
On-Chip Deep Neural Network Storage with Multi-Level eNVM
Marco Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta

David Brooks, Gu-Yeon Wei
Harvard University
Cambridge, MA

ABSTRACT
One of the biggest performance bottlenecks of today’s neural net-
work (NN) accelerators is off-chip memory accesses [11]. In this
paper, we propose a method to use multi-level, embedded non-
volatile memory (eNVM) to eliminate all off-chip weight accesses.
The use of multi-level memory cells increases the probability of
faults. Therefore, we co-design the weights and memories such that
their properties complement each other and the faults result in no
noticeable NN accuracy loss. In the extreme case, the weights in
fully connected layers can be stored using a single transistor. With
weight pruning and clustering, we show our technique reduces the
memory area by over an order of magnitude compared to an SRAM
baseline. In the case of VGG16 (130M weights), we are able to store
all the weights in 4.9 mm2, well within the area allocated to SRAM
in modern NN accelerators [6].

ACM Reference Format:
Marco Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta
and David Brooks, Gu-Yeon Wei. 2018. On-Chip Deep Neural Net-
work Storage with Multi-Level eNVM. In DAC ’18: DAC ’18:The 55th Annual
Design Automation Conference 2018, June 24–29, 2018, San Francisco, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3195970.3196083

1 INTRODUCTION
Recent advancements in deep learning have enabled neural net-
works (NNs) to achieve state-of-the-art results in various classifi-
cation and regression applications. However, there remain many
challenges in using NNs on modern system-on-chips (SoCs) as the
models are large and often require special hardware for timely
execution. One major bottleneck in NN performance is off-chip
memory accesses. NNs can require hundreds of MBs to store model
weights, which easily exceeds the on-chip SRAM capacities of most
reasonable designs. This forces designers to rely on costly accesses
to off-chip DRAM. In this paper, we propose a method to eliminate
all off-chip weight accesses by leveraging the fault tolerance of
NN weights to store them in dense, multi-level memory cells. By
co-designing the weight and memory properties, we show that
even large models such as VGG16 can be stored entirely on chip
without negatively impacting model accuracy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196083

To increase the effective on-chip memory capacity, researchers
have proposed various eNVMs. eNVMs are more dense and en-
ergy efficient than the SRAM alternative. Examples of existing
eNVMs include resistive random access memories (ReRAM), phase
change memories (PCM), and spin-transfer torque magnetic RAM
(STT-RAM) [4]. However, these implementations require significant
changes to manufacturing processes, which makes it challenging to
integrate them intomodern SoCs. Charge-trap transistors (CTTs) do
not require any additional manufacturing cost, providing a promis-
ing alternative [13, 15]. CTTs are based on standard high-k devices,
making them easy to integrate into SoCs with standard digital logic
manufacturing processes.

To further improve eNVM density, multiple bits can be stored
in a single memory cell using multi-level cell (MLC) programming.
While achieving MLC storage is possible, packing more bits per cell
increases the probability a cell experiences a fault. At high fault
rates, the benefits of denser memory may be negated by expensive
fault detection and correction hardware.

In this study, we show how CTT-MLCs can be leveraged to
eliminate off-chip NN weight accesses. To address the faults
incurred from storing multiple bits per device, we experiment with
how many cells and levels per cell to use for fixed-point weight
representations. To optimize our implementation, we co-design
the weights and CTT-MLC device properties by: (i) clustering
the weights to require fewer cells, (ii) using non-sequential level
encodings to mitigate the effects of faults, and (iii) pruning the
network to skew the distribution of weights and leverage the
non-uniformity of fault probability in CTT-MLCs. While we focus
on CTT-based eNVMs, this approach is generalizable to any eNVM
with similar properties.

This paper makes the following contributions:

• We show that CTTs can be used as multi-level cells with
measurements from a fabricated test chip in a 16nm FinFET
process, which we use to build a fault model for various
levels per cell. We extend NVSim [7] to model the memory
cell and architecture.

• Weuse our fault model to demonstrate the feasibility of using
CTT-MLCs to store NN weights, and we find that even a
naive implementation uses as few as 3 transistors per weight.

• Finally, we provide co-design optimizations to reduce area
and limit the number and effects ofMLC faults. These provide
up to 14.4× area savings compared to SRAM and only require
a single transistor per weight value in fully connected layers.
With optimized CTT-MLCs, all of VGG16’s 130M weights fit
in 4.9mm2, which is smaller than the area modern NN chips
allocate to SRAM.

