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Abstract—This paper introduces the ShrinkFit accelerator frame-
work, which simplifies the design of systems combining multiple acceler-
ators. A single ShrinkFit system design can be deployed to FPGAs large
and small, without time-consuming architectural parameter surveys. We
describe four ShrinkFit accelerators implemented for an FPGA-based
robotic bee brain prototype and demonstrate the flexibility of ShrinkFit
with low performance overheads (under 10% on average) and low
resource overheads (0-8% for accelerators and under 2% for hard logic
blocks).

I. INTRODUCTION

Using FPGAs, custom hardware accelerators can dramatically
improve compute performance by targeting individual algorithms
amenable to acceleration. These algorithms are typically explicitly
parallel kernels, such as DCT and H.264 video decoding. Advances
in high level language (HLL) synthesis tools show new promise in
simplifying accelerator design: more accessible languages, such as C,
can now be used to create and test hardware accelerators in less time.
By reducing barriers to entry, these HLL tools can bring hardware
accelerator design to a wider audience of developers. And with
hybrid processors that combine FPGAs and general purpose (GP)
cores [1], [2], programmers can package accelerator designs with
applications, and improve application performance over software-
only implementations [3]. This enables future systems to run multiple
applications, each deploying and using one or more accelerators.

We are currently developing such a system to prototype the
electronic “brain” of a flying robotic bee, called RoboBee. This
hybrid processor prototype combines a general purpose Cortex-
M0 core with accelerators on a Spartan-6 FPGA, and runs a bee
application.

During the development of this prototype processor, we found
that HLL tools were invaluable, easing the process of implement-
ing accelerators. However, as much of the FPGA community has
found [4], [5], [6], combining accelerators into a single system is dif-
ficult. Current approaches for designing systems containing multiple
accelerators often use HLL tools to create multiple variants in order
to find the optimal hardware design. This compute intensive approach
explores many combinations of architectural parameters, such as
pipeline depth, creating variants for different resource budgets [7].
Unfortunately, building systems with multiple accelerators designed
in this way leads to several issues. First, selecting between the many
variants of each accelerator is computationally intensive. Second,
this process does not easily permit accelerators to share common
resources, which may duplicate underutilized logic. Third, there is
no way for accelerators to dynamically grow or shrink if resource
budgets change. An alternative is to design all accelerators into the
system as one combined accelerator, but this approach can further
extend design time and is inflexible.

Further, most accelerated systems use shared bus approaches
and DMA controllers (DMACs) which are difficult to scale with
many accelerators. Shared bus approaches, such as AMBA [8] and
Wishbone [9] connect several accelerators over a shared bus. This
creates contention when multiple accelerators attempt to communi-
cate over the same bus, so many systems use secondary and tertiary
buses for slower accelerators. This may still not alleviate contention
on the primary bus, leading to custom accelerator-to-accelerator
connections [10].

To address these challenges we created ShrinkFit, an extensible
framework that facilitates the design of multi-accelerator systems. As
the name suggests, ShrinkFit enables accelerators to fit within small
FPGA budgets when necessary, and expand to increased resources
for additional performance. ShrinkFit also simplifies accelerator,
system, and software design. Accelerator designers can implement

accelerators once, without complex parameterizations or multiple
implementations, and without designing custom interfaces to other
accelerators. System design is also simpler, and does not require bus
hierarchies or intimate knowledge of accelerator behavior. Software
design is simpler as well, since no DMACs need programming.
Simpler design for all three areas and resizable accelerators are
necessary to manage many accelerators on hybrid systems, where
workloads change frequently.

This framework not only applies to our specific RoboBee appli-
cation, but to the needs of hybrid systems in general. By relying on
virtualization [11], ShrinkFit can reduce the computational complex-
ity of allocating resources to each accelerator, allow accelerators to
share resources, and could be combined with dynamic reprogramming
to support dynamic resizing. The implementation is based on an
accelerator store [12], a scalable memory resource for accelerators to
save and exchange data without shared buses or DMACs. To support
ShrinkFit, we have added: new features to the accelerator store, a
“slicer” component for managing data transfers between ShrinkFit
accelerators, and an interface that simplifies adding ShrinkFit capa-
bilities to existing accelerators. These capabilities rely on hard logic
blocks, dedicated to ShrinkFit and assumed to be built into the FPGA,
in the same way FPGAs currently contain dedicated RAM, DSP,
and general purpose (GP) hard cores. We also introduce a software
interface for building applications with ShrinkFit accelerators.

We demonstrate ShrinkFit’s resizing capability and design sim-
plifications with four ShrinkFit accelerators developed for our bee
brain prototype. Experimental results show that ShrinkFit enables
performance of individual accelerators and the bee application to
scale linearly with available FPGA resources. Overheads are low as
well: ShrinkFit hard logic block overheads require less than 2% of
overall FPGA die area, FPGA resource overheads range from 0%-8%,
and application performance overheads are under 10% on average.

II. MOTIVATION

The RoboBees project, a large collaboration between many
research groups, seeks to build a swarm of bee-sized, flying robots.
Each bee must conserve energy while performing several visual
algorithms. To minimize energy consumption while maximizing
performance, the RoboBee’s brain uses hardware accelerators as well
as a general purpose Cortex-M0 processor.

To evaluate the performance requirements for each accelerator,
we custom designed a helicopter brain prototype (HBP) circuit board
that snaps onto a small helicopter. The HBP contains a low power
Spartan-6 SLX150-1L FPGA, which offers the maximum resources
within the helicopter’s battery power and weight budgets.

