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ABSTRACT
Training deep learning models is compute-intensive and there is an industry-wide trend towards hardware and
software specialization to improve performance. To systematically compare deep learning systems, we introduce a
methodology comprised of a set of analysis techniques and parameterized end-to-end models for fully connected,
convolutional, and recurrent neural networks. This methodology can be applied to analyze various hardware and
software systems, and is intended to complement traditional methods. We demonstrate its utility by comparing
two generations of specialized platforms (Google’s Cloud TPU v2/v3), three heterogeneous platforms (Google
TPU, Nvidia GPU, and Intel CPU), and specialized software stacks (TensorFlow and CUDA).

1 INTRODUCTION
With the end of Moore’s law, academic and industrial re-
search efforts have shifted from general-purpose processors
to domain specific architectures (DSAs) (Hennessy & Patter-
son, 2011). Deep learning, which has revolutionized many
application domains (Silver et al., 2017; Huang et al., 2017;
Amodei et al., 2016; Wu et al., 2016), is a promising field
for DSAs (Dean et al., 2018). New customized training
hardware, software stacks, and optimization tools are being
developed to support ever more sophisticated deep learning
models. Thus there is a great need to concurrently develop
a systematic and scientific methodology for comprehensive
performance analysis of hardware and software systems
customized for deep learning.
The rapid evolution of deep learning models and correspond-
ing hardware and software platforms requires new analysis
techniques that go beyond simply running today’s well-
known deep learning models on individual platforms. A
systematic methodology must expose interactions between
hardware and software platforms across the spectrum of
model attributes (e.g., hyperparameters), so that the result-
ing insights can be applied to future models. The methodol-
ogy itself needs a fast development cycle to rapidly target
new platforms, and it should include large enough models
to stress the limits of emerging platforms.
Recent analysis efforts have been limited to relatively small
collections of seemingly arbitrary DNN models (Mattson
et al., 2019; Adolf et al., 2016; Chen et al., 2012; Tao
et al., 2018). The development of such suites is very time-
consuming. It took half a year to release MLPerf v0.6, and
months to add a new model. Even so, the shelf life of such
models is seldom more than a couple of years. Moreover, us-
ing a collection of individual models such as ResNet-50 (He
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et al., 2016) and Transformer (Vaswani et al., 2017) can lead
to misleading conclusions. For example, Transformer is a
large FC model that trains 3.5× faster on the Tensor Process-
ing Unit (TPU) than on a GPU, yet focusing on this single
model would not reveal the severe TPU memory bandwidth
bottleneck that arises with FCs larger than 4k nodes.
We propose a comprehensive performance evaluation
methodology that combines parameterized deep learning
benchmarks with systematic analysis techniques. We in-
troduce ParaDnn, a tool that generates thousands of pa-
rameterized multi-layer models, including fully-connected
models, convolutional neural networks, and recurrent neural
networks, with model parameter sizes that vary by almost
five orders of magnitude, far beyond the range of existing
benchmarks. Systematic analysis techniques then learn the
sensitivity of performance to model hyperparameters and
explore various dimensions of the design space. We show
that this parameterized analysis methodology complements
the use of real-world workloads (e.g., MLPerf), leading to
insights that traditional approaches either cannot expose or
cannot fully explain.
We conduct case studies in three diverse performance eval-
uation scenarios: homogeneous platforms, heterogeneous
platforms, and software stacks. We hope to motivate re-
searchers to apply our methodology to other platforms. In
Section 4, we analyze and compare two generations of ho-
mogeneous specialized platforms, TPU v2 and v3. Our
methodology provides insights for designing and upgrading
ML accelerators in production-scale systems. In Section 5,
we perform cross comparison of three architectures (CPU,
GPU, and TPU) that span the continuum between general
purpose processors and specialized accelerators, and the
methodology reveals individual strengths and weaknesses
of each platform. In Section 6, we explore the performance
evolution of specialized software stacks, TensorFlow and
CUDA. Table 1 summarizes fourteen observations and in-
sights as examples enabled by our methodology.
While our analysis methodology is able to reveal optimiza-
tion opportunities in current system designs, optimization
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Observation Proof Insight/Explanation

1. TPU exploits the parallelism from batch size and the model width. Fig 2 To design/upgrade new specialized systems,
2. Many operations are bottlenecked by TPU memory bandwidth. Fig 3 architects need to consider interactions between
3. TPU suffers from large inter-chip communication overhead. Fig 4 the operation mix from key workloads (arithmetic
4. Smaller CNN models are more bottlenecked by CPU hosts. Fig 5 intensity) and system configurations (FLOPS,
5. TPU v3 speeds up compute-bound MatMuls by 2.3×, memory bandwidth/capacity, intra-chip/host-device

memory-bound ones by 3×, and large embeddings by > 3×. Fig 6 interconnect). TPU serves as a great example.
6. The largest FC models prefer CPU due to memory constraints. Fig 7 Need for model parallelism on GPU and TPU.
7. Models with large batch size prefer TPU. Fig 8 Large batches pack well on systolic arrays;

Those with small batch size prefer GPU. Fig 10 warp scheduling is flexible for small batches.
8. Smaller FC models prefer TPU and larger FC models prefer GPU. Fig 8 FC needs more memory bandwidth per core (GPU).
9. TPU speedup over GPU increases with larger CNNs. Fig 10 TPU architecture is highly optimized for large CNNs.
10. TPU achieves up to 3× FLOPS utilization compared to GPU. Fig 11 TPU is optimized for both CNN and RNN models.
11. GPU performance scales better with RNN embedding size than TPU. Fig 10 GPU is more flexible to parallelize non-MatMuls.
12. Within seven months, the software stack specialized for TPU It is easier to optimize for certain models

was improved by up to 2.5× (CNN), 7× (FC), and 9.7× (RNN). Fig 12 than to benefit all models at once.
13. Quantization from 32 bits to 16 bits Smaller data types save memory traffic and enable

significantly improves TPU and GPU performance. Fig 12 larger batch sizes, resulting in super-linear speedups.
14. TensorFlow and CUDA teams provide substantial performance There is huge potential to optimize compilers

improvements in each update. Fig 12 even after the hardware has been shipped.
Table 1: A summary of major observations and insights enabled by our analysis methodology.

details are beyond the scope of this paper. Our analysis
focuses on training, not inference. We do not study accu-
racy or the performance of multi-GPU/TPU systems. Such
studies might yield different conclusions, and we leave these
extensions to future work, as each deserves in-depth study.
Section 7 discusses the limitations in detail.

