

Within Figure 6.4 there are four bars for each benchmark. The first two bars
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Figure 6.5: Reduction in performance compared to baseline for frequency/voltage 
scaling techniques.

correspond to I-cache toggling; togglel is the case where the I-cache is disabled every 

cycle during the response, toggle2 corresponds to the case in which it is disabled 

every other cycle. The third bar labeled unresl indicates that the maximum number 

of unresolved branches allowed in the pipeline is restricted to one before the decode 

stage is stalled. The final bar decode2 indicates that the decode bandwidth is reduced 

by two instructions per cycle respectively. (We have considered additional settings 

for the above parameters, but to save space, we have selected the parameters that 

performed the best.) Within both Figure 6.4 and 6.5, bars which are cross-hatched 

(for example, fpppp's toggle2, unresl, and decode2 bars) indicate that the thermal 

emergencies were not entirely reduced for this configuration. Figure 6.5 also has four 

bars per benchmark. The first two bars correspond to scaling down the frequency by 

30% and 10%. The last two bars correspond to scaling both the frequency and the 

voltage by 30% and 10%.

For many of the benchmarks, all of the techniques were able to entirely eliminate 

the thermal emergencies in the machine at this trigger level. DTM was not successful 

in entirely removing thermal emergencies with ijpeg with the unresl technique and 

fpppp with three of the microarchitectural techniques and fscalelO.
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For the benchmarks with mild thermal demands, the microarchitectural level tech­

niques incurred an average performance penalty was 2%; the voltage and frequency 

scaling techniques had a 7% drop. For the benchmarks with intensive thermal de­

mands, the reduction in thermal emergencies incurred a 12% performance penalty for 

the microarchitectural techniques and a 22% performance penalty for the scaling tech­

niques. Only togglel, fscale30%, vfscalelO, and vfscale30 were effective at reducing 

the number of thermal emergencies with fpppp] this came at over a 35% performance 

penalty.

Clearly the performance degradation of DTM at this trigger/emergency level is 

significant for the applications with large thermal demands. The performance degra­

dation from these techniques can be broken down into two components. The first 

component is the performance drop due to invocation of the techniques. This in­

cludes the overhead of the operating system interrupt calls and the time needed to 

dynamically adjust the frequency and voltage scaling of the system. The second 

component is the IPC drop of the microarchitectural techniques or the frequency 

degradation penalty of the scaling techniques. For example with su2cor and the un­

resl trigger, 26% of the performance degradation was due to the interrupt overhead 

to engage and disengage the trigger. The remainder of the performance drop was the 

IPC degradation due to restricting the number of unresolved branches. As expected, 

the trigger overhead with frequency and voltage scaling techniques is much higher; 

over 70% of the performance loss is incurred due to the interrupt calls and overhead in 

adjusting the clock rate with frequency scaling and over 75% with combined voltage 

and frequency scaling.

These trends tend to hold across the benchmarks and across the different styles of 

responses. There are two major reasons for the larger invocation overhead of the fre­

quency and voltage scaling techniques. First, the overhead of frequency and voltage 

scaling is significantly higher than that of the microarchitectural techniques. Second,
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Figure 6.6: Performance Loss at various trigger levels. Higher trigger levels (30-50 
Watts) offer less packaging savings, but have nearly zero performance impact. More 
aggressive trigger settings (25-30 Watts) begin to show modest performance impact. 
50W is the max power for the modeled chip.

because of variations in application behavior which cause changes in the thermal be­

havior of the system these policies may be enabled or disabled many times during 

program execution. This is especially true when DTM mechanisms are in place to 

regulate temperature. Obviously for these applications, the large invocation over­

head is magnified. In the next section we consider additional hardware and other 

techniques that can reduce the performance overhead of trigger engagement. The 

results also show that there is room for application specific selection of response tech­

niques; certain response techniques perform much better than others for individual 

benchmarks.