To date, we have identified four accelerators useful for the
project: image sharpening, edge detection, optical flow (OF), and
discrete cosine transform (DCT). The HBP uses all four accelerators
simultaneously to process images from the on-board camera, and each
image is processed by the three tracks of the RoboBees application
(Figure 1). We implemented logic for each of the accelerators using
the Vivado C-to-RTL high level language (HLL) compiler [13].

The ShrinkFit framework allows us to take full advantage of our
FPGA’s resources, whether using a few accelerators early in develop-
ment or after adding more over the course of the project. We designed
ShrinkFit to generally address any FPGA system containing multiple
accelerators, including hybrid processors. Throughout this paper, the
RoboBee application and accelerators illustrate how ShrinkFit works
and evaluate how well it performs.

III. CONCEPTUAL APPROACH

To support ShrinkFit, designers decompose accelerators into
smaller, reusable “modules” of logic. Once decomposed, these
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Fig. 1. The RoboBee application utilizes four accelerators. The brain pro-
totype will use the results to compress images for offline analysis, recognize
important objects, and avoid obstacles during flight.

modules can be combined to implement resizable accelerators via
virtualization, and can be shared between accelerators.
A. Decomposition

ShrinkFit facilitates accelerator designs that are composed of
smaller, reusable logic modules. To add ShrinkFit support to an
accelerator, it must be decomposed into these reusable logic modules.
Depending on the accelerator, different approaches may work best:
some accelerators can be decomposed by pipeline stage, others by
portions of each entry in a dataset (such as an image or matrix),
or perhaps by subsequent entries in a dataset. For example, the
image sharpening accelerator, used by the RoboBee brain, could
be made up of multiple identical modules that each sharpens one
region of an image. Assuming each image has sixteen regions, the
accelerator requires sixteen sets of computations. One option would
be to program all sixteen modules into the FPGA, each computing
in parallel. In contrast, ShrinkFit enables the designer to resize the
accelerator at any time by programming anywhere from one to
sixteen modules into the FPGA, depending on performance and/or
resource constraints. This resizability can shrink the image sharpen
accelerator by 94% when only one module is used, but with at least a
16× increase in computation time. Ideally, this relationship between
performance and resource utilization should be linear, i.e., doubling
resources leads to double the performance.

The key concept behind ShrinkFit is that work performed by
each module can be done without programming each module into
the FPGA. Rather, the modules programmed into the FPGA need to
be capable of doing the work of each module from the original design.
To formalize how we decompose and design resizable accelerators,
we introduce four terms:
Virtual modules (VMs) are the modules from an accelerator’s
original design. In the case of image sharpen, which has sixteen
regions, the accelerator always contains sixteen virtual modules. VMs
represent the work to be done, rather than the logic doing it.
Physical modules (PMs) are the actual logic blocks programmed
into the FPGA. As few as one physical module can be programmed
into the FPGA. More PMs can be added, but the number of PMs can
never exceed the number of VMs. Programming fewer reduces FPGA
resource utilization. Programming more PMs increases performance.
Module designs refer to the algorithm a PM or VM implements.
PMs of the same module, such as DCT, use the same RTL and
are identical, whereas PMs of different module designs are not
interchangeable. A convolution PM cannot do the work of a DCT
PM.
Module contexts contain the information a PM needs to act as a
VM. Section III-B describes contexts in detail.
B. Module contexts

In all ShrinkFit accelerators, VMs are an abstraction representing
the work to be done. It is the PM, logic programmed into the FPGA
fabric, that performs the computations. To bridge the gap between
work and logic, PMs use “contexts,” which are blobs of data that
instruct a PM how to act as a VM. Each VM has a corresponding
context, and by loading it, a PM can act as its corresponding VM.
For example, a convolution context contains the image region its
VM corresponds to. When a convolution PM loads a context, it
immediately knows which region of each image to process.

Because there may be fewer PMs programmed into the FPGA
than VMs in the accelerator design, these PMs must routinely switch
to perform the computation of different VMs within the accelerator.
This process is known as “context switching,” because a PM will do
the work of one VM for a short period of time, then switch contexts
to do the work of another VM. This approach ensures that the work
of all VMs will be completed regularly no matter how many PMs
are programmed into the FPGA.
C. Accelerator resource sharing

Because PMs do not necessarily belong to one accelerator or
another, they can be shared between accelerators. For example, image
sharpen and edge detect accelerators both use sixteen convolution
VMs. If a system used both accelerators simultaneously, each convo-
lution VM would have a corresponding context, resulting in a total
of 32 convolution contexts. And because the system contains 32
convolution VMs, one to 32 convolution PMs could be programmed
into the FPGA. However, if fewer PMs exist in order to reduce FPGA
resource utilization, they would all take turns context switching into
all 32 contexts, and do the work of all 32 convolution VMs in both
accelerators. Rather than allocating different PMs to each accelerator,
the accelerators share all PMs.

In rare cases, a system designer may wish to dedicate certain PMs
to a single accelerator, rather than sharing PMs between accelerators.
This is easily accomplished by creating two sets of contexts for the
module design, and mapping some PMs to one set, and the remaining
PMs to the other set.

IV. FRAMEWORK IMPLEMENTATION

There are many ways to implement the conceptual approach de-
scribed in the previous section as long as the implementation supports
many PMs, enables PMs to context switch rapidly, and delivers PM
input and output datasets quickly. With these requirements in mind,
we present our implementation of the ShrinkFit concept.

Systems utilizing the ShrinkFit architecture include a general
purpose core, several PMs, and ShrinkFit’s hard logic blocks. Figure 2
provides a detailed illustration of how ShrinkFit is used for the
RoboBees application. After PMs are programmed into the FPGA
fabric, the general purpose core configures PMs and various ShrinkFit
hard logic blocks use the system bus to perform reads and writes as
if the general purpose core was reading and writing to memory.