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.

0.2 0.4 0.6 0.8
VDD

0

50

100

L
ev

el
di

st
ri

bu
ti

on
[µ

A
]

0.25
Level pdf

VDD = 0.8V

Figure 1:Measurements froma 16nmFinFET test chipwe fabricated.
The left plot shows the CTTsmean current and 2σ confidence inter-
vals for different programmed levels as a function ofVDD . The right
plot shows the distribution of the cell currents measured at VDD =
0.8 V.

2 eNVM
Embedded non-volatile memories are of particular interest for in-
creasing the storage density in resource-constrained SoCs; the basic
eNVM cell tends to have a smaller area compared to standard 6T-
SRAM cells. Moreover, the ability to be powered off and retain the
stored values significantly reduces leakage power consumption.
These improvements come with a penalty in terms of write latency,
which makes eNVMs amenable to NN inference applications where
weights are written only once. This section presents an overview
of CTT devices, measurements from a fabricated test chip, SPICE
simulation results used to build a CTT model, and a comparison of
CTT memories with alternate eNVM and volatile memories using
NVSim.

2.1 CTT overview
Similar to floating gate devices, CTTs work by altering the thresh-
old voltage, Vth , of transistors. The cell, a single transistor, is pro-
grammed by trapping charge in the high-k gate oxide via hot carrier
injection and self-heating [12]. The difference between the current
of an unprogrammed and a programmed device can then be used
to discriminate between binary values. This behavior has been
demonstrated in bulk, FD-SOI, and FinFET processes [13].

Prior work has used CTTs as single-level memory cells [12]
and as crossbar arrays for neuromorphic applications [8]. To en-
able denser on-chip storage, we propose using CTTs as multi-level
memories. By changing the programming voltage and pulse width,
experiments show that the threshold voltage can be adjusted to a
specific target. This can then be used to change a transistor’s satura-
tion current; the current of each programed CTT can be interpreted
as a discrete level, hence enabling MLCs.

2.2 Measurements and simulation setup
To demonstrate the feasibility of the CTT-MLC approach, we pro-
vide measurements from a NOR CTT-MLC memory test structure
fabricated using a 16 nm FinFET process. Figure 1 shows the results
from programming devices on the test arrays with five distinct
levels. Within the figure, the plot on the left shows the measured
results with respect to the mean current and 2σ confidence intervals
across the devices in the same column. On the right, the statistical
distribution of the saturation currents at VDD = 0.8V are shown.

Table 1: Comparison of several eNVMs and volatile memories for
2MB capacity generated using NVSim. (*) NAND Flash and eDRAM
assume a 40nm technology node, whereas all other memory tech-
nologies are based on a 22nm technology node. CTT-MLC assumes
16-levels per cell; all othermemories are based on single level encod-
ing. The read latency and bandwidth is also provided for all memo-
ries.

Cell size Area Latency BW CMOS
[F 2] [mm2] [ns] [GB/s] compatible

SRAM 146 1.30 1.99 15.5 yes
eDRAM* 33 1.82 0.39 21.6 no

NAND Flash* 4 0.60 89.8 22.9 no
ReRAM 4 0.31 0.75 13.7 no
CTT-SLC 8 0.81 0.86 11.4 yes
CTT-MLC 8 0.38 0.57 61.0 yes

The measurements provide insights on how to best model CTT
structures. First, the saturation current of the transistor can be
precisely tuned to an arbitrary value, enabling MLC programming.
Second, the histogram of the saturation current of each level can be
modeled as a Gaussian distribution, which coincides with previous
findings in MLC NAND flash memories [3]. The measurements
also highlight the distinction between the distribution of the ini-
tial state and the remaining programmed states; this will later be
an important aspect of co-designing NN and CTT-MLCs. Finally,
these measurements provide a realistic current range for the cell’s
programmable levels.

The maximum and minimum saturation current derived from
the measurements set the programming range, as shown by the blue
and orange curves in Figure 2. Then, the intermediate programming
levels are simulated in SPICE by introducing a threshold voltage
shift in a modified version of the transistor’s BSIMmodel. The mean
and variance of the threshold voltage are set to match the values of
the initial and programmed states from the measurements in Figure
1 i.e., a wider distribution is used for the initial state and a narrower
one for the programmed states. Based on these Vth distributions, a
set of Monte Carlo simulations is used to characterize the current
level distributions. We found it was reasonable to simulate between
2 and 16 levels per CTT cell.