6.5.2 Thermal Trigger and Emergency Settings

In Figure 6.6 we consider an idealized version of the vfscaleSO policy that has no 

initiation delay. This figure shows the percent performance loss relative to the total 

execution time of the baseline system for DTM while varying the thermal trigger 

settings ranging from 20-34W. For example, fpppp runs 27% slower with a trigger 

of 20W than it does with no DTM, but its max power without DTM exceeds 40W
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in some cases. This performance penalty is incurred by the response mechanism; in 

this case the response is a version of frequency scaling. When the trigger is set at 

a conservative range (above 30W for these benchmarks), most of the benchmarks 

see very little performance degradation. Even with the most conservative approach, 

dynamic thermal management allows the chip’s maximum power rating to be reduced 

considerably. In this design, the maximum power was around 50W; with DTM this 

could be easily reduced to 35-40W.

A more aggressive design would set the trigger somewhere around 25W for these 

applications. Being more aggressive in the trigger setting allows for more significant 

packaging savings, about $1 per watt per CPU chip. But this savings may come at the 

price of reduced performance for some applications. Thus, a key goal of this work is to 

propose streamlined mechanisms for DTM that offer the best possible performance.
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Figure 6.7: Performance Loss at various trigger levels for the fscalelO response tech­
nique.

Now we consider the effect of the trigger value with our standard (including all 

delays) fscalelO technique. Figures 6.7 and 6.8 show the effects of varying the trigger 

level for the fscalelO technique. Each data point shows the performance and number 

of thermal emergencies relative to the baseline configuration without DTM at the 

specified trigger level; the level that we consider to be an emergency is always set to
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Figure 6.8: Emergency Reduction at various trigger levels for the fscalelO response 
technique.

be 1VV above the trigger level. From Figure 6.7 we can see that for the set of mild 

and intensive benchmarks, performance degrades further as we set more aggressive 

trigger levels. However, from Figure 6.8 we see that the machine does not exceed the 

thermal emergency threshold until we reach a trigger of 20W. Fpppp performs quite 

differently. At trigger levels between 20-24W, the number of thermal emergencies 

has not been reduced at all; the fscalelO policy is continuously engaged leading to a 

constant 10% performance penalty. However, at 26VV and 28W the fscalelO policy 

begins to be effective. At the 26VV trigger level there is a corresponding drop in 

performance as we start to see the effect of the trigger being engaged and disengaged 

during execution. At 28VV and upwards, this performance penalty diminishes.

We have seen similar patterns with the other voltage and frequency scaling tech­

niques as well as with the microarchitectural techniques. Overall, the choice of the 

trigger level is an important lever for system designers to use when deciding whether 

to trade off performance for some of the most extreme benchmarks such as fpppp 

against the amount of cooling hardware to build into the system.
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6.6 Dynamic Thermal Management: Initiation Mech 

anisms

In Section 6.5 we consider a variety of dynamic response mechanisms. In that section, 

we assume an implementation where the operating system calls an interrupt handler 

to invoke the dynamic response mechanism which incurs significant overhead. To 

mitigate this overhead, we consider two modifications to the initiation mechanism 

of DTM. First, we consider additional hardware support in the microarchitecture to 

remove the interrupt overhead. Second, we modified the policy delay to allow the 

response mechanism to remain engaged for longer periods of time, better amortizing 

the cost of the trigger’s response delay over the program run.

6.6.1 Hardware Support for Initiating Responses

Eliminating interrupt call overhead is the obvious benefit from additional hardware 

support. However, avoiding interrupt handling also allows more fine-grained control 

of the response scheme. This reduces the performance overhead of DTM because the 

performance-limiting response will only be engaged when it is needed. Finally, more 

fine-grained control of the response mechanism could have a benefit on reducing the 

number of cycles with thermal emergencies, because the mechanism will be engaged 

faster.

To eliminate the trigger overhead, the trigger mechanism must be directly inte­

grated into the microarchitecture. For example, the temperature sensor or hardware 

activity counter could generate a signal indicating that the trigger limit has been ex­

ceeded and this signal could be sent to microarchitectural state machines that would 

engage the trigger. The operating system would only need to program internal regis­

ters at the beginning of the application’s execution to adjust the amount of throttling
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that the response should use. To evaluate the effects of this additional hardware we 

have simulated the microarchitectural response techniques with a 0-cycle initiation 

delay; this assumes that the 250-cycle interrupt overhead can be removed.
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Figure 6.9: Reduction in performance compared to baseline.