All workload-specific circuits (physical modules) are imple-
mented in reconfigurable FPGA fabric. Only generic logic (used by
all workloads) is permanently fabricated as hard logic blocks. This
philosophy matches current FPGA designs which include hard logic
blocks for SRAM memories and commonly used DSP operations.

ShrinkFit depends on three types of hard logic blocks: the
accelerator store, slicer, and ShrinkFit wrapper. The accelerator store
provides a central location to store input and output data processed by
accelerators as well as virtualization information, the slicer provides a
resource for virtual modules to coordinate when processing the same
pieces of data, and ShrinkFit wrappers manage virtualization tasks
for each physical module. Each of these tasks apply to all accelerator
designs, and each hard logic block is completely generic. They do
not have any specializations for specific accelerators or workloads.
A. Accelerator store

To facilitate data storage and movement between PMs, we
employ the accelerator store [12], which was originally proposed
as a replacement for SRAMs located inside accelerators and as a
method to transmit data between accelerators. We found that with
some modifications, the accelerator store can be used to manage
contexts and relay data between PMs. For maximum performance,
accelerators often require fast access to input and output datasets.
With this in mind, the accelerator store maintains direct connections
with every PM programmed on the FPGA via ASPorts (Figure 2) to
ensure low-latency communication.

1) Handles: Memory in the accelerator store (AS) is allocated
using “handles.” Similar to file handles in most operating systems,
handles represent a block of memory in the AS. To access handles,
VMs specify the handle’s corresponding handle ID (HID) number.
VMs can use handles to communicate: after the first VM stores data
in the handle, the second VM can access it.
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Fig. 2. The ShrinkFit framework consists of the accelerator store, slicer,
and ShrinkFit wrappers. These components, darkened above, are permanently
fabricated in the FPGA as hard logic blocks to obtain low die area overheads.
All physical modules are programmed into the FPGA fabric as soft logic
blocks. One or more general purpose cores may be implemented as hard or
soft logic blocks.

The accelerator store provides two interfaces for accessing han-
dles: FIFO queue and random access (RA). FIFO handles allow PMs
to send individual words to each other, to be processed in order. This
is helpful for short inputs or outputs that can fit in a single word, or
as a method for VMs to relay commands to each other. RA handles,
which support reads and writes at a specified address, are useful for
storing larger datasets.

Handles are configured by the general purpose core in software,
using the system bus to allocate handles before accelerators are
started. However, if the system needs to modify the handle configu-
ration, the same system bus interface can be used while the system
is running. We currently allocate handles by hand, but future work
could leverage memory allocators such as malloc to automate this
process at runtime.

2) Bandwidth and arbitration: The accelerator store supports
systems containing many PMs and each may make requests simul-
taneously. The AS has an arbiter to satisfy as many PM requests as
possible, and reject any remaining requests. The arbiter uses a round-
robin scheme to prevent starvation. If the request is rejected, the PM
can try the request again on the next or later cycle.

We represent AS bandwidth in terms of “channels,” which
indicates the number of requests it can satisfy per cycle. An AS with
one channel can satisfy one PM’s request per cycle, a two channel
AS can handle requests from two PMs in the same cycle, and so
on. The AS, implemented in Verilog RTL, fully parameterizes the
channel count and can be provisioned with more or fewer channels
as desired. In our experience, provisioning more than three channels
had negligible performance benefits.

3) AS architecture: Overall, there are three stages within the
accelerator store. The first is arbitration, which takes requests from
each accelerator and selects a subset based on a round robin selection
scheme. In the second stage, the bulk manager and handle table
decode accelerator requests into SRAM accesses. Finally, the decoded
accesses are sent to a bank of small (2KB-4KB) SRAMs, the results
of which are returned to accelerators.

Each accelerator has a direct connection to the accelerator
store, and requests only add an additional cycle of latency (without
contention). This low latency is critical for maintaining the high
performance needed by accelerators. PM context switching would
be especially affected by larger latencies, increasing the amount of
time spent finding VMs and less time computing.

Additional details about the AS architecture are in [12].
4) Generic design: To support ShrinkFit, three features were

added to the AS: bulk transfers, random bulk access, and swap
operations. Bulk transfer support (sending multiple words with a
single request) was added to reduce arbitration overheads and are
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Fig. 3. Each ShrinkFit wrapper implements this state machine to context
switch, load inputs, trigger computation, and store resulting outputs. Wrappers
initially enter the idle state on startup.

already common in DMACs for the same reason. AS support for
accelerators to specify custom addresses was also added for bulk
transfers. This was particularly helpful when PMs accessed regions of
an image: images are stored in raster order, so regions are not stored
contiguously. We opted for a generic solution: to let accelerators
specify any access pattern. Lastly, support for the swap operation
(common on general purpose CPUs) was introduced. Swaps are
critical for ShrinkFit context switching and applies to all workloads.
B. Slicer module

The ShrinkFit framework includes a slicer module that interacts
with the AS and PMs and ensures all VMs can properly access input
data or store output data in RA handles. For example, the edge detect
accelerator contains sixteen convolution VMs, which output images to
sixteen magnitude VMs. To function correctly, all sixteen convolution
VMs must each produce their regions of the output images before
the magnitude VMs can consume them. In addition, the magnitude
VMs must all consume these images before the convolution VMs can
overwrite them with new output images. Because there are multiple
VMs producing data and a different set of VMs consuming data, a
FIFO handle would not suffice: as soon as one VM performed a get,
the data would be lost to the other VMs. Instead, the slicer assists
the VMs in ensuring that all VMs can reliably produce and consume
data from RA handles.