2.3 Memory technology comparison
We used NVSim to model a CTT-based NOR memory and compare
it to alternative memory technologies in terms of area, read latency,
and read bandwidth.

The CTT cell size and aspect ratio are based on data from previ-
ously fabricated CTTmemories [15]. Table 1 shows a comparison of
the results across different technologies for 2MB memories, as this
capacity is representative of on-chip storage capabilities in modern
SoCs using SRAM. Though the fixed 2MB capacity is not optimal for
all implementations, some generic conclusions can still be drawn
about the different memory technologies. NAND flash memories
and ReRAMs have the smallest cell size and commensurately the
best density. However, NAND Flash are penalized by higher read
latency. Although ReRAMs offer competitive area and latency to
CTTs, they require a separate fabrication process. eDRAMs have

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.

R
ow

 C
ir

cu
it

Addr

Column Circuit

Conditioning Circuit

Weights

VDD

I D
(�

V
th

)

ID

�I

IDmax

IDmin

ID Monte Carlo

WL[n-1]

WL[n+1]

WL[n]

BL SL

IDmax
IDmin

Figure 2: SPICE simulation for extracting the current distribu-
tions. The IDmax and IDmin values are based on measurement results,
while the intermediate programmed levels are obtained fromMonte
Carlo simulations.

reasonable density, latency, and bandwidth, but are not CMOS
compatible. Moreover, eDRAMs require refreshes, making them
particularly unsuitable for energy-constrained applications. Thus,
the CMOS compatibility of CTTs makes them an attractive solution
for integrated, on-chip, dense eNVM.

Though NAND Flash and ReRAM memories, along with other
eNVMs, have MLC capabilities, the results in Table 1 are based on
SLCs. Thus, the benefits of MLC encoding are seen by comparing
the area and read bandwidth of CTT-MLCs and CTT-SLCs. The
area overhead for parallel sensing in CTT-MLCs is accounted for
by setting the number of sense amplifiers equal to the maximum
number of reference levels per cell. We conclude this section by con-
sidering another currently available eNVM technology, STT-RAM.
Although CMOS-compatible, this technology suffers several short-
comings when applied to our case study. STT-RAM cells can also be
designed for multilevel storage, but this requires stacking multiple
MTJs in order to achieve more than two resistive states [2], limit-
ing memory density compared to other MLC-capable technologies.
Moreover, the additional process steps required to manufacture
MTJs can significantly impact overall fabrication cost [1]. Hence,
we decided not to include this memory in our analysis.

3 MODELING FRAMEWORK
In this section, we generalize the measurements of Section 2 into a
fault and area model for CTT memories. This modeling framework
allows us to vary the number of levels per cell and understand the
effects of MLC faults on NN applications. We further propose two
methods for storing weights on MLC cells based on fixed-point
quantization and k-means clustering.

3.1 CTT-MLC error model
A fault in a CTT-MLC cell is defined as a device being incorrectly
read as a level adjacent to the intended one. The probability of a
fault occurring for a given level, Ln , is determined by two refer-
ence thresholds: Iref n and Iref n-1; reference thresholds discretize
current ranges of the CTT cell. Figure 3 shows the current level

�Iprog

PE4
PE0

Iref0Iref3Iref4

�Iinit

Figure 3: Example of the level current distributions showing fault
probabilities for the initial level, L0, and one programmed level, L4.

distributions for a generic MLC cell. ∆Iinit represents the distance
between the mean value of the initial state, L0, and the mean value
of the first programmed state, L1. The remaining programmed levels
are equally spaced by ∆Iprog. These deltas are tunable and deter-
mine the fault rate between levels, which introduces co-design
opportunities.

Figure 3 highlights the probabilities of two possible cell faults:
PE0 and PE4 . We first consider the case of a fault in a cell set to
the initial state, L0, to be incorrectly read as a cell in the first pro-
grammed state, L1. The probability of this fault (PE0) occurring
is given by the total probability of the initial state’s distribution
beyond the reference current Iref0.