Figure 6.9 shows the results for the microarchitectural response mechanisms as­

suming that the trigger mechanism is integrated into the microarchitecture. The 

reduction in number of thermal emergencies is unchanged. However, there is a re­

duction in performance penalty. For the mildly intensive four benchmarks, the per­

formance penalty is on average 5%; this compares to a 7% performance hit without 

the hardware support. For the next group of four benchmarks with more intensive 

thermal demands, the performance reduction is 13% compared to 16% with OS over­

head. Since fpppp spends a large amount of time with the triggers engaged, speeding 

up the interrupt overhead had a small effect on the performance using this scheme.

6.6.2 Policy and Thermal Window Effects on Voltage/Frequency 

Scaling

In the previous section, we considered the use of hardware support to reduce the 

overhead of initiating the response mechanism. This overhead is even larger for the
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voltage and frequency scaling techniques. The majority of the time required to initiate 

these techniques is spent scaling the frequency and internal voltage of the processor 

to a new level. Since this overhead is not related to the operating system, reducing 

the interrupt time will only have a small effect on performance. In this section we 

consider two techniques to reduce this delay. First, we consider increasing the policy 

delay, or the amount of time that the mechanism is enabled before it is eligible to be 

disabled. Increasing the policy delay allows the response and shutoff overhead to be 

amortized over a larger portion of the run. On the other hand, if the policy delay is too 

long, the response will be engaged during unnecessary stretches of program execution. 

The second technique we consider is using a larger thermal window to estimate the 

temperature of the chip. For all of the previous results, we have used a window of 

10K cycles. In this section, we consider increasing this window to be 100K cycles. 

This has the effect of smoothing out short thermal spikes which could unnecessarily 

cause the response to be triggered. For the more coarse-grained frequency and voltage 

scaling techniques, we would like to minimize these situations.
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Figure 6.10: Reduction in performance compared to baseline.

We consider varying the policy delay with values of 15 microseconds, 40 microsec­

onds, and 100 microseconds. We have chosen 40 microseconds because it is the com­

bined response and shutoff delays of frequency+voltage scaling response mechanism.
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Finally, we show the effect of increasing the thermal window from 10K cycles to 100K 

cycles with a policy delay of 100 microseconds. Figure 6.10 shows the the performance 

effect of the techniques when using the vfscale30. In this figure, the first three data 

points report the performance relative to the baseline while varying the policy delay; 

the final point shows the performance as the thermal window is increased to 100K 

cycles.

From this Figure 6.10 we see that there was very little effect on performance for 

the mild and intensive benchmark suite; in fact, there was a slight degradation in 

performance as we increase the policy delay. This is because although the initia­

tion overhead was decreased, the amount of time spent with frequency and voltage 

scaling engaged increased. On the other hand, fpppp had a substantial performance 

improvement with increased policy delay. For this benchmark, the performance loss 

to the baseline decreased from 60% with 15 microsecond policy delay to 44% with 100 

microsecond policy delay. Finally, we see that increasing the thermal window had a 

positive effect on all three classes of applications. When moving from the 10K cycle 

window to the 100K cycle window the performance loss decreased to 34% for fpppp.

For the benchmarks with intensive thermal demands, the performance loss de­

creased to 20%. On the other hand, we found that increasing the size of the thermal 

window had a much smaller (1-2%) performance benefit for the microarchitectural 

techniques. Since these techniques are much more fine-grained in nature, they suffer 

less from short thermal transients.

We have found that the initiation mechanism is a key factor to the performance 

degradation of DTM. We have investigated two techniques which show promise for 

reducing the performance overhead. Future work could address additional techniques 

to reduce this overhead either through more efficient methods to initiate the responses 

or smarter techniques to enable and disable responses.

i
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6.7 Method for Identifying DTM Responses

In this work we have compared the benefits of dynamic thermal management via 

several microarchitectural techniques as well as clock frequency and voltage scaling. 

In considering other schemes for thermal management, we would like to develop a 

more systematic approach to identifying potential techniques.