2 METHODOLOGY
Current deep learning (DL) performance analysis methods
have limitations in terms of the insights they are able to
reveal. They often leverage two distinct types of bench-
mark suites: real-world suites such as MLPerf (Mattson
et al., 2019), Fathom (Adolf et al., 2016), BenchNN (Chen
et al., 2012), and BenchIP (Tao et al., 2018), and micro-
benchmark suites, such as DeepBench (Research, 2017) and
BenchIP. Each real-world suite contains a handful of popular
DL models spanning a variety of model architectures. Such
suites have a long development cycle. Their shelf-life is un-
known since they only contain today’s deep learning models,
which may become obsolete as DL models evolve rapidly.
Further, they fail to reveal deep insights into interactions
between DL model attributes and hardware performance,
since the benchmarks are sparse points in the vast space
of deep learning models. Micro-benchmark suites exercise
basic operations (e.g., matrix multiplication or convolution)
in neural networks, but they cannot simulate complex depen-
dencies between different operations in end-to-end models.
To complement existing performance analysis methods, we
introduce a systematic methodology, composed of a tool,
ParaDnn, and a set of analysis methods. ParaDnn has the
advantages of the above approaches, with the goal of provid-
ing large “end-to-end” models covering current and future
applications, and parameterizing the models to explore a
much larger design space of DNN model attributes. Our
methodology can stress the upper and lower bounds of hard-
ware and software systems in various dimensions, including
floating-point computation capability, memory bandwidth,
inter-chip bandwidth, and host-device balance. For cross-
platform comparisons, the methodology can also discover
cases favoring one platform over another and describe the
DL hyperparameters of such cases. With ParaDnn, such
studies can be conducted comprehensively, quickly, and
conveniently. The utility of parameterized analysis is not

Variable Layer Nodes Input Output Batch Size
Min 4 32 2000 200 64
Max 128 8192 8000 1000 16384
Inc ×2 ×2 +2000 +200 ×2

(a) Fully Connected Models
Variable Block Filter Image Output Batch Size

Min 1 16 200 500 64
Max 8 6 300 1500 1024
Inc +1 ×2 +50 +500 ×2
(b) Conv. Neural Nets: Residual and Bottleneck Blocks

Variable Layer Embed Length Vocab Batch Size
Min 1 100 10 2 16
Max 13 900 90 1024 1024
Inc +4 +400 +40 ×4 ×4

(c) Recurrent Neural Networks: RNN, LSTM, GRU
Table 2: The ranges of the hyperparameters and dataset variables
(italic) chosen in this paper.

limited to those cases, and one goal of this paper is to moti-
vate application of our methodology to new platforms.
2.1 ParaDnn
We first introduce ParaDnn, a tool that generates parameter-
ized end-to-end models to run on target platforms. ParaDnn
creates models encompassing fully-connected models (FC),
convolutional neural networks (CNN), and recurrent neu-
ral networks (RNN). The models are parameterizable, so
ParaDnn models are equal to or greater in size compared
to today’s real-world models. For example, a single end-to-
end CNN model from ParaDnn contains a mixture of many
different layers with different sizes of convolution, batch
normalization, pooling, and FC layers. The complexity of
ParaDnn workloads is comparable to that of real-world mod-
els (e.g., ResNet-50 and Transformer), as will be shown in
Figure 1. Insights about hardware performance sensitivity
to model attributes allow interpolating and extrapolating
to future models of interest. These insights could not be
discovered with either the small point space exploration of
the real-world suites or microbenchmarks, which do not
capture inter-operation dependencies as ParaDnn does. The
model types of ParaDnn cover 95% of Google’s TPU work-
loads (Jouppi et al., 2017), all of Facebook’s deep learning
models (Hazelwood et al., 2018; Gupta et al., 2019; Naumov
et al., 2019), and eight out of nine MLPerf models (Mattson
et al., 2019), with the exception of minigo, the reinforcement
learning model.



A Systematic Methodology for Analysis of Deep Learning Hardware and Software Platforms

Fully-Connected Models FC models comprise multiple
fully-connected layers. The architecture is

Input→ [Layer[Node]]→ Output,
where [Layer] means the number of layers is variable. We
can sweep the number of layers, the number of nodes per
layer, and the numbers input and output units of the datasets.
Convolutional Neural Networks CNN models are residual
networks. The architecture of ParaDnn CNNs is
Input→ [Residual/Bottleneck Block]×4→ FC→Output.
A residual network contains four groups of blocks (He et al.,
2016). Each can be a residual block or a bottleneck block,
followed by a fully-connected layer. Residual blocks have
two convolutional layers and two batch normalization lay-
ers, while bottleneck blocks have three of each. ParaDnn
treats the minimum number of filters as a variable, and it
doubles in every group. An input image is square with three
channels, represented by its length.
Recurrent Neural Networks RNNs are comprised of mul-
tiple layers of basic RNN, LSTM, or GRU cells:

Input→ [RNN/LSTM/GRU Cell]→ Output.
Each token of the input sequence is embedded within a fixed
length vector, and the length of the vector is the embedding
size. We sweep the number of layers and the embedding
size. The variables in the dataset include the maximum
length per input sequence and vocabulary size.
Range of Hyperparameters and Datasets We choose the
range of hyperparameters and datasets to cover the real
models (Section 2.2), and make sure the design space is
tractable. Table 2 summarizes how hyperparameters are
swept. We focus on large batches, and extremely small
batches may lead to different conclusions. By default, this
paper uses CNNs with bottleneck blocks and basic RNNs.
2.2 Real-World Models
In addition to ParaDnn, we study six real-world models. We
show that ParaDnn and those models are complementary—
ParaDnn explores a larger design space, and real models
represent several currently popular design points.
This work focuses on TensorFlow, the native framework
for TPU. We include two of the three workloads in Ten-
sorFlow from MLPerf (Mattson et al., 2019), i.e., Trans-
former (Vaswani et al., 2017) and ResNet-50 (He et al.,
2016). We also select other real-world workloads (Repos-
itory, 2018), including RetinaNet (Lin et al., 2017a),
DenseNet (Huang et al., 2017), MobileNet (Howard et al.,
2017), and SqueezeNet (Iandola et al., 2016). We refer to
them as real workloads/models.
Figure 1 shows the numbers of trainable parameters across
all workloads to quantify the sizes of the models. The
ParaDnn workloads are shown as ranges and the real work-
loads as dots. ParaDnn covers a large range of models, from
10k to nearly a billion parameters. Transformer is the largest
real FC, and RetinaNet is the largest real CNN. The small
models, SqueezeNet and MobileNet, are typical of models
targeting mobile applications.
2.3 Analysis Methods
ParaDnn enables a set of analysis methods that can quan-
tify, compare, and visualize the DL design space in var-
ious dimensions. We apply those methods after running

105 106 107 108

# Trainable Parameters

SqueezeNetMobileNetDenseNetResNet-50RetinaNetTransformerGRULSTMRNNBottleneckResidualFC

Figure 1: The numbers of trainable parameters for all models.

all ParaDnn workloads on platforms under study to collect
performance metrics of interest. All analysis methods and
results distinguish ParaDnn from suites of individual mod-
els, because the real-world suites do not support sensitivity
analysis, and ParaDnn covers a much larger design space.
Heat Map With ParaDnn, we can measure performance
sensitivity to hyperparameters. Heat maps are an intuitive
approach to understand the design space of DL models. A
heat map uses colors to show how a performance metric
of interest responds to model hyperparameters (on x- and
y-axes). The rate of color change across the map reflects the
sensitivity of performance to hyperparameters.
Quantification with Linear Regression Table 2 shows five
hyperparameters of each model type under study, and a heat
map can only visualize two hyperparameters. Also, ob-
serving sensitivity via heat maps is more qualitative than
quantitative. We propose to use linear regression (LR) to
quantify the sensitivity. We train a LR model using hyperpa-
rameters to predict performance, and use the weights of the
hyperparameters as a measure of sensitivity. Other metrics
including T- and F-test may be used for this purpose (Hogg
et al., 2005), but they only report positive values of im-
portance. LR reports the signs of the weights, indicating
positive or negative correlations. Note that this LR model is
not for prediction. Section 4.1 presents a detailed example.
Roofline Model Roofline models are useful to study mem-
ory and computation bottlenecks (Williams et al., 2009;
Jouppi et al., 2017). A roofline represents the upper bound
of floating-point operations per second (FLOPS) for work-
loads with different compute intensity. Roofline model
analysis shows that ParaDnn’s models range from extremely
bandwidth-bound to compute-bound. Such a range is hard
to achieve with existing real models, especially to reach the
limits of TPUs. Section 4.2 presents details.
In addition to roofline models, we study the design space in
other dimensions as well, by visualizing ParaDnn and real-
world models on scatter plots with various x- and y-axes.
Section 4.4 studies FLOPS and data infeed time. Section 5
studies model size and speedup.
Box Plots We use box plots to summarize the performance
of each ParaDnn model type. Box plots show that the per-
formance of a ParaDnn model type spans a large range, and
they highlight the risk of overly optimizing hardware and
software systems for certain models.