To improve performance, the slicer supports varying amounts of
buffering. Buffering is quantified in “buffer slots,” which measure the
number of entries that can be stored in the RA handle. For example,
a handle with room for four images is sized to four buffer slots. By
increasing the size of a handle to buffer more slots, a PM can batch
more computation and improve performance.

Each buffer slot is in one of two states: produce or consume.
When producing, one or more VMs write portions of the buffer
slot. When all VMs finish producing, the buffer slot switches to the
consume state. On each state switch, the slicer notifies the relevant
VMs to resume computation.

If the handles are sized for multiple buffer slots, VMs can produce
and consume simultaneously from the handle (but not the same buffer
slot). One buffer slot may be in a produce state and the other in a
consume state.

Ultimately, the slicer is responsible for tracking how many virtual
modules have produced and consumed each buffer slot of data.
C. ShrinkFit wrapper

The ShrinkFit wrapper is a small hard logic block that connects
a PM to the accelerator store’s ASPort. The wrapper implements
common ShrinkFit tasks, including context switching, loading inputs,
storing outputs, and interacting with the slicer (Figure 3). We initially
implemented this logic within each PM, but noticed we were dupli-
cating the same logic across all PMs. Hence, we decided to refactor
the common logic into a generalized hard logic block.

1) ShrinkFit wrapper contexts: The wrapper defines a common
context handle structure (Figure 4). Each module design has its own
RA context handle, with a context for each of its VMs. The first words
in the context handle each correspond to a different VM, forming a
context directory. Each of these directory entries contain the location
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Fig. 5. ShrinkFit hard logic block die area overheads are low for systems
with many accelerators and well-provisioned bandwidth. Hard logic blocks are
synthesized for a commercial 40nm process technology, and area is expressed
in mm2 as well as normalized to the area of a Spartan-6 FPGA slice.

of the VM’s context data and the length of the data. We chose this
approach to support variable-length contexts, rather than hard coding
context data lengths to a set size.

This context directory approach allows wrappers to quickly check
if a context is claimed by another VM. A slicer tries to claim a handle
by swapping the context’s directory entry with an invalid entry. If
the wrapper receives an invalid entry back, it knows another PM has
already claimed this context, and tries to claim the next directory
entry. If the PM receives any other value back, it knows it has
successfully claimed the context. The wrapper then uses information
in the directory entry to load the context. When the PM is done using
the context, it saves any changes back to the context data, then writes
the original directory entry back to the context directory. Although
more complex context iteration schemes are certainly possible, we
found that the ShrinkFit wrapper’s current implementation resulted
in excellent context switching performance in practice.

2) ShrinkFit wrapper input/output: After loading the context, the
ShrinkFit wrapper first checks if input handles have enough data to
consume, and if output handles have enough space to produce the
results into. If checks fail, the context is returned and a new one is
chosen. Otherwise, the wrapper begins loading from input handles.
D. ShrinkFit framework area costs

Because the ShrinkFit framework is generalized, rather than
designed for a specific set of accelerators, it makes sense to hard code
it into the die, rather than programming it into the FPGA. ShrinkFit
also provides several opportunities for PMs to override automatic
features if they desire a custom solution.

By utilizing hard logic blocks, the ShrinkFit framework has low
area overhead. We synthesized all three hard logic blocks—AS, slicer
modules, and ShrinkFit wrapper—using Design Compiler D-2010.03
for a commercial 40nm process. Assuming a three-channel AS with
ASPorts for 64 PMs, which is more than sufficient to maximize
RoboBee application performance (only 36 are needed), Figure 5
plots the die area overhead versus the number of ShrinkFit wrappers.

For comparison to reconfigurable resources, we used a commercial
40nm memory compiler to find the area of an SRAM equivalent to the
32x512, dual-port BRAMs found in the Spartan-6 (0.0276mm2), and
used this to express the hard logic block area in terms of slices, the
basic building block of FPGAs (this calculation is described in more
detail in Section VI-A). Using the equivalent slice area in Figure 5,
Section VII-D later shows that the ShrinkFit hard logic block die will
consume less than 2% of the FPGA’s die area in both small and large
FPGAs.

V. SOFTWARE DEVELOPMENT

Developing applications requires the system designer to perform
two tasks: decomposing accelerators and configuring the ShrinkFit
hard logic blocks. To simplify the latter step, we implemented shrin-
klib, a software development kit (SDK) for the Python programming
language.
A. Decomposing accelerators

Before any software can be implemented, the accelerators in the
application design (Figure 1) must be decomposed into their corre-
sponding VMs (Figure 6). For example, the edge detect accelerator
decomposes into sixteen convolution VMs and sixteen magnitude
VMs. This decomposition will also include handles to represent data
connections, such as the images produced by convolution VMs and
consumed by the magnitude VMs.

The application designer must decide how many buffer slots to
allocate to each handle and calculate how many VMs produce and
consume from each handle. Contexts for each module design are
stored in RA handles, so handles must be allocated to store contexts
as well.
B. Configure ShrinkFit hard logic blocks

The software program uses system bus reads and writes, just as it
would to read from or write to memory, to configure ShrinkFit hard
logic blocks in five steps:

1) Create handles (to connect VMs and store contexts)
2) Configure the slicer with the number of VMs that produce

and consume each handle
3) Store contexts for each VM in context handles
4) Configure each PM’s ShrinkFit wrapper
5) Start each PM’s ShrinkFit wrapper

C. Shrinklib SDK
The shrinklib SDK includes routines to automate the application

development steps after decomposition. Although shrinklib is cur-
rently implemented in the Python programming language, it simply
performs system bus reads and writes, and is easily ported to other
languages. We use the RoboBee application to show how shrinklib
is used below.