We propose here a method based on correlation. That is, we wish to find levers 

that reduce power with a less-than-proportional reduction in performance. We have 

performed simulations using Wattch to correlate power dissipation with other pro­

cessor statistics such as instruction fetch rate, branch prediction accuracy, data and 

instruction cache hit rates, execution bandwidth, and IPC. We use this method to 

isolate certain processor statistics that track more closely with power than with IPC.

Correlation Fetch
Rate

BPred
Rate

DC Hit 
Rate

IC Hit 
Rate

Exec
BW

Power vs. 
IPC vs.

0.82
0.77

0.37
0.61

0.40
0.25

0.50
0.48

0.83
0.81

Difference 0.05 -0.24 0.15 0.02 0.02

Table 6.2: Correlation Data for Average of Benchmarks

We collected the average power and performance statistical data for fixed chunks 

of 10,000 cycles. These statistics were then correlated with each other after the 

simulation completed. An example of the correlation data for the average of our 

benchmark suite is shown in Table 6.2. The first line of this table shows the corre­

lation between processor power dissipation and instruction fetch rate (avg. number 

of instructions fetched per cycle), branch prediction accuracy, cache hit rates, and 

execution bandwidth (committed +  mis-speculated instructions/cycle). As expected,
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power correlates very strongly with execution bandwidth. Instruction fetch band­

width correlates also correlates strongly with power. Branch direction prediction ac­

curacy, a secondary indicator of application performance, also correlates with power 

but to a lesser degree. Data and instruction-cache hit rates correlate slightly more 

than branch predictor accuracy with power.

The second line of Table 6.2 shows the correlation between IPC and the processor 

statistics. From this table, we see execution bandwidth, branch predictor accuracy, 

and fetch bandwidth correlate the most with performance.

Figure 6.11: Correlation between power and several performance statistics.

Figure 6.11 plots power correlation minus IPC correlation for each point for the 

individual benchmarks. Thus, a positive data point in this graph corresponds to a 

case where power dissipation is more strongly correlated with the metric (eg fetch 

rate) than IPC is. Looking for possible DTM responses with strong power correla­

tions lets us seek out “wasted work” that may lead to good power reductions with 

minimal performance impact. This may reveal strategies that would be most useful 

for dynamic thermal management.

This data reveals some interesting trends. For example, for almost all of the 

benchmarks, branch predictor accuracy correlated much more with performance than
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with power. On other other hand, cache hit rates and instruction fetch bandwidth 

correlated more with power than with IPC for many of the benchmarks. Execution 

bandwidth correlates more with power than with IPC for four of the benchmarks. 

This lends support to our decision to evaluate I-cache toggling and speculation con­

trol as methods for dynamic thermal management. We plan future work that will 

broaden the types of microarchitectural response mechanisms that we investigate with 

correlation analysis.

6.8 Chapter Summary

YVe have proposed and evaluated the benefits of using dynamic thermal management 

to reduce the cooling system costs of CPUs. From this initial research effort, we have 

drawn several conclusions which we feel can help guide future research in this area.

• Trigger Selection: Dynamic thermal management allows arbitrary tradeoffs 

between performance and savings in cooling hardware. Conservative target 

selections can still lead to significant cost improvements with essentially zero 

performance impact, because the trigger point is rarely reached for many appli­

cations.

•  Designers Can Focus on Average Power: In addition, DTM makes other 

techniques targeting average power more interesting to the designers of high-end 

CPUs. Effective DTM makes average power the metric of interest even for high- 

end CPU designers, since packages need no longer be designed for worst-case 

power. With DTM, lowering average CPU power will reduce the trigger value 

needed for a particular level of performance, and thus will reduce packaging 

costs.

• Trigger Activation Time is Significant: Not unexpectedly, the triggering 

delay is a key factor in the performance overhead of DTM. We have found that
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more fine-grained control of the trigger mechanism is especially important in the 

context that we consider: reducing thermal traumas in high-performance CPUs. 

Unfortunately, our data show that some of the most promising techniques in 

DTM today, such as voltage or frequency scaling, are typically implemented 

with very high activation delays. These lead to significant performance over­

heads across most applications.