3 HARDWARE PLATFORMS
Our selection of hardware reflects the latest configurations
widely available in cloud platforms at paper submission
time. Platform specifications are summarized in Table 3.
CPU Platform The CPU is an n1-standard-32 instance from
Google Cloud Platform with Skylake architecture. It has 16
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Mem Mem Bdw Peak

Platform Unit Version (GB) (GB/s) FLOPS
CPU 1 VM Skylake 120 16.6 2T SP†

GPU 1 Pkg V100 16 900 125T
TPU 1 Board v2 64 2400 180T

TPUv3 (8 cores) v3 128 3600* 420T
† 2FMA× 32Single-Precision× 16Cores× 2GHz = 2 SP TFLOPS
* Estimated based on empirical results (Section 4.5).

Table 3: Hardware platforms under study.

cores and 32 threads. It has large memory (120 GB) and low-
est peak flops (2 TFLOPS) among the three. GeekBench 4
produced the bandwidth measurement.
GPU Platform The GPU is an NVIDIA V100 in a DGX-1
GPU platform that contains 8 V100 packages (SXM2) con-
nected via 300 GB/s NVlink 2.0 interconnect. We currently
measure the performance of a single SXM2 node. One node
has 16 GB of memory and 900 GB/s memory bandwidth. A
V100 has 640 tensor cores and is able to run mixed precision
training using float16 to compute and float32 to accumulate,
making its peak performance 125 TFLOPS.
TPU Platform We use Cloud TPU v2 instances to which
we were given academic access in February 2018. Each
TPU board contains four TPU packages (the default config-
uration) (Dean, 2017). One package contains 2 cores and
one core has one matrix unit (MXU). A Cloud TPU v2 plat-
form supports 180 TFLOPS at peak. Memory size is 8 GB
per core, or 64 GB per board, with 2400 GB/s overall mem-
ory bandwidth. TPU v2 supports mixed precision training
using bfloat16 and float32. TPU v3 has twice the number of
MXUs and twice the HBM capacity per core of v2 (Google,
2018). Its memory bandwidth has not been disclosed, but
empirical results show that it has increased by 1.5×. TPU
v3 has a peak of 420 TFLOPS, 2.3× greater than v2.
This is the first research paper to study TPU v2/v3, which
supports training, while TPU v1 only runs inference (Jouppi
et al., 2017). To enable training, TPU v2 supports more
operations than matrix multiplication such as gradient and
various optimizer operations. It also carries more pressure
on the memory system, since weights are accessed a second
time in the backward pass. Also, TPU v2 has scalar/vector
units, which do not exist in v1. TPU v2 has MXUs of size
128×128 with 32- or 16-bit data types; v1 has 256×256 and
8 bits.
Understanding TPU Memory Size The TPU implements
data parallelism by splitting each batch of training data
evenly among the 8 cores. Every TPU core keeps a whole
copy of the model. Therefore memory size per core deter-
mines the maximum model supported (Sec 5.1), while total
memory determines the maximum batch size (Sec 5.2).
Comparison Rationale One V100 package and one TPU
board (4 packages) are the minimal units available. On
Cloud TPU, distribution of computation across its four pack-
ages happens automatically, while multi-GPU performance
depends largely on user’s implementation. Conclusions
here do not apply to systems with multiple GPUs or TPU
boards (Chao & Saeta, 2019).

4 TPU PERFORMANCE IMPLICATIONS
As the end of Dennard scaling and Moore’s law has slowed
the performance improvement of general-purpose micropro-
cessors (Dean et al., 2018), the design of DSAs is becoming
more and more relevant. The TPU is a prominent exam-
ple (Jouppi et al., 2017; Dean, 2017). Its development was

5 6 7 8 9 101112
Log2(# Nodes)

6
7
8
9

10
11
12
13
14Lo

g2
(B

at
ch

 S
ize

)

FLOPS%

0

10

20

30

40

50

(a) FC

16 32 64
Filters

6

7

8

9

10Lo
g2

(B
at

ch
 S

ize
)

FLOPS%

10

20

30

40

(b) CNN

100 500 900
Embeddingsizes

4

6

8

10Lo
g2

(B
at

ch
 S

ize
)

FLOPS%

2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

(c) RNN

1.0 0.5 0.0 0.5 1.0
LR Weights

Input
Output

Layer
Node
Batch

(d) FC

1.0 0.5 0.0 0.5 1.0
LR Weights

Output
Input
Block
Batch
Filter

(e) CNN

1.0 0.5 0.0 0.5 1.0
LR Weights

Vocab
Layer

Maxlength
Embedding

Batch

(f) RNN
Figure 2: (a)–(c) ParaDnn’s FLOPS utilization and (d)–(f) its
sensitivity to hyperparameters.

motivated by the observation that with conventional CPUs,
Google would have had to double their datacenter footprint
to meet the internal demand for DL workloads. Google has
been using TPUs for their large-scale production systems,
including Search, Translate, and Gmail. Analyzing the ar-
chitecture of such systems can provide valuable insights
into future deep learning accelerator design.
In this section, we use our methodology to study the per-
formance characteristics of TPU v2 and v3 (Dean, 2017;
Google, 2018), with a focus on v2, from the computation
capability of the core to system balance. We show that
ParaDnn can reveal system bottlenecks in a more compre-
hensive way than real-world models by probing upper and
lower system limits. Based on such observations, we dis-
cuss possible steps to improve TPU performance, which can
be generalized to other deep learning accelerator systems.
Observations 1 to 5 in Table 1 summarize our key findings.
4.1 FLOPS Utilization
We use our methodology to study the TPU’s floating-point
operations per second (FLOPS) utilization, which is the
ratio of workload average FLOPS to platform peak FLOPS,
measuring how efficiently the computation capacity of a
platform is used. We measure the FLOPS of ParaDnn mod-
els sweeping hyperparameters listed in Table 2. To visualize
FLOPS, we use heat maps.
Heat Maps Figures 2(a)–(c) present heat maps of FLOPS
utilization for FC, CNN, and RNN ParaDnn models. For
each model type, we choose two hyperparameters (as de-
scribed below) that affect FLOPS utilization the most,
sweeping their ranges to create a map grid while keeping
other hyperparameters fixed. FLOPS utilization of all three
model types increases with batch size, indicating that the
TPU is capable of leveraging the parallelism within a batch.
FLOPS utilization of FCs also increases with node count
per FC layer; that of CNNs also increases with filter count;
and that of RNNs, with embedding size. So the TPU also
exploits parallelism within the widths of the models.
Quantifying with Linear Regression To quantify these
effects, we use the weights of a linear regression (LR) model.
For FC, the LR model is