The following code configures all DCT modules (steps 1-5):
dct_ctxt_handle = shrinklib.AsHandle(spi, hid=13,
start_addr=0x0001F800, word_count=512)

virt_dct2_set = shrinklib.VirtDct2Set(spi=spi,
slicer=slicer, physical_module_count=dct_pm_count,
context_handle=dct_ctxt_handle)

virt_dct2_set.AddContexts(in_handle=camera_image_handle,
out_handle=dct_coefs_handle)

virt_dct2_set.CommitInit()
virt_dct2_set.StartPhysicalModules()

The code to initialize the other four PM designs is almost identical.
Adding support to shrinklib for new PM designs is straightfor-

ward. The module designer only needs to write two methods for the
new design. The first routine uses the system bus to configure each
of the ShrinkFit wrappers for the module design, the second builds
the context handle for each module design.

VI. SHRINKFIT MODULE EVALUATION

PMs are the building blocks of all ShrinkFit accelerators, and
by extension, the applications that use them. Before evaluating the
RoboBee application and the four ShrinkFit accelerators it uses, we
consider the five PMs they are built from—convolution, magnitude,
DCT, optical flow (OF) region, and OF merge. Specifically, we
evaluate two aspects of the PMs. First, performance scales up linearly
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Slice area Registers LUTs DSPs BRAMs
Compute +PM ∆ Compute +PM ∆ Compute +PM ∆ Compute +PM ∆ Compute +PM ∆

Convolution 195 201 +3.0% 463 495 +6.5% 680 702 +3.1% 2 2 +0.0% 3 3 +0.0%
Magnitude 81 81 +0.0% 92 101 +8.9% 221 221 +0.0% 2 2 +0.0% 3 3 +0.0%
DCT 138 149 +7.8% 409 436 +6.1% 391 436 +10.3% 4 4 +0.0% 4 4 +0.0%
OF region 120 126 +5.0% 178 208 +14.4% 337 361 +6.6% 5 5 +0.0% 2 2 +0.0%
OF merge 261 261 +0.0% 772 772 +0.0% 863 864 +0.0% 4 4 +0.0% 5 5 +0.0%

TABLE I. MODULE DESIGN FPGA RESOURCE OVERHEADS. FPGA RESOURCE OVERHEADS (∆) FOR ALL FIVE MODULE DESIGNS ARE LOW,
FROM NONE TO +7.8%. “SLICE AREA” EQUALS THE SUM AREA OF FPGA PRIMITIVES (REGISTERS, LUTS, DSPS, AND BRAMS) RELATIVE TO THE

AREA OF A SPARTAN-6 FPGA SLICE. EACH SLICE CONTAINS 16 REGISTERS AND 8 LUTS. DSPS AND BRAMS ARE EACH 4.95X THE AREA OF A SLICE.
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Fig. 7. All four systems contain one to sixteen PMs of the same module design, demonstrating that ShrinkFit scales performance with FPGA resources,
as well as low resource and performance overheads. Each configuration processes 100 images using a 3-channel AS. “Compute only” considers only the
compute logic without ShrinkFit overheads. PM performance considers ShrinkFit glue logic resource and performance overheads, in addition to compute logic
costs. Slice area considers the area consumed by registers, LUTs, DSPs, and BRAMs, relative to the area of a Spartan-6 slice. Secondary plots compare
PerfPM/PerfCompute, the ratio between the two series.

with FPGA resources as more PMs are added. Second, regardless
of whether a few or many PMs are programmed into the FPGA,
performance overheads and resource overheads remain low.
A. ShrinkFit PM implementations

For each of the five RoboBee PM implementations we partition
compute logic and ShrinkFit functionality into separate blocks. Com-
pute logic, designed using the Vivado C-to-RTL compiler [13], only
contains the logic required to perform the PM’s computation and
BRAM memories to hold input and output data. In other words, the
compute logic blocks do not contain any optimizations for ShrinkFit
interfacing or functionality. To add ShrinkFit support, each PM has
additional “glue logic” to connect the compute logic block to a
ShrinkFit wrapper. Since the wrapper performs most of the tasks
related to ShrinkFit, the glue logic simply connects the wrapper
to the corresponding PM and takes care of any special cases. For
example, the convolution module may produce outputs to one handle
if performing image sharpening, or two handles if performing edge
detect. Convolution glue logic guides the wrapper to accommodate
this choice properly.

In all five RoboBee PM designs, glue logic resource requirements
are small compared to their corresponding compute logic blocks,
between 0.0% and 7.8% (Table I). These low resource overheads
are largely thanks to the ShrinkFit wrapper, which implements the

majority of ShrinkFit functionality as a hard logic block. In order
to compare the glue logic and compute logic resource costs, we
synthesized each PM using Xilinx ISE 14.4 for the Spartan-6 FPGA
used in the HBP, with and without glue logic. Like most FPGAs, the
Spartan-6 contains four basic primitives: registers and lookup tables
(LUTs), DSP blocks optimized for addition and multiplication (the
same MAC blocks used by DSP processors), and BRAM blocks for
efficiently storing large datasets. Registers and LUTs are contained
within slices, of which hundreds if not thousands exist in the FPGA.

In addition to counting these primitives (register, LUT, DSP, and
BRAM) in each design, we calculate a “slice area” resource cost
combining primitives into a single metric. This metric packs registers
and LUTs into slices (16 registers and 8 LUTs per slice) to obtain a
slice count, and determines the die area of DSPs and BRAMs relative
to the area of a slice (DSPs and BRAMs consume the area of 4.95
slices, according to PlanAhead). Total slice area is the sum of slices
used by registers and LUTs, combined with the relative slice area of
DSPs and BRAMs.