PE0 = P(Icell < Iref0) =
∫ Iref0

−∞
PL0 (x)dx (1)

In the case of a cell programmed to a specific level (i.e., not in
the initial state), the cell could fail by being read as either of the
two adjacent levels. In Figure 3, this is shown as PE4 . Thus, the
probability of a fault is given by the sum of the probabilities of
having L4 fall in either of the erroneous ranges:

PE4 = [1 − P(Icell < Iref3)] + P(Icell < Iref4) (2)

Given ∆Iinit and the number of levels per cell, a detailed fault
model for CTT-MLC is constructed. ∆Iprog results from partitioning
the remaining ∆I after ∆Iinit is allocated. This allows us to make
PE0 arbitrarily small in order to protect the initial state at the cost of
increased fault rates in the programmed levels. Faults are assumed
to only result in one level shift and the probability of a fault resulting
in a multi level value shift is negligible for the cell configurations
considered here. The effects of current to voltage conversion on
the distribution are taken into account.

3.2 Encoding methodology
This paper experiments with two types of weight quantization:
fixed-point and clustering. The details for storing both flavors of
quantized weights in CTT-MLC are presented here.

3.2.1 Fixed-point non-uniform encoding. Fixed-point data type
quantization is a well-known and effective hardware optimization
technique; reducing the width of data types can substantially reduce
area and power dissipation while improving performance. In NNs,
fixed-point quantization can be aggressively applied to weights.
The 32-bit floating point types used for training weights can be
reduced to use only 8-12 bits for inference without compromising
accuracy.

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.

-1.3304

Clustering

9-level cell

c3

Fixed-point

c3

Q2,8

4-level cell

8-level cell 16-level cell

2-level cell

-1.3304 10.10101011FxPw =

w = k
means

Figure 4: Example of fixed-point non-uniform encoding (top) and
cluster-based encoding (bottom) using MLCs.

As a example, consider the conversion of the value (−1.3304)10
and its fixed-point representation (10.10101011)2 using two integer
bits and eight fractional bits (see Figure 4). If this value is stored
using binary encoding with CTT-SLC, then 10 cells are needed (one
per bit). The same value can be stored using only 3 CTT-MLCs if the
most dense, 16 level (4 bits), cell configuration is used. This uniform
configuration reduces the area cost per bit at the expense of a higher
fault rate. Since faults on higher order bits have a disproportionate
impact on the stored value, we anticipate that it is advantageous to
selectively mitigate these faults.

Figure 4 shows our proposed alternative: a non-uniform encod-
ing where 4 cells are used with 2, 4, 8, and 16 levels per cell, from
MSB to LSB (labeled as 248F using hexadecimal notation). The ex-
ample shows that the sign and integer portion of the weight can
be protected by using a CTT-MLC with fewer levels. Compared to
uniform encoding, this non-uniform encoding requires only one
additional cell and substantially reduces the fault rates in weight
MSBs.

3.2.2 Clustering. The second weight quantization approach we
consider isk-means clustering [9], in which NNweights aremapped
onto a set of k values on a per-layer basis. Clustering is advanta-
geous as only the indexes need to be stored per weight and ⌈logk⌉
is typically significantly less than the number of bits required with
fixed-point quantization. The overhead for storing the look-up table
of the actual k weight values is negligible.

Storing cluster indexes enables two optimization opportunities.
The first technique is an intra-cell optimization to protect the initial
state from faults by increasing ∆Iinit. This technique is particularly
effective when the majority of the parameters are assigned to a
single cluster, a property we actively enforce with weight pruning.
We further consider three ways to map clusters to levels to mitigate

Table 2: For each model, we report the quantization (Q) in the form
integer.fractional bits, the number of clusters (K), and the configura-
tions for each encoding scheme: fixed-point (FxP), clustered (C), and
pruned & clustered (P+C). For VGG16, the two values of K, config,
and level map (Table 3) given represent the values for CNN layers
and FC layers, respectively.

Model Encoding Weights Error Q K Config Level Area
[%] int.frac # map [mm2]

LeNetFC
FxP

270K 1.91% 2.6
- 488 S 0.033

C 16 F S 0.008
P+C 12 C Zero 0.008

LeNetCNN
FxP

600K 0.85% 2.8
- 4488 S 0.076

C 8 8 S 0.021
P+C 11 B MDI 0.021

VGG16
FxP

135M 37.8% 2.10
- 4444FF S 40.53

C 64/8 2244/8 S/MDI 5.7
P+C 64/9 444/9 S/MDI 4.9

the magnitude and fault rates, see Table 3. The second technique
is an inter-cell, multi-cell per weight optimization. If more than
one cell is required to store the cluster index, then some clusters
can be more protected via the asymmetrical fault rates of MLC
and non-uniform encoding, i.e., a non-uniform allocation of cluster
index bits across cells.