FLOPS = w0× layer+w1×node +
w2× input+w3×output+w4×batch size,

where w0–w4 are hyperparameter weights. When training
the LR model, we normalize weights to the same scale, so
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that weight reflects importance. For example, a positive w1
value shows that node count affects performance positively.
Figures 2(d)–(f) show the LR weights of the model hyper-
parameters. Batch size and model width have the highest
absolute weights, shown on the x- and y-axes in Figures 2(a)–
(c). Figure 2(d) shows that the FLOPS utilization of FCs is
largely affected by batch size and node count, while layer
count, and output and input unit counts do not matter as
much. Similarly, Figure 2(e) shows that filter count and
batch size are most important for CNNs. For RNNs, utiliza-
tion is most affected by batch and embedding sizes.
Takeaways ParaDnn enables systematic study of hyperpa-
rameter sensitivity and shows that it is natural for a ML sys-
tem to utilize parallelism arising from large batch size and
model width. It is especially intuitive to map batch size and
model width to the two dimensions of systolic arrays. Mean-
while, parallelism opportunities opened by large numbers of
layers remain to be explored via model parallelism (Dean
et al., 2012; Jia et al., 2018) and pipelining (Blog, 2019).
4.2 Roofline Model Analysis
The computation capacity of the TPU’s core is only one
source of its performance. Memory bandwidth also has a
significant impact. In this section, we apply the roofline
model (Williams et al., 2009) to ParaDnn FCs and CNNs
to analyze the TPU’s computation and memory bandwidth.
We omit RNN models because the TPU profiler reports
incorrect numbers for RNN memory bandwidth.
The Roofline Model Figure 3 shows the roofline plots. The
y-axis is FLOPS and the x-axis is arithmetic intensity, i.e.,
floating-point operations per byte transferred from memory.
The roofline (the red line in Figure 3) has of a slanted part
and a horizontal part. It represents the highest achievable
FLOPS at a given arithmetic intensity. Any data point (x,y)
on the slanted part has x

y = memory bandwidth. The hor-
izontal part is the hardware peak FLOPS. A workload or
operation (a point in Figure 3) close to the slanted roofline is
memory-bound; one close to the horizontal part is compute-
bound. A workload or operation not close to the roofline
stresses neither memory interconnect nor compute units.
Figures 3(a) and 3(c) show all the ParaDnn FCs and CNNs
(dots) plus Transformer and ResNet-50 (stars). Figures 3(b)
and 3(d) show all the operation breakdowns. The triangles
in Figures 3(a) and 3(c) are selected memory-bound models.
The design space shown with roofline models indicates that
ParaDnn is a superset of the real-world models. ParaDnn
models span a much larger range in the design space, from
extremely memory-bound to compute-bound. Therefore
performance analysis with ParaDnn can comprehensively
test the limits of platforms in both extremes. An exception
is that some operations of Transformer do not align closely
with those of FCs. This results from a choice in this paper:
ParaDnn uses the RMSProp optimizer, keeping nodes per
layer uniform for FCs, while Transformer uses the adafactor
optimizer and has layers with 4k, 2k, and 512 nodes.
ParaDnn Analysis We first discuss the insights enabled
by ParaDnn, of which the real-world models are a sub-
set. Figure 3(a) shows that large batch sizes make FCs
more compute-bound, and more nodes make FCs more
memory-bound. That is because FCs with more nodes need
to transfer more weights/activations from the memory, and
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Figure 3: TPU rooflines for FCs and CNNs. (a) and (c): ParaDnn
and real-world models. (b) and (d): their operation breakdown.

large batch sizes increase the computation per weight/acti-
vation transferred, i.e, the arithmetic intensity. Specifically,
FCs with ≥ 2k nodes per layer and ≥ 8k batch size are
compute-bound. Transformer is close to compute-bound
and it uses 4k batch size, so it overlaps with FCs having 4k
batch sizes. Figure 3(c) shows that models close to ResNet-
50 are compute-bound, while a majority of the CNNs are
bottlenecked by memory bandwidth. The CNNs’ higher
FLOPS comes from higher arithmetic intensity caused by
more filters. When memory bandwidth is the bottleneck, the
way to increase FLOPS is to increase arithmetic intensity.
Figures 3(b) and 3(d) show the TensorFlow operations that
take more than 1% of the workload execution time and more
than 0 FLOPS. The arithmetic intensity of such operations
can be as low as 0.125.1 The TensorFlow breakdown in
Figure 3 is generated after operation fusion, which com-
bines and executes several operations together for higher
efficiency. In Figures 3(b) and 3(d), the only compute-bound
operation is large fused MatMul (MatMul fused with other
operations), so a compute-bound model needs large Mat-
Muls. Other operations are closer to the slanted line, con-
strained by memory bandwidth. Transformer and ResNet-
50 are compute-bound (Figures 3(a) and 3(c)) because they
have compute-bound MatMuls (Figures 3(b) and 3(d)).
Real-World Model Analysis ParaDnn and real-world mod-
els are complementary. By analyzing ParaDnn, we ex-
plore the design space and reach the limits of platforms.
Analyzing real-world models puts the design space study
into realistic context by highlighting popular representa-
tive designs. The tables in Figure 3 show the operation
breakdown of Transformer and ResNet-50, and indicate
that even compute-bound models contain a noticeable frac-
tion of memory-bound operations. Transformer has three
memory-bound operations: (1) input fusion (9.0%), which
includes multiply, subtract, and reduce; (2) loop fusion
(7.0%), which consists of control flow operations (e.g., se-
lect and equal-to); and (3) CrossReplicaSum (3.9%), which
sums up the values across multiple weight replicas. These

1An activation accumulation operation (CrossReplicaSum in
TensorFlow) uses float32 even with bfloat16 model weights. In
this case, the arithmetic intensity is 1/(2×4 bytes) = 0.125, i.e.,
one floating-point addition for every two data points loaded.
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Figure 4: Communication overhead in a multi-chip system is
non-negligible, but is reduced with large batch sizes.

three operations contribute 19.9% of the total execution time.
(12.3% of the execution time is for data formatting, which
has no arithmetic intensity or TPU FLOPS.) ResNet-50 has
memory-bound loop fusion (9%), MaxPoolGrad (2.9%),
and CrossReplicaSum (1.1%), which sums to 13%, showing
the need for end-to-end optimization for DL accelerators.
Takeaways ParaDnn explores the design space and stresses
platform limits; real-world models represent the currently
important design points. ParaDnn shows that the de-
sign space is composed of very diverse models, from ex-
tremely memory-bound to compute-bound; real-world mod-
els show that even compute-bound models contain non-
negligible fractions of memory-bound operations (19.9%
for Transformer and 13% for ResNet-50), which suggests
that memory bandwidth can affect other ML systems orig-
inally designed to optimize computation. Researchers
can test system memory-boundness with ParaDnn. Ap-
proaches for speeding up memory-bound operations in-
clude caching (Hennessy & Patterson, 2011), operation
fusion (xla, 2018; Chen et al., 2018; Rotem et al., 2018),
aggressive data quantization (Banner et al., 2018), and com-
pression (Han et al., 2015; Lin et al., 2017b).