In the case of magnitude and OF merge modules, glue logic
adds no overheads. This is due to underutilized slices in compute
logic blocks, containing too few registers or LUTs to completely
pack slices. The wrapper logic is able to utilize the unused primitives
without adding additional slices.
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B. Evaluation methodology
To analyze scalable PM performance and overheads, we analyzed

four system design scenarios, each limited to only use one out of the
four module designs: DCT, convolution, magnitude, and OF region.
We do not analyze OF merge, the fifth module design, because only
one can be used per optical flow accelerator. For each system, we
considered different PM counts, ranging from the minimum (1) to
the maximum (16). These systems also contain an accelerator store
with three channels of bandwidth and four buffer slots per handle.

Our performance analysis relies on ModelSim 10.1, which per-
forms cycle-accurate simulation of all runs using synthesizable RTL
for all hard logic blocks and PMs. Each system utilizes a “treadmill”
testing module, ensuring repeatable and error-free tests. The treadmill
module injects pre-recorded camera images into the system in the
same order and verifies PM outputs using corresponding checksums.
Performance is determined by measuring the number of cycles
required to process 100 images. To evaluate ShrinkFit performance
overheads, we compare each PM’s performance with the compute
logic block’s performance. We also record the subset of cycles spent
utilizing the compute logic block. This measurement reveals the
theoretical maximum performance of the PM without any ShrinkFit
overheads (Table II). This represents the maximum performance
for any alternative system interconnect using the compute logic in
each PM as it does not consider any ShrinkFit overheads. Dividing
actual ShrinkFit system performance by this theoretical maximum
(PerfPM/PerfCompute) reveals the performance overhead of the
ShrinkFit system.

We also verified that our implementations of the ShrinkFit frame-
work RTL and PM RTL correctly synthesize and work in the HBP
hardware. However, the HBP platform could not be used for thorough
performance analysis because the off-the-shelf Spartan-6 FPGA does
not include ShrinkFit hard logic blocks. Instead, all ShrinkFit features
were programmed in as soft logic blocks, consuming much more of
the FPGA’s resources. This limited the number of PMs that could be
added and introduced additional overheads that would not occur with
ShrinkFit hard logic blocks.
C. PM performance scalability

Since all ShrinkFit accelerators are built with PMs, it is important
to ensure they work well individually within the framework before
combining them to compose accelerators for different applications.
Hence, we evaluate the performance scalability of individual PM
implementations first. Figure 7 plots the performance versus resource
utilization (slice area) for the four resizable types of PM designs. For
each of the PMs, the plots show how performance scales for “Com-
pute only” and “PMs.” “Compute only” data points correspond to
compute logic without any other resource or performance overheads.
This is a highly optimistic upper bound which does not consider the
costs of context switching, loading input data to process, or storing
the resulting output data. However, many of these overheads would
be present whether or not ShrinkFit is used. For example, inputs
and outputs will always need to be loaded. The “PMs” data points
include these performance and soft logic resource overheads in order
to evaluate how PMs perform in an actual ShrinkFit system. Each
data point in Figure 7 represents a system with a different number
of PMs. The points at the far left represent a system with a single
PM. Proceeding to the right, each consecutive point uses more FPGA
resources to add an additional PM. This continues until reaching the
rightmost point, representing a system utilizing a maximum 16 PMs.
The corresponding PerfPM/PerfCompute plots show how overheads
scale again with respect to resource utilization for all four PMs.

The results demonstrate that all of the PMs successfully achieve a
linear performance-to-resource relation, with some minor exceptions.
For each PM added to the system, performance roughly increases by
a nearly constant factor. As the number of PMs increase, the slightly
lower slope can be attributed to contention in the accelerator store.
The PerfPM/PerfCompute plots better illustrate this trend. While a
slight downward slope can be seen for all PMs, these plots verify
that ShrinkFit overheads are consistently low even as more PMs are
added. The larger overheads for OF region are due to large inputs
(regions of an image) and short execution times (Table II). OF region
spends a considerable portion of its time loading inputs, a delay

Cycles per image region
Average Minimum Maximum Max-Min ∆

Convolution (sharpen) 13,520 12,665 14,403 12.1%
Convolution (edge detect) 12,079 11,315 12,867 12.1%
Magnitude 3151 2600 3250 20.0%
DCT 33,061 33,061 33,061 0.0%
OF region 1251 1173 1331 11.9%
OF merge 530 530 530 0.0%

TABLE II. COMPUTE LOGIC BLOCK PERFORMANCE.
SHRINKFIT IS NOT AFFECTED BY BLOCK DELAY VARIABILITY.

Fig. 8. When running full applications, AS bandwidth needs are low: two
channels of AS bandwidth is sufficient for the RoboBee application, and one
channel performance is only slightly less. Systems with varying PM counts
and one, two, or three channels of AS bandwidth are considered. FPGA
resources for Spartan-6 FPGA models are noted at the top.

that would occur even if system architectures other than ShrinkFit
were to be used. For this reason, and considering that the average
PerfPM/PerfCompute is still high at 78.96%, the PM implementation
of OF region, and all other module designs, is sufficient for the goals
of ShrinkFit.

VII. ROBOBEE APPLICATION EVALUATION

Given that PMs can scale performance with FPGA resources, and
do so with low area and performance overheads, we now consider
the case where PMs are combined to form four accelerators and
implement the RoboBee application shown in Figure 6. The system
should continue to scale performance with FPGA resources while
adding more PMs into the system. The following evaluation not only
demonstrates this is achievable, but that overheads also remain low.
Further, results demonstrate that less channel bandwidth is necessary
to support the RoboBee application than some PMs require when
considered individually. Finally, we investigate the role of buffering
in regards to performance.