4 RESULTS
To quantify the benefits of using CTT-MLC eNVMs, we use two
zero added cost baselines: SRAM and CTT-SLC. We evaluate the
effectiveness of CTT devices to store the weights of three prototyp-
ical NNs listed in Table 2: LeNetFC is a three-layer fully-connected
(FC) network, LeNetCNN is a five-layer convolutional neural net-
work (CNN), and VGG16 is a much larger CNN [18]. LeNetFC and
LeNetCNN use the well-known MNIST dataset for handwritten
digit classification, and VGG16 uses the popular ImageNet dataset
of colored images to be classified into 1000 possible classes [14, 17].

The fault injection simulations are implemented using the Keras
framework [5]. For both fixed-point and cluster representations,
a corresponding encoding transform function is defined. Starting
from a trained model, the encoding transform is applied to the
original parameters on a per-layer basis. Next, the faulty cells are
randomly chosen using the error probability based on the number
of levels per cell and the specific level value. The transformed
parameters are used to evaluate the accuracy of the model for a
specific encoding configuration.

Section 4.1 presents the benefits of using CTT-MLC memories
when storing NN parameters that are quantized with fixed-point
representation. Section 4.2 explores k-means clustering to reduce
the area footprint of storing NNs. Finally, Section 4.3 improves on
the preliminary MLC approach by co-designing the NN storage
scheme with characteristics of faults in CTT-MLC memories.

4.1 Storing fixed-point values in CTTs
As discussed in Section 3.2.1, non-uniform MLC encoding is used
to shift the fault rate from the MSBs to the LSBs while reducing the
total number of cells compared to binary representation. To find the
configuration that minimizes the area footprint while maintaining
model accuracy, all possible configurations of levels per cell and
number of cells are tested for each NN. The results of this explo-
ration for LeNetCNN are shown in Figure 5. The discrete steps in
area correspond to sweeping the number of cells to encode each

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.

0.059 0.076 0.095 0.112 0.205 0.228

Area [mm2]

0.86

0.88

0.90

C
la

ss
ifi

ca
ti

on
er

ro
r

[%
]

4488

44444, 24448

8-level MSB

16-level MSB

3 4 5 6 7 8

Number of cells per weight

Figure 5: Model error as a function of memory area (bottom) which
is determined by the number of cells per weight (top) for LeNetCNN
with fixed-point quantization. Pareto configurations are labeled for
configurations with 4 and 5 cells. The red and green dots show con-
figurations using 8 and 16 levels for the MSBs.

parameter in LeNetCNN from 3 to 8. Configurations above 8 cells
are not shown because they all have a classification error of 0.85%.
Each of these configurations is averaged over 25 experiments with
different fault patterns for statistical significance.

To incur no loss in accuracy, 5 cells can be used in either of two
configurations of levels per cell: 24448 or 44444, which correspond
to an area of 0.095mm2 in Figure 5. Alternatively, a configuration
with 4 cells (4488), which corresponds to an area of 0.076mm2,
results in an error of 0.857%. This error is within the statistical
variance of the model error due to training noise [16]. All experi-
ments using 8 or 16 levels to encode the MSBs (green, red) lie above
the pareto frontier. Other configurations using 16 levels for a cell
holding MSBs result in model error up to 6.3%. This is intuitive,
as using more levels to encode the MSBs incurs higher magnitude
errors. Repeating this procedure for the other NNs, we find that
fixed-point CTT-MLC encoding requires 3 transistors per parame-
ter for LeNetFC and 6 for VGG16, as listed in Table 2. Compared
to an SRAM baseline, this results in a total area reduction of up to
7.6×, as shown in Figure 6.