4.3 Multi-Chip Overhead
Computing speed and memory bandwidth of a TPU core are
not the only factors affecting training performance, because
typical large-scale systems use multiple chips (Dean et al.,
2012). This section evaluates the scalability of a multi-chip
TPU system with ParaDnn. We quantify the multi-chip
overhead by comparing the FLOPS utilization of 1-core
(x-axis) and 8-core TPUs (y-axis) in Figure 4. If there were
no multi-chip overhead, FLOPS utilization of 1-core and
8-core should be the same, i.e., all points should lie on the
dashed line in Figure 4 showing x = y.
ParaDnn allows us to explore models with a wide range of
communication overhead. Figure 4 shows that an 8-core
TPU exhibits noticeably lower FLOPS utilization than a
1-core TPU, reflecting significant inter-core communication
overhead. For FC, the maximum FLOPS utilization in an 8-
core TPU is 62%, compared to 100% in a 1-core TPU. Multi-
chip overhead is less noticeable in CNNs, with FLOPS
utilization decreasing from 55% in the 1-core TPU to 40%
in the 8-core. It is worse for FCs because there are more
weights to synchronize across cores than for CNNs.
Our analysis method indicates that large workloads can
amortize the parallelism overhead, and it highlights batch
size as the key hyperparameter that affects communication
overhead. Increasing batch size reduces the FLOPS uti-
lization gap by increasing computation without increasing
weight synchronization. On the 8-core TPU, FCs need at
least 16k batch size to achieve more than 50% FLOPS uti-
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Figure 5: The FLOPS utilizations and data infeed percentages of
ParaDnn (dots) and real-world (stars) CNNs.

lization. Specifically, FCs with ≥ 256 nodes and ≤ 512
batch size run faster on a TPU with one core than on one
with eight. Thus we consider FCs with larger than 1024
batch size in Figure 4. Based on Amdahl’s law, the maxi-
mum non-parallel fraction of the workloads is up to 60%
for FC and up to 40% for CNN. Using the largest batch
size shown in Figure 4, the 90th-percentile of non-parallel
fractions are 16% for FC and 8.8% for CNN.
Takeaways With diverse ParaDnn models, we observe that
communication overhead in multi-chip systems is non-
negligible even for large FCs and CNNs. Using large batch
size can reduce overhead by increasing parallel computation
without increasing weight transfers. Possible optimizations
include relaxed synchronization, model parallelism (Dean
et al., 2012), gradient compression (Lin et al., 2017b), and
weight pruning and compression (Han et al., 2015).
4.4 Host-Device Balance
Previous subsections have focused on the performance of
the accelerator itself. We now turn to “data infeed,” the
process of preparing and moving input data to the TPU
board. ParaDnn in other sections uses data synthesized
from CPU hosts, which avoids most of the data infeed over-
head. Here we use ParaDnn CNN models with the ImageNet
dataset (Krizhevsky et al., 2012).
The TPU system includes a CPU host and a TPU de-
vice (Google, 2018). For image datasets, the host fetches
images from the network, decodes and preprocesses them,
and feeds them to the device. We refer this as data prepa-
ration. The device then performs training computation on
the images. Data infeed includes network overhead, host
compute, and transfer between host and device.
For each ParaDnn CNN and the ImageNet dataset, we use
the TPU profiler to collect FLOPS utilization and infeed
time percentage, which is the fraction of time the acceler-
ator spends waiting for data. Figure 5 shows the results as
dots, along with the real-world CNNs as stars. ParaDnn
models are very diverse, ranging from 0 to 50% FLOPS
utilization and 0 to 90% infeed time. ParaDnn shows that
many CNNs have significant infeed time and that larger
CNNs tend to have lower infeed time. Large CNNs, those
with more filters and/or more layers, are the most suitable
for the TPU system, because the accelerator spends more
time training each image and CPU infeed time per image
is fixed. The high-performance TPU system targets large
workloads. Consistent with the communication overhead
study in Section 4.3, small workloads do not have enough
parallelism to utilize the TPU efficiently.
Some real models show opportunities to optimize for data-
infeed bottlenecks. SqueezeNet has the highest infeed time
because it is designed to accommodate mobile devices by
using small numbers of filters per layer. While MobileNet
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Figure 6: Speedup of TPU v3 over v2 for (a) FC operations,
(b) CNN operations, and (c) ParaDnn models. The red line
(75 ops/byte) is the inflection point in the TPU v2 roofline (Fig 3).

also targets mobile devices, it has one convolution layer that
uses up to 1k filters, eliminating time lost to data infeed.
RetinaNet, ResNet, and SqueezeNet show potential for im-
provement through system optimizations. The performance
without data preparation shows that resolving the infeed
bottleneck can lead to 37%, 34%, and 180% performance
improvement, respectively.
Takeaways ParaDnn shows the design space of FLOPS
and data-infeed time, and reveals that large workloads with
abundant parallelism are not host-bound on large accelerator
systems. Real-world models show that the performance
of some workloads can be improved. When designing an
accelerator system, scaling performance of the CPU host
to match the accelerator is crucial for utilization of the
accelerator’s computation resource.
4.5 TPU v3
In this section, we systematically quantify the differences
between TPU v2 and v3. Figure 6 compares the two us-
ing ParaDnn (dots), plus ResNet and Transformer (stars).
Batch size for v3 is twice that for v2, thanks to its doubled
memory capacity. Figures 6(a) and 6(b) use a variation of
the roofline model, showing arithmetic intensity on the x-
axis and operation speedup on the y-axis. Data point colors
representing operation types are consistent with those in
Figures 3(b) and 3(d). As a reference, the red dashed line
is the inflection point in the TPU v2 roofline from Figure 3,
where arithmetic intensity is 75 ops/byte (180 TFLOPS /
2.4 TB/s). The operations on the left of the red line are
memory-bound; those on the right are compute-bound. We
group the operations in four classes, as follows.
Compute-Bound Ops The peak FLOPS of TPU v3 is 2.3×
that of v2, so the performance of compute-bound operations
is improved by about 2.3× on v3. Such operations are on
the right of the red dashed line in Figure 6(b).
Memory-Bound Ops (2× batch size) The maximum
speedup of the memory-bound operations (mainly the Mat-
Muls in Figures 6(a) and 6(b)) is 3×. Tripled speedup
comes from doubled batch size (owing to doubled mem-
ory capacity) and memory bandwidth improvement. The
memory bandwidth increase of v3 over v2 has not been
officially disclosed, but we can estimate it. Doubled batch
size means doubled arithmetic intensity. On the slanted
line of a roofline model, that means doubled FLOPS, be-
cause the ratio of FLOPS to arithmetic intensity is fixed.
Switching from v2’s roofline to v3’s thus increases FLOPS
by twice the bandwidth improvement. So the 3× overall
speedup suggests that v3 bandwidth improvement over v2
is 3/2 = 1.5×, to 3.6 TB/s.
Other Memory-Bound Ops The 1.5× bandwidth improve-
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Figure 7: Examples/second of ParaDnn FC models with fixed
depth (64). Larger memory allows the CPU to run larger models.

ment estimate is corroborated by the 1.5× speedup of other
memory-bound operations, represented by the non-MatMul
FC operations in the lower left corner of Figure 6(a). The
performance of those operations does not increase with
larger batch size, as shown by the vertical alignment of each
operation type in Figure 3(b). Thus the 1.5× speedup in
Figure 6(a) is from bandwidth improvement.
Boundary Cases The compute-bound MatMuls in Fig-
ure 6(b) become memory-bound on TPU v3, so the speedup
is < 2.3×. Such operations have arithmetic intensity be-
tween 75 and 117, because the roofline inflection point of
v3 is at x = 420/(2.4×1.5) = 117. CrossReplicaSum (yel-
low dots) is slowed down on TPU v3, which may be because
of more replicas across more MXUs.
End-to-End Models In Figure 6(c) the maximum speedups
are 2.83× (FC), 2.31×(CNN), and 3.11×(RNN). Speedup
increases with model width (second column of Table 2), and
the maximum speedup is achieved by the largest width. FCs
with close to 3× speedup are dominated by memory-bound
MatMuls. Exceptions are RNNs with more than 3×; these
have the largest embedding size (900), indicating that TPU
v3 optimizes large embedding computations.
Takeaways ParaDnn allows examining new platforms
with a wider range of workloads, from memory-bound to
compute-bound, than using real-world models alone. Com-
paring TPU v3 to v2 as an example, ParaDnn can show the
system upgrade benefiting operations with different arith-
metic intensity. TPU v3 shows three main levels of speedup:
2.3× for compute-bound operations, 3× for memory-bound
MatMuls, and 1.5× for other memory-bound operations.
This is the result of its 2.3× FLOPS, 2× memory capacity,
and 1.5× memory bandwidth.

