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Supervised vs. Unsupervised Machine Learning
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[https://mapr.com/blog/demystifying-ai-ml-dl]



Why Bayesian Machine Learning

Posterior draws for Wyoming Republican vote share
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* Predict a probability distribution not a point estimate
* Quantify uncertainty

[https://github.com/stan-dev/stancon_talks/blob/master/2017/Contributed-Talks/08_trangucci/hierarchical_GPs_in_stan.pdf]



Deep Learning vs. Bayesian ML

Deep Learning Bayesian Inference
Data Type / Size Needs large labeled data Scarce or no labeled data
Interpretability Black-box Interpretable models
Prior Knowledge No Prior + new observations
Scalability Parallelizable Limited parallelism
Generalizability Generalizable Hand-crafted models
Unsupervised Good at supervised Good at unsupervised

Combining the two: Variational autoencoder, Generative
Adversarial Networks, Bayesian neural networks, and etc.



Bayesian Models and Inference

* Unsupervised learning

* Scarce or no labeled data for training

* Ability to represent and manipulate uncertainty
* Generative models

Likelihood Prior

P<Y|X)P(X) X: Hidden Parameters
P(Y) Y: Observed Data

Evidence

Bayes’ Rule: P(X|Y) =




Markov Random Fields and Inference

Stereo matching

Pixel-labeling problems on MRF:
» Stereo matching

* Image restoration

* Image segmentation

* Sound source separation

y: input pixels
x: labels for each pixel

ol )

Pixels = nodes
Edges to neighbors
Inference for best set of new labels

1
P(z,y) = [T 6iiv) [ ¢:i(ioz))
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Likelihood (Data cost) Prior (Smoothness cost)



Unsupervised Learning Tasks on MRF

Image
Reconstruction

Stereo
Matching

Approximate Bayesian
Inference

Sound Source
Separation




Markov Chain Monte Carlo Methods

A biased random walk that explores
the target distribution P

Approximating pi

[https://wiki.ubc.ca/Course:CPSC522/MCMC]



Gibbs Sampling Inference
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Algorithm 1 Gibbs Sampler
0

1: Initialize
2: fort =1to T do
3: fori=1tondo

(t+1) (t+1) (t+1) () (t)
4: z; ~ P(x;|x; syl g s yysany e )
5:  end for Sample &
6: end for update
7: return x =0 parameter

Ve € V:xlV\x | neighbors(x)



Stereo Matching Using Gibbs Sampling




Parallelizing Gibbs Sampling

Geman & Geman stated,

“the MRF can be divided into collections of variables with each collection assigned to an
independently running asynchronous processor.”

Three types of parallelism:
* Naive: Run multiple parallel chains independently

e Algorithmic: Graph-coloring and blocking:
Blocked, Chromatic (Gonzalez), Splash (Gonzalez)

* Empirical: Asynchronous (Hogwild!) updates of partitioned graphs
Newman et al. (AD-LDA), De Sa et al. (2016 ICML best paper)



Chromatic Gibbs Sampling

For each dark node in
dashed square:

Dark node itself @
Its four neighbors

For each light node in
dashed square:
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Sample all light nodes Sample all dark nodes
row by row row by row




Hybrid CPU-FPGA Architecture
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Running Sound Source Separation

Noisy mixture Separated source

6.2 —-- FPGA SDR
—— CPU SDR
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Compute Partition
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230x speedup over ARM Cortex-A53



Speedups

— = 24 Gibbs Samplers (64 labels) — 257 Gibbs Samplers (2 labels)
= = 24 Gibbs Samplers (2 labels)

103
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Speedup (vs. CPU)

0 10 20 30 40 50
Gibbs Sampling Iterations

1048x speedup and 99.8% energy reduction vs. ARM Cortex
A53 for binary label MRF Gibbs sampling



Number of Iterations vs. Quality