4.2 Reducing area with parameter clustering

As discussed in Section 3.2.2, another way to quantize NNs is with
k-means clustering. Clustering is often preferable to fixed-point
quantization because only cluster index pointers are stored. All
three NN models require between 8 and 64 clusters to preserve
model accuracy, which requires just 3 to 6 bits to represent each
parameter. When encoding clustered parameters in CTT-MLC, the
benefits are immediate. For LeNetFC and LeNetCNN, each parame-
ter can be stored in a single transistor because only 16 and 8 clusters
are needed to preserve accuracy for each model. Compared to fixed-
point quantization, k-means clustering saves 3.8× and 3.6× area
when storing LeNetFC and LeNetCNN in CTT-MLCs. Compared to
SRAM, storing the clusters in CTT-MLCs saves 14.4× and 13.2× for
LeNetFC and LeNetCNN, respectively.

Up to this point, we assumed that all layers in a network use
the same MLC configuration to store NN parameters. This assump-
tion results in pessimistic storage estimates for larger models. For

6.6x

7.6x
6.5x

Figure 6: Area comparison for SRAM, CTT-SLC, CTT-MLC for
fixed-point encodings.

Table 3: Cluster to level mapping alternatives where L0 corresponds
to the initial level for an example cell with 9 total levels. The clus-
ters are labeled by value c−4 through c+4 , with themost populous clus-
ter designated as c0.

L0 L1 L2 L3 L4 L5 L6 L7 L8
S c−4 c−3 c−2 c−1 c0 c+1 c+2 c+3 c+4

Zero c0 c−4 c−3 c−2 c−1 c+1 c+2 c+3 c+4
MD-I c0 c−2 c−4 c−3 c−1 c+1 c+2 c+3 c+4
MD-II c0 c+2 c+4 c+3 c+1 c−1 c−2 c−3 c−4

instance, in VGG16, 89.5% of the parameters are in the FC layers.
These FC layers need only 8 or 9 clusters, while the CNN layers
need up to 64 to maintain model accuracy. Using the same number
of cells for parameters in the FC and CNN layers is wasteful as,
once again, we need a single transistor per parameter to encode the
parameters in the FC layers. For VGG16, 1 cell is used for each FC
parameter and 4 cells are used for each CNN parameter, and this
use of heterogeneous configurations saves us 3× area. For VGG16,
CTT-MLCs provide 9.8× total area savings compared to SRAM.

4.3 Additional optimizations for clustering
To further optimize the proposed technique, we co-design NN and
CTT-MLC device properties.

4.3.1 Skewing weights to leverage CTT initial state. In CTT-MLC
devices, the initial state (see Figure 3) provides a unique opportunity
for optimization: because it can be deliberately separated from the
programmed states, the fault probability can be skewed to protect
the most frequent cluster. To further leverage this protected state,
we propose pruning small parameter values by setting them to zero.
Previous work demonstrated that pruning is a highly effective opti-
mization that can set upwards of 90% of weight values to zero [10].
Therefore, mapping the zero-valued cluster of the pruned networks
to the initial state has the overall effect of reducing the number of
faults. As an example, pruning LeNetFC reduces the raw number
of faults across all layers by 89%.

In VGG16, we prune 97% of all parameters in the first FC layer,
which has over 100M parameters. This effectively protects a much
larger proportion of the parameters compared to the unpruned
network. In the CNN layers, pruning reduces the number of cells
needed to store parameters from 4 to 3, leading to a further area
reduction of 1.17× over CTT-MLC with clustering.

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.

4.3.2 Cluster encoding ordering. Another optimization consid-
ers how the ordering of clusters assigned to levels within a cell
affects model accuracy. Four different cluster-to-level mappings are
enumerated in Table 3. The most trivial is sequential (S), where
the level mapping follows the order of the clusters. The rest of the
mappings assign the most frequent cluster to the initial state. The
zero mapping assigns the remaining clusters sequentially, while
the minimum distance (MD) mappings minimize the fault mag-
nitude between adjacent levels. For LeNetFC and LeNetCNN, the
level mapping corresponding to negligible accuracy loss changed
after pruning and differed between the two models, as indicated in
Table 2. For VGG16, the level mapping did not significantly affect
CNN results, and the MD-I scheme was preferable for the FC layers.

Figure 7 summarizes results for storing NNs using the optimized
encoding scheme including clustering, pruning, and level mapping.
Using CTT-MLCs allows us to store LeNetFC and LeNetCNN in
0.009mm2 and 0.021mm2, which corresponds to a 14.4× and 13.2×
savings in area compared to SRAM. VGG16 can be stored in 4.9
mm2, which is a 10.6× reduction over SRAM.