• Lightweight Policies Are Effective: More lightweight, fine-grained policies, 

such as the microarchitectural techniques we have discussed, often allow the 

temperature to stay close to the target level with a small performance penalty. 

In addition, the fine-grained policies are less affected by rapid fluctuations in 

the temperature.

• Methodology for Identification of Future Techniques: Because of these 

growing opportunities for microarchitectural DTM techniques, we have also 

proposed a methodology for evaluating new DTM approaches. This mechanism 

correlates power and performance, and looks for “low-hanging fruit” ; that is, 

our correlators look for techniques that can cut power by significantly more than 

they hurt performance. Identifying these sorts of wasted work, particularly on 

an application-specific basis, appears to be a promising way of discovering new 

microarchitectural DTM techniques in the future.
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Chapter 7

Conclusions

This thesis has explored modeling and architectural techniques for high-performance, 

power-efficient microprocessors. Establishing good modeling infrastructures to allow 

us to develop new high-level techniques for power-efficient design is crucial to the 

development of our next generation computing systems.
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Figure 7.1: Moore’s Law of increasing transistors and corresponding increases in 
Power Density.

Figure 7.1 illustrates the trends that we will need to overcome in the future. This 

figure shows the exponential growth in transistors per die which has come to be 

known as Moore’s Law. This growth has been sustained for the past thirty years 

and is projected to continue for at least the next 10-15 years. This transistor growth 

has for the most part directly contributed to the growth in computing performance.
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The second graph in this figure shows the power density for the same selection of 

microprocessors. Unfortunately, the exponential growth in transistors per die has 

also led to an exponential growth in power density. We are currently reaching the 

limits of cost-effective packaging technology to build chips with these high power 

densities. Because of this, the Semiconductor Industry Association (SIA) projects 

that power density will begin to flatten out over the next several years [79]. This 

projection is shown as squares in Figure 7.1. The challenge that we have as chip 

designers is to continue to extract performance from our ever increasing number of 

transistors, while restricting the corresponding increases in power consumption.

7.1 Contributions

This thesis has had two major thrusts focusing on the power problem. First, we 

have developed a methodology for estimating power dissipation within traditional 

architectural performance simulators. We developed two tools with this methodology: 

Wattch and PowerTimer. The energy models within Wattch are very useful for early 

stage design experiments with a microarchitecture that does not have existing power 

data to scale from. On the other hand, PowerTimer is less flexible, but more useful in 

making projections to chips that are follow-on products to an existing architecture. 

Research in validating the accuracy of these models is critical to establish confidence 

that our estimates can be useful in practice. We have performed validation at many 

different levels including a detailed analysis of the robustness of these models under 

many different error conditions.

The second major focus of this thesis has been the development of techniques 

to reduce power dissipation and thermal issues in high-performance microprocessors. 

Value-based clock gating proves to be a useful point-optimization which can signif­

icantly reduce power dissipation in the functional units as well as in the memory
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hierarchy. This optimization has been explored in detail within the context of a real 

commercial high-performance microprocessor. Our results show that this technique 

leads to a 50% reduction in the power dissipation of integer units.

Dynamic thermal management is a technique that addresses thermal issues re­

lated to the maximum power dissipation of high-performance microprocessors. This 

technique seeks to dynamically throttle processor resources for sections of application 

behavior that exhibit very high power and heat dissipation. This throttling allows 

the processors to be designed with a heat solution for something approaching that of 

the average power dissipation rather than the worst case power dissipation. We have 

shown that dynamic thermal management can reduce the effective processor wattage 

by about 30% with minimal performance loss for most applications.

The approaches described in this thesis demonstrate an initial step towards power 

modeling at the architectural level and presents two key architectural level power 

optimizations. These techniques, and similar ones, have begun to attract interest 

within industrial research and design groups. However, in the future we will need to 

continue to develop even more robust, flexible, and fast architectural power models 

and subsequently generate and evaluate ideas to reduce power and thermal issues.

7.2 Future Directions

The field of architectural level power-efficient modeling and design is in its infancy. 