5 CROSS-PLATFORM COMPARISON
In this section, we show ParaDnn’s utility in cross-platform
comparison, with CPU, GPU, and TPU as exemplars along
the continuum between general purpose processors and
specialized accelerators. ParaDnn shows the sensitivity
of speedup to model hyperparameters, allowing users to
choose platforms based on model hyperparameters of inter-
est, rather than on model characterizations that happen to
have been reported. ParaDnn also reveals the fundamental
architectural differences between platforms and shows the
trade-offs between flexibility and specialization.
• The TPU is highly-optimized for large batches and CNNs,

and has the highest training throughput.
• The GPU is more flexible and programmable for irregular

computations, such as small batches and non-MatMul
operations. Training of large FC models benefits from its
sophisticated memory system and higher bandwidth.

• The CPU is the most programmable, so it achieves the
highest FLOPS utilization for RNNs, and it supports the
largest model because of its high memory capacity.
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Figure 8: (a) Sensitivity analysis of TPU over GPU speedups.
Speedups color-coded by (b) batch size and (c) FC nodes per layer.

5.1 Fully-Connected DNNs
Examples/second measures the number of examples trained
per second, a proxy for end-to-end performance. Heat maps
in Figure 7 compare ParaDnn FCs for three platforms, with
varying node counts and batch sizes but fixed layer count
(64). We use LR weights from Section 4.1 to quantify the hy-
perparameter effects (not shown owing to space limitations).
Layer and node counts have negative weights because it
is more time-consuming to train larger models with many
layers and nodes. Batch size greatly improves throughput on
the GPU and TPU, but not the CPU because the parallelism
available with small batch sizes can fully utilize a CPU.
In Figure 7, the white squares indicate models that encounter
out-of-memory issues. Only the CPU supports the largest
models, and the GPU supports larger models than the TPU.
This is because every hardware core keeps one copy of the
model, so memory per core determines the largest model
supported, as explained in Section 3. The CPU has the
highest memory per core (120 GB), and the GPU (16 GB)
is higher than the TPU (8 GB). While TPUs and GPUs
may draw more attention, as of today the only choice for
extremely large models is the CPU, which supports all
model sizes. For example, Facebook uses dual-socket CPU
servers with large memories to train ranking models (FC
networks) (Hazelwood et al., 2018). That fact highlights
the need for model parallelism and pipelining on the GPU
and TPU (Dean et al., 2012; Jia et al., 2018; Blog, 2019) to
allow those powerful platforms to support larger models.
TPU over GPU To further investigate the best hardware
platform for FC models, we analyze TPU over GPU
speedups. Figure 8(a) plots the linear regression weights
across FC hyperparameters for TPU over GPU speedup.
Figures 8(b) and 8(c) show the design space for FCs as scat-
ter plots, with numbers of model parameters on the x axis
and speedups on the y axis. To display the effects of hy-
perparameters, we color-code data points to reflect batch
size (Figure 8(b)) and node count per layer (Figure 8(c)).
Overall, 62% of the FCs perform better on the TPU.
The TPU is well suited for large batch training because
systolic arrays excel at increasing throughput (Kung, 1982).
The positive weight of batch size in Figure 8(a) and the
horizontal color bands in Figure 8(b) indicate that large
batch size is the key to higher speedup. This suggests that
the TPU MXUs, implemented with systolic arrays, need
large batches to reach full utilization. The GPU is a better
choice for small batches, because it executes computation in
warps, packing small batches and scheduling them on stream
multiprocessors more easily (Nickolls & Dally, 2010).
The GPU is a better choice for large models, suggesting that
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Figure 9: (a) The sensitivity analysis of (b) GPU over CPU
speedups for FCs.

it is optimized for large FC memory reuse and streaming
requirements. This is shown by the negative weights of node
count, layer count, and input size in Figure 8(a) and the
trend in Figure 8(c), corroborated by the overall negatively-
correlated trend of speedup with parameter count in Figure 8.
FCs have minimal weight reuse and large models have more
weights, so they put a lot of pressure on the memory system.
The GPU has a more mature memory system and higher
memory bandwidth than the TPU, which makes it better
suited to the memory requirements of large FCs.
GPU over CPU Figure 9(a) shows the LR weights of GPU-
over-CPU speedup. Figure 9(b) shows the design space
color-coded by node count. The GPU is a better platform
for large FCs because its architecture can better exploit the
parallelism available with large batches and models. Recall
from Figure 8 that large FCs prefer the GPU over the TPU.
So the GPU is the best platform for large FCs, but models
with large batches perform best on the TPU.
5.2 CNN and RNN
We now describe the speedup of ParaDnn CNNs and RNNs.
Since our conclusions for CPUs are similar to those in the
previous section, we omit them in the interest of brevity.
CNN Figures 10(a)–10(c) show the speedups of the TPU
over the GPU. All CNNs perform better on the TPU. Batch
size is still the key to better TPU-over-GPU speedup for
CNNs, shown by its positive LR weight in Figure 10(a) and
the increasing speedup with batch size in Figure 10(b). The
TPU is the best platform for large CNNs, suggesting that its
architecture is highly optimized for the spatial reuse char-
acteristics of CNNs. This is shown by the positive weights
in Figures 10(a) and 10(c), where models with more filters
and blocks have higher speedups. It is different from Sec-
tion 5.1, showing that the TPU is not preferred for large FCs.
This suggests that the TPU handles large CNNs better than
large FCs, because CNNs reuse weights, but FCs seldom
do, which results in greater memory traffic. The GPU is a
feasible choice for small CNNs. These conclusions only
apply to a single GPU; multi-GPU cases may be different.
RNN Figures 10(d)–10(e) show the speedup of TPU over
GPU. We display the embedding size in Figure 10(e) be-
cause the magnitude of its weight is the greatest in Fig-
ure 10(d). Embedding size has negative weight, and embed-
ding computation is more sparse than matrix multiplication.
This suggests that the TPU is less flexible for doing non-
MatMul computations than the GPU. The TPU is better
at dense computations like MatMuls. Even so, RNNs are
still up to 20× faster on the TPU. Optimizing non-MatMul
computations is another opportunity for TPU enhancement.