Based on the memory footprint of a recently published NN SoC
fabricated using a 28 nm process, our proposed techniques for co-
designing NNs with CTT-MLCs allow us to store a large model like
VGG16 entirely on chip [6].

5 CONCLUSION
We present a co-design methodology based on the concurrent opti-
mization of CTT-MLC eNVM and NNs. The storage of fixed-point
parameters can be optimized using a non-uniform encoding that
protects the sign and integer bits using fewer levels per cell, and
this solution gives up to 7.6× area savings. As a further optimiza-
tion, using k-means clustering together with MLC storage requires
just a single transistor for each parameter in FC layers. Additionally,
pruning NN parameters and fine-tuning the cell level distributions
protects the most populous cluster and allows for more aggressive
encoding configurations for CNN layers as well. The concurrent
adoption of these optimizations reduces the memory footprint of
VGG16 to a total area 4.9 mm2, which can be reasonably integrated
in a modern SoC. While this work focused on a specific eNVM im-
plementation, our co-design methodology can be extended to any
eNVM technology capable of MLC storage. This aspect makes our
approach generalizable to other popular eNVM implementations
such as ReRAM and PCM.

6 ACKNOWLEDGEMENTS
This work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semi-
conductor Research Corporation program co-sponsored by DARPA.
The work was also partially supported by the U.S. Government,
under the DARPA CRAFT and DARPA PERFECT programs. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official

On-chip SRAM

10.6x

13.2x

14.4x

Figure 7: Area comparison for SRAM, CTT-SLC, and CTT-MLC for
clustered encodings. Area for CTT-MLC with clustered and pruned
encodings is also given (orange). The horizontal gray line indicates
the memory area footprint from a recently published NN SoC [6],
showing that our most optimized encoding enables VGG16 to fit on
chip.

policies, either expressed or implied, of the U.S. Government.
Reagen was supported by a Siebel Scholarship.

REFERENCES
[1] I. Bayram, E. Eken, D. Kline, N. Parshook, Y. Chen, and A. K. Jones. Modeling

STT-RAM fabrication cost and impacts in NVSim. In IGSC, 2016.
[2] X. Bi, M. Mao, D. Wang, and H. Li. Unleashing the potential of MLC STT-RAM

caches. In ICCAD, 2013.
[3] Y. Cai et al. Threshold Voltage Distribution in MLC NAND Flash Memory:

Characterization, Analysis and Modeling. DATE, 2013.
[4] A. Chen. A review of emerging non-volatile memory (NVM) technologies and

applications. Solid. State. Electron., 2016.
[5] F. Chollet et al. Keras, 2015.
[6] G. Desoli et al. A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI

28nm for intelligent embedded systems. ISSCC, 2017.
[7] X. Dong et al. NVSim: A Circuit-Level Performance, Energy, and Area Model for

Emerging Nonvolatile Memory. IEEE Trans. Comput. Des. Integr. Circuits Syst.,
2012.

[8] Y. Du et al. A Memristive Neural Network Computing Engine using CMOS-
Compatible Charge-Trap-Transistor (CTT). CoRR, 2017.

[9] Y. Gong et al. Compressing Deep Convolutional Networks using Vector Quanti-
zation. CoRR, 2014.

[10] S. Han et al. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. ICLR, 2016.

[11] N. P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing
Unit. ISCA, 2017.

[12] F. Khan et al. The Impact of Self-Heating on Charge Trapping in High-k -Metal-
Gate nFETs. IEEE Electron Device Lett., 2016.

[13] F. Khan et al. Charge Trap Transistor (CTT): An Embedded Fully Logic-
Compatible Multiple-Time Programmable Non-Volatile Memory Element for
high-k -metal-gate CMOS technologies. IEEE Electron Device Letters, 2017.

[14] Y. LeCun and C. Cortes. The MNIST database of handwritten digits.
[15] K. Miyaji et al. Zero Additional Process, Local Charge Trap, Embedded Flash

Memory with Drain-Side Assisted Erase Scheme Using Minimum Channel
LengthWidth Standard Complemental Metal-Oxide-Semiconductor Single Tran-
sistor Cell. Jpn. J. Appl. Phys., 2012.

[16] B. Reagen et al. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural
Network Accelerators. ISCA, 2016.

[17] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV,
2015.

[18] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. CoRR, 2014.

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:38:10 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

		2018-09-06T17:31:22-0400
	Preflight Ticket Signature