All runs of the RoboBee application follow the same testing
approach as with single module evaluations. The treadmill module
is used to inject test images and verify output checksums. For each
test, we measure performance as the number of cycles required to
completely process 100 camera images. All test results are obtained
from cycle accurate RTL simulations. In addition, we implemented
a system using one PM of each of the module designs and deployed
it to the RoboBee brain prototype FPGA. We successfully ran the
application on the FPGA prototype, verified error-free functionality,
and validated that on-FPGA and simulation results matched.
A. Application evaluation overview

We first consider ShrinkFit systems processing the RoboBee ap-
plication. Like the previous figure, Figure 8 plots performance versus
slice area for “Compute only” and three “PM” implementations with
different AS bandwidth assumptions (1, 2, and 3 channels). Again,
“Compute only” data points only include compute logic resource

80

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 15:00:51 UTC from IEEE Xplore.  Restrictions apply. 



and performance costs and do not include ShrinkFit overheads due
to context switching, loading input data, or storing output data.
Each point in the plot represents a different set of PMs. Points on
the left side represent the minimum set of PMs, one each of the
five module designs (convolution, magnitude, DCT, OF region, and
OF merge) required by the application. This configuration requires
the fewest FPGA resources possible. Each point to the right adds
an additional PM to the system. Unlike the previous evaluations
that considered a single module design, the system designer must
decide which of four PMs to add to the system (because only
one OF merge VM is used for the optical flow accelerator, there
is no benefit from adding additional OF merge PMs). To decide
which of the four PMs to add, we use each PM’s compute-only
average performance (Table II) as an approximation for the PM’s
performance and use these approximations to exhaustively calculate
the expected performance of each possible system configuration. We
believe this estimation is close enough to make good decisions, due
to the previous section’s findings that PM performance overheads
are low. From the roughly 130,000 possible PM permutations, the
highest performing configurations were progressively chosen for each
subsequent point with increasing slice area up to the maximum
number of PMs that maximize the overall performance of our
application. This exhaustive search required less than one second
on a typical desktop computer. More efficient search strategies are
certainly possible, but the exhaustive approach performed well in
practice for our workload.

The plot clearly shows that ShrinkFit again enables performance
to scale up with increasing FPGA resource utilization. The somewhat
jagged data points in the plot is an artifact of the different resource
and performance characteristics of the PMs. Each module design’s
PM implementation consumes different FPGA resources and requires
different amounts of time to complete their operation. In other words,
the performance gained and resources consumed by adding a PM
varies between module designs. In addition, applications may chain
VMs in series, and adding an additional PM will only improve
performance until it alleviates the critical path, shifting it to a
different PM design. Although the point-to-point relation is jagged,
the application’s overall trend continues to be roughly linear.

These results verify that performance overheads are low when
processing our application across the full range of slice area, as seen
by the PerfPM/PerfCompute plot. Although there is slightly more
variance in this ratio than with single module evaluations, it is still
relatively flat. In addition, the ratio is always high, on average at
90.34% for systems with a three channel AS, indicating performance
overheads are low.
B. Bandwidth impact

Experimental results in Figure 8 additionally reveal that band-
width has less of an effect on performance than for single module
systems. Some of the module designs in the single module evaluation
required an AS with three channels to achieve high performance.
However, when considering the full application, three channels only
improve performance over two channels by 0.20% on average, an
insignificant difference. Even one channel performance is only 1.72%
less on average than with three channels.

Bandwidth needs for the application are lower than for single
modules because needs are determined by the slowest modules, not
the fastest. OF region PMs require up to three channels when large
numbers of PMs are present since computation is so fast that loading
input images (utilizing bandwidth) requires a significant portion of
the PM’s cycles. But because the OF region PMs are so fast, they
are rarely on the critical path when slower PMs, such as DCT, are
present. As a result, the application never needs to program enough
OF region PMs to require three channels.

These results also demonstrate the efficacy of PM sharing be-
tween ShrinkFit accelerators. Both edge detect and image sharpen
accelerators make use of convolution PMs. These PMs are not
partitioned to one accelerator or the other, rather, all PMs rapidly
switch between both accelerators. Further, the lowest resource con-
figurations use a single convolution PM, shared by both accelerators.
Despite switching between both accelerators, the system achieves
high performance.

buffer slots

buffer slots

buffer slot

buffer slots
buffer slots
buffer slot

Fig. 9. Buffering is essential for high performance with many PMs: four
buffer slots per handle is necessary to scale performance with upper PM
counts. Systems with varying PM counts and one, two, or four buffer slots
per handle are considered. FPGA resources for Spartan-6 FPGA models are
noted at the top.

ShrinkFit quickly identifies when the system achieves maximum
performance and adding additional PMs would waste resources.
We do not consider PM configurations that consume 16x more
resources than the minimum sized configuration, because maximum
performance is achieved well before this point. Like bandwidth,
performance is dictated by the slowest module limiting the critical
path. Therefore, when the slowest module programs its maximum
number of PMs into the FPGA logic (sixteen DCT PMs in the
RoboBees application) the critical path cannot be reduced by adding
PMs from other module designs. Once the maximum number of
PMs for a module design have been programmed into the FPGA,
it is quickly apparent that there is no need to consume more FPGA
resources with other PMs. In the case of the RoboBees application,
this occurs with the following PM counts: 16 DCT PMs, 13 convo-
lution PMs, 2 magnitude PMs, 1 OF region PM, and 1 OF merge
PM. By quickly identifying this maximum performing configuration,
ShrinkFit prevents programming additional, unnecessary logic.
C. Buffering impact

In contrast to bandwidth insensitivity, Figure 9 shows buffering
has a significant effect on performance as PM count grows. For this
experiment, we used systems with the same PM selections as in the
bandwidth evaluation. However, instead of varying bandwidth, we
sized each handle to hold either one, two, or four buffer slots. In
systems with low PM counts, PerfPM/PerfCompute remains high
regardless of buffer size, indicating low performance overheads.
However, as PM counts rise, buffering less than four buffer slots
constrains performance and lowers PerfPM/PerfCompute.