A Systematic Methodology for Analysis of Deep Learning Hardware and Software Platforms

1.0 0.5 0.0 0.5 1.0
LR Weights

Input
Output

Block
Filter

Batch
CNN Speedup TPU/GPU

(a) LR Weights

106 107 108

Params
100

2 × 100

3 × 100

4 × 100

6 × 100

Sp
ee

du
ps

CNN: TPU/GPU

bs-128
bs-256
bs-512
bs-1k

(b) Batch Size

106 107 108

Params
100

2 × 100

3 × 100

4 × 100

6 × 100

Sp
ee

du
ps

CNN: TPU/GPU

filter-16
filter-32
filter-64

(c) Filter Size

1.0 0.5 0.0 0.5 1.0
LR Weights

Embedding
Layer
Vocab
Batch

Maxlength
RNN Speedup TPU/GPU

(d) LR Weights

105 106 107

Params
100

101

Sp
ee

du
ps

RNN: TPU/GPU

embed-100
embed-500
embed-900

(e) Embedding Size
Figure 10: The sensitivity analysis and speedups of TPU over
GPU for (a)–(c) CNNs and (d)–(e) RNNs.
5.3 Overall Comparison
This section summarizes the speedup of TPU over GPU and
the FLOPS utilization of all ParaDnn and real models. We
use box plots (Figure 11) to summarize each ParaDnn model
type because performance has a wide range. The bar in the
box shows the median. The upper and lower boundaries
of the box are 9th and 91st percentiles. The upper and
lower bars outside of the box are 2nd and 98th percentiles.
Outliers are shown as dots. We do not show the results
of using CPUs to train CNNs because it is extremely time
consuming and unlikely to contribute additional insights.
TPU over GPU Speedup Figure 11(top) summarizes the
TPU over GPU speedups of all models. Note that the real
models use larger batch sizes on TPU than on GPU. The
speedup of TPU over GPU depends heavily on the nature
of the workload measured. The speedup of parameterized
models varies widely, from less than 1× to 10×, while the
speedup of real workloads ranges from 3× (DenseNet) to
6.8× (SqueezeNet). ParaDnn represents a more complete
view of potential workloads, and each real workload repre-
sents the concerns of certain users. Benchmarking platforms
with two kinds of workloads offer a more systematic under-
standing of their behavior than those with only one kind.
To further compare the TPU with the GPU, while relaxing
the constraint on the GPU’s software stack, we also include
speedup relative to the GPU performance of ResNet-50, re-
ported in NVIDIA’s Developer Blog (Case, 2018) (annotated
as NVIDIA in Figure 11(top)). Note that NVIDIA’s version
of ResNet-50 uses unreleased libraries, and we were un-
able to reproduce the results. The speedup using ResNet-50
from Google is 6.2×, compared with 4.2×, which suggests
software optimization can significantly impact performance.
FLOPS Utilization Figure 11(bottom) shows the FLOPS
utilization of all workloads and platforms. On average, the
maximum FLOPS utilization of the TPU is 2.2× that of the
GPU for all CNN models, and the ratio is 3× for RNNs. The
TPU FLOPS utilization of Transformers is consistent with
FCs with 4k batch size, as in Figure 2. For RNNs, the TPU
has less than 26% FLOPS utilization and the GPU has less
than 9%, while the CPU has up to 46% because of its better
programmability. RNNs have more irregular computations
than FCs and CNNs, owing to temporal dependency in
the cells and variable-length input sequences. Advanced

FC Res Bottle RNN LSTM GRU Trans Retina ResNet DenseSqueeze

100

101

Nvidia

Google

TPU/GPU Speedups

C
 

G
FC

T
 

G
Trans

T
 

G
Res

T
 

G
Bottle

T
 

G
Retina

T
 

G
ResNet

T
 

G
Dense

T
 

G
Squeeze

T
 

C
 

G
RNN

T
 

C
 

G
LSTM

T
 

C
 

G
GRU

T
 

0

20

40

60

FLOPS Utilization %

Figure 11: (Top) TPU over GPU speedups of all workloads. (Bot-
tom) FLOPS utilization comparison for all platforms.

RNN optimizations may be able to increase utilization on
the GPU and the TPU. Real models with more filters have
higher FLOPS, which is why ResNet-50 and RetinaNet have
higher FLOPS than DenseNet and SqueezeNet.

6 SOFTWARE STACK ADVANCES
Custom DL hardware opens opportunities for dramatic soft-
ware optimizations. ParaDnn is also useful for comparing
software performance, by analyzing the performance of dif-
ferent TensorFlow (TF) and CUDA versions. We study data
type quantization with software versions, because it depends
on software support. Software versions are summarized in
the legend of Figure 12. ParaDnn allows more compre-
hensive analysis of software updates than real models. It
can also reveal software optimization focus (e.g., TF 1.9
optimizes small batches); we omit these details for brevity.
6.1 TensorFlow Versions and TPU Performance
The compiler for the TPU is XLA (Leary & Wang, 2017),
shipped with TF. Figure 12(top) shows TPU speedups ob-
tained by running TF 1.7 to 1.12, treating 1.7 with float32
as the baseline. Moving from TF 1.7 to 1.12 improves per-
formance for all ParaDnn models. Although FC and CNN
encounter performance regression with TF 1.8, TF 1.9 fixes
this anomaly and improves overall performance. RNN per-
formance is not improved much until TF 1.11. TF 1.11
shows 10× speedup for RNNs. Transformer, ResNet-50,
and RetinaNet are improved continuously over TF updates.
Interestingly, SqueezeNet is improved starting from TF 1.11,
while the performance of DenseNet and MobileNet see little
benefit. In the 7 months (222 days) between the release of
TF 1.7.0 (03/29/2018) and that of TF 1.12.0 (11/05/2018),
software stack performance was improved significantly. The
90th-percentile speedup of TPU is 7× for FC, 1.5× for
Residual CNN, 2.5× for Bottleneck CNN, 9.7× for RNN,
and 6.3× for LSTM and GRU.
Bfloat16 enables significant performance improvement for
ParaDnn FCs and CNNs. 90th-percentile speedups are up
to 1.8× for FC and Bottleneck CNN, and 1.3× for Residual
CNN. TPU can support doubled batch sizes with 16 bits.
Transmitting fewer bits also relieves bandwidth pressure,
speeding up memory-bound operations. Larger performance
increases may be possible with further bitwidth reductions.
6.2 CUDA Versions and GPU Performance
Figure 12(bottom) shows GPU performance across versions
of CUDA and TF. The baseline is TF 1.7 and CUDA 9.0
with float32. TF 1.8 does not improve GPU performance.
By lowering memory traffic and enabling larger batch sizes,
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Figure 12: (Top) TPU performance with TensorFlow updates.
(Bottom) GPU performance with CUDA and TF updates.

bitwidth reduction can speed up CNNs by more than 2×. We
note that CUDA 9.2 speeds up ResNet-50 significantly more
(8%) than other real workloads (< 1%), and it speeds up
ParaDnn CNNs more than FCs or RNNs. CUDA 10 speeds
up other models, but not SqueezeNet. It significantly speeds
up ParaDnn FCs and CNNs, but not RNNs. The overall
90th-percentile improvement for FCs, CNNs, and RNNs is
up to 5.2×, 2.9×, and 8.6%, respectively. CUDA updates
have less impact than do TF updates on the TPU, likely
because CUDA and GPU platforms have greatly matured
since becoming popular before 2010, while TPU v2 for
training was only announced in May 2017.

7 LIMITATIONS OF THIS WORK
Scope This work does not study DL inference, cloud over-
head, multi-node systems, accuracy, convergence, or other
DL frameworks. Specifically, NVIDIA’s eight-node DGX-1
or Google’s 256-TPU systems are not studied. We inten-
tionally leave these topics to future work, as each deserves
in-depth study. They need different metrics such as latency,
and different setups such as tuning numbers of hardware
nodes, inter-node bandwidth, and synchronization mecha-
nisms. Cloud overhead may be more acute and brings up
more research questions. TensorFlow is used because it sup-
ports all three platforms. Previous work shows that frame-
work implementation can largely affect performance (Wang
et al., 2019b), and using PyTorch, which recently starts to
support the TPU, may lead to different conclusions.
The validity of extrapolating training throughput to time-to-
accuracy remains an open question. Recent work studied
the number of training steps to accuracy as a function of the
batch size (Shallue et al., 2018). It shows that very large
batch sizes result in sub-linear scaling, and the best batch
size depends largely on the model and the optimizer. In a
multi-node system, synchronization becomes more compli-
cated, which results in different convergence behaviors.
Tractability Readers should take caution when making con-
clusions using a finite set of workloads and platforms. While
this methodology is designed to avoid over-emphasizing one
subset of workloads, we have to constrain the diversity of
model architectures and hyperparameters to make this work
tractable. For example, the CNN models have the ResNet
architecture, and RNN models are cells stacked together.
In reality, more diverse models with a combination of em-
bedding, FC, CNN and RNN layers are emerging. We also
constrain the range of ParaDnn hyperparameters (Table 2).

We focus on large batches, as the platforms were designed
for large batch training, and smaller batches may lead to
different conclusions.

8 RELATED WORK
This paper presents a performance analysis methodology
that includes a tool, ParaDnn. The set of models generated
by ParaDnn is not designed to replace other benchmark
suites, but to complement existing suites to study the design
space more comprehensively, as discussed in Section 2.
Domain-specific benchmark suites that are complemen-
tary with our methodology include MLPerf (Mattson et al.,
2019), Fathom (Adolf et al., 2016), CortexSuite (Thomas
et al., 2014), and (Hauswald et al., 2015a;b; Coleman et al.,
2017; Wang et al., 2019c; Tao et al., 2018). Benchmarks
have been the driving force for compiler and architecture
design for decades, and notable examples include the SPEC
CPU (Henning, 2006) and PARSEC multiprocessor bench-
marks (Bienia et al., 2008). In the same spirit as param-
eterized benchmarks, synthetic benchmarks are common,
such as BenchMaker (Joshi et al., 2008), SYMPO (Ganesan
et al., 2010), AI Matrix (Wei et al., 2018), and (Kim et al.,
2014; Turki et al., 2012; Stroobandt et al., 2000; Schaffter
et al., 2011; Saleem et al., 2015). Because of self-similarity
of benchmark suites (Wang et al., 2019a), users should care-
fully select proper benchmarks to work with. Our effort of
generating more diverse DL workloads is different from pre-
vious work. Our use of DL models to compare up-to-date
platforms, Google’s TPU v2/v3, and NVIDIA’s V100 GPU,
distinguishes this work from previous performance compar-
isons (Shi et al., 2016; Bahrampour et al., 2016; Kothari,
2011; Che et al., 2009; He et al., 2010; Gupta et al., 2019;
Wang et al., 2019b).

9 CONCLUSION
This paper presents a comprehensive performance analysis
methodology and its utility in deep learning. We conduct
case studies to analyze and compare two generations of
specialized platforms (TPU v2/v3), three heterogeneous
architectures (TPU, GPU, and CPU), and two specialized
software stacks (TensorFlow and CUDA). The methodol-
ogy is complementary to traditional performance analysis
approaches. This paper motivates application of our method-
ology to other hardware and software systems.
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A ARTIFACT APPENDIX

A.1 Abstract

Our artifact provides the source code of ParaDnn, scripts
to run ParaDnn and collect data, performance data sam-
ples, and a Jupyter Notebook that demonstrate our analysis
methods. Reproducing the results in this paper requires the
exact versions of software and hardware. Workflows for
GPU and TPU require access to specific hardware, NVIDIA
V100 GPU and Cloud TPU v2/v3, which may not be widely
available to all users.

In this section, we explain the CPU workflow of our artifact,
which can be run in any environment from servers to even
laptops. The same workflow with small modifications can
be used to evaluate other platforms supporting Python and
TensorFlow.

A.2 Artifact check-list (meta-information)
• Program: ParaDnn

• Compilation: Refer to the dependencies for Python 3 and Ten-
sorFlow 1.x.

• Hardware: CPU, GPU or TPU installed with TensorFlow 1.6-
1.13.

• Execution: Bash and Python scripts.

• Metrics: Training throughput as examples per second.

• Output: Performance datasets and analysis figures.

• Experiments: See below.

• How much disk space required (approximately)?: 10 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours.

• How much time is needed to complete experiments (approx-
imately)?: 2 hours.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Apache License 2.0

• Workflow framework used?: ParaDnn

• Archived (provide DOI)?: 10.5281/zenodo.3687363

A.3 Description

A.3.1 How to access

Our source code is available on GitHub: https://
github.com/Emma926/paradnn.

A.3.2 Hardware dependencies

Any CPU, GPU, or TPU platforms that support Python 3.x
and TensorFlow 1.6-1.13.

A.3.3 Software dependencies

Python ≥ 3.7.6

TensorFlow 1.6-1.13

A.3.4 Data sets

This workflow will generate data sets. No extra data set is
needed.

A.3.5 Models

This workflow runs the FC, CNN and RNN models in
ParaDnn.

https://github.com/Emma926/paradnn
https://github.com/Emma926/paradnn
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A.4 Installation
Python

$ sudo apt update
$ sudo apt install python3-dev python3-pip

TensorFlow Please refer to the installation guide for Tensor-
Flow. If GPU is used, tensorflow-gpu and its dependencies
are needed. If Cloud TPU is used, no installation is needed
because software is included in the cloud instance.
After setting up virtual environment based on the Tensor-
Flow installation guide, please do

$ pip3 install tensorflow==1.13.1
$ pip3 install google-api-python-client
$ pip3 install oauth2client
$ pip3 install notebook
$ pip3 install seaborn
$ pip3 install matplotlib
$ pip3 install sklearn

ParaDnn

$ git clone https://github.com/Emma926/paradnn

A.5 Experiment workflow

Test Environment

$ cd paradnn/
$ python test.py --use_tpu=False

Run ParaDnn

$ # cd to paradnn/paradnn
$ cd paradnn/
$ bash run/fc_cpu.sh

Collect Performance Data

$ cd ../scripts
$ python get_perf.py

Run Analysis Tools

$ cd scripts/plotting
$ jupyter notebook

Open “Demo.ipynb” and run through the code blocks se-
quentially.

A.6 Evaluation and expected result

Our analysis methodology is presented in the plots from
Jupyter Notebook. The methodology is evaluated if the
plots show similar trends as the ones in the paper.

A.7 Experiment customization

All the run scripts are in paradnn/paradnn/run/*.sh. To run
RNN models of ParaDnn, simply do “bash run/rnn cpu.sh”.
To run on other platforms, such as GPUs and Cloud TPUs,
use files “run/* gpu.sh” and “run/* tpu.sh”. Users can
also change the range of ParaDnn parameters in paradnn/-
paradnn/run/*.sh. The sweeping range of parameters largely
determines the reproducibility of this artifact. Users can
also modify Jupyter Notebooks, for example, to analyze the
speedup of TPU over CPU.

A.8 Notes

For more questions, please file issues on GitHub.

A.9 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/
submission-20200102.html

• http://cTuning.org/ae/
reviewing-20200102.html

• https://www.acm.org/publications/
policies/artifact-review-badging
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