Researchers in this field will need to focus on both modeling and the development 

of new architectural ideas for power efficient design. This is a very fruitful area for 

future research, not only because the area is relatively new, but because there are 

many challenges to overcome. In the next few sections I will discuss some of the 

major challenges that will need to be overcome in the areas of power modeling and 

techniques for low power design.

s
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• Modeling Different Design Styles: Wattch and PowerTimer were both 

written to model very high-performance microprocessors with custom design 

styles. These classes of processors tend to use circuit design styles which fo­

cus on high-performance, with power as a secondary consideration. Because 

of the focus on this particular design style, the models developed may not be 

applicable to other classes of architectures such as low-power, embedded micro­

processors. However, the methodology presented will certainly apply to other 

design styles. Ideally, our architectural toolsets would allow the user to choose 

design styles appropriate to the chip under development. For example, very 

high-performance, but also less power efficient structures could be chosen for 

high-end processors, and low-power, but slower, structures could be chosen for 

embedded processors.

• Chip and System Floorplans: Architectural level power estimation tools 

could take into account chip floorplans estimates which would allow more ac­

curate models for interconnection power to be developed. A major area to be 

explored is to look at system-level power modeling for both on-chip and off-chip 

interconnection networks. This area will be especially important in the future 

as many research projects have been looking at multiple cores on a chip [9; 45].

• Thermal and Packaging Models: In the future, techniques that seek to 

reduce temperature of the processor die will need to focus on both the chip 

floorplan, to identify local hotspots, and the chip package and heatsink, to 

estimate how these local hotspots relate to each other. While detailed packaging 

models do exist, these models are not well-suited to an architectural level tool. 

Abstractions will need to be developed to provide the salient details of these 

models to architects. Packaging models focusing on the chip pins will become 

important as we focus on reducing the amount of d i/d t noise in microprocessors. 

D i/dt noise is due to large swings in the power dissipation of the chip on a cycle
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to cycle basis. These large swings can cause large disturbances in the values of 

the power and ground nodes, causing the chip to malfunction.

• Leakage Estimates: Leakage energy, or static power dissipation, is expected 

to grow at approximately 5x per generation unless major steps are taken to 

reduce it. Even if known techniques are applied to reduce leakage energy it 

will still become a large fraction of overall chip power dissipation within a few 

generations. Architects are beginning to propose models [25] and architectural 

techniques [51; 97] to reduce leakage energy. Because leakage is very temper­

ature dependent, we may need to couple leakage models with chip thermal 

models.

•  Higher Level Power Estimates: Another important area for power mod­

eling is to focus on pushing power estimates to higher levels in the system 

such as the compiler and system software (OS). Estimating power in the com­

piler could allow for power-aware instruction scheduling to reduce energy or to 

provide a smooth flow of instructions so as to reduce d i/d t noise. Providing 

hooks within the operating system to monitor the power dissipation of run­

ning processes would permit the system software to enforce power and energy 

budgets to processes. The OS could also play an active role in techniques like 

dynamic thermal management by monitoring and reacting to thermal emergen­

cies in the machine. This is an area that has begun to receive some attention 

with researchers proposing that the OS sample on-chip performance counters 

to provide power estimates [10; 49].

• Dynamic Program Behavior: Many of the power-efficient architectural tech­

niques exploit some form of dynamic behavior to reduce power with a minimal 

effect on performance. These techniques are exploiting the fact that general 

purpose architectures will inherently be inefficient for certain applications or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7: Conclusions 166

phases of applications. This will be a key area for finding additional optimiza­

tions to improve both performance and power. Software infrastructures are 

currently being developed to support these types of optimizations [8; 82].

7.3 Summary

Power dissipation is a first-order design constraint in nearly all types of computing 

systems. Chip designers will need to develop techniques at all levels of the design hi­

erarchy to meet the power challenges that we will have to face in building the next few 

generations of microprocessors. This thesis has demonstrated a methodology for es­

timating power at the architectural level and has shown how architectural techniques 

can be effective in reducing energy and thermal issues in high-performance micro­

processors. In the future, we will need to continue to develop models and additional 

techniques to cope with power dissipation.
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