Buffer size has significant impact on performance due to pipelin-
ing effects between modules connected in series. For example, if a
handle is sized for a single buffer slot, that buffer slot can only be
used to produce or consume at any given time. Therefore, for modules
on the critical path, only half may be actively processing at any time.
This effect is lessened for handles sized for two buffer slots, which
allows connected VMs to produce and consume simultaneously. Still,
it is unlikely that both VMs will complete producing and consuming
at exactly the same time, and therefore one will stall while the other
completes. Using handles with room for four buffer slots decouples
modules in series, and improves pipelining performance accordingly.
Because these limitations would apply to any accelerator based
system, the experimental results show that buffering is important for
any accelerator based architecture and does not apply solely to the
ShrinkFit framework.

To obtain a direct comparison between “Compute only” and
actual PM performance while investigating buffering, we do not
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include the resource overhead of using different levels of buffering in
Figure 9. “Compute only” assumes an unlimited amount of buffering,
and because any accelerator based system would require amounts of
buffering at least equivalent to ShrinkFit, omitting the resource cost
results in the fairest comparison. Using four buffer slots rather than
one requires an additional area equivalent to 159 Spartan-6 slices, and
is only necessary to increase buffering when larger PM counts are
used (and more resources are available on the FPGA). In practice, the
cost of adding additional buffering consumes a few percentage points
of resources, and would apply equally whether or not ShrinkFit was
used.

D. Hard logic block area overheads

Smaller FPGAs, such as the Spartan-6 SLX9 can only fit systems
with a few PMs, whereas the larger SLX75 can fit enough to obtain
the maximum achievable performance [14] (Figures 8, 9). As such,
the SLX9’s ShrinkFit framework would need to provision support for
fewer PMs, which would reduce the percentage of FPGA die area
consumed by ShrinkFit hard logic blocks. If Spartan-6 processors
were to include ShrinkFit hard logic blocks, we would propose
provisioning 16 PMs for the SLX9, 32 PMs for the SLX16 and
SLX25, and 64 PMs for larger Spartan-6 FPGAs. For flexibility,
more ShrinkFit wrappers are provisioned than used for the RoboBee
application. For the SLX75 and up, almost half of the 64 wrappers are
unused and available for future expansion. Using data from Figure 5,
the equivalent slice area of ShrinkFit hard logic blocks is small
by comparison. With this provisioning scheme, ShrinkFit hard logic
blocks require less than 2% of reconfigurable die area for small and
large Spartan-6 FPGAs.

VIII. RELATED WORK

Several projects developed coarse-grained accelerators. In some
cases, the research contribution is in optimizations made for a par-
ticular workload [15], in others it is analyzing hardware accelerator
design using one accelerator as a test case [16].

Several works target multiple resource budgets by creating vari-
ants of the same accelerator. Cong, et al., use the Vivado C-to-
RTL compiler to survey architectural parameters to create accelerator
variants for different resource budgets [17]. As discussed in Section I,
this approach leads to challenges when building multi-accelerator
systems. Elastic computing manually designs multiple variants of the
same accelerator using different algorithms [18]. This approach is
difficult to scale as it depends on significant manual design and the
existence of multiple implementations of the same algorithm.

Other works have investigated approaches to manage multiple
accelerators in a single system. Dales, et al., introduced an approach
for a hybrid FPGA+GP processor to switch between accelerators
and software execution [19]. This work does not use accelerator
variants or resize accelerators. FPMR adds hardware support for
MapReduce algorithms to resize an accelerator [20]. This work is
limited to the use of a single accelerator and algorithms which
fit within MapReduce semantics. CHARM, DRP, and PipeRench
use generic hard compute logic blocks instead of FPGA slices to
create reconfigurable accelerators [21], [22], [23]. SHARC presents a
streaming model using multiple accelerators and a context structure
for configuring accelerators [24]. However, SHARC’s model hard-
codes data connections between accelerators, in contrast to Shrink-
Fit’s use of the accelerator store to buffer intermediate data. SHARC’s
approach therefore prevents resizability and logic sharing between
accelerators that is possible using ShrinkFit.

Previous works have used virtualization concepts to support
hardware acceleration. Kalte, et al., use contexts to store accelerator
state, but for pausing or relocating accelerators in FPGA fabric rather
than resizing them [25]. C-Cores introduced an approach for ASICs
that automates software-hardware codesign using virtualization-like
state management but is limited to single accelerators [26]. AXR-
CMP manages accelerators within a virtualized memory space and
supports the general purpose CPUs virtual memory spaces. However,
AXR-CMP does not virtualize accelerators, accelerators cannot au-
tomatically context switch, and general purpose CPUs are required
to program many DMACs[27].

IX. CONCLUSION

Despite HLL tool improvements, combining accelerators in a
single system was challenging. Our evaluation demonstrated that
ShrinkFit addressed this problem, and is able to linearly scale
performance with FPGA resources. We also demonstrated hard logic
block die area overheads (less than 2%), FPGA resource overheads
(0-7.8%), and performance overheads (less than 10% on average)
were all low. With ShrinkFit, we were able to design four accelerators
once, reuse logic between accelerators, and take advantage of small
and large FPGAs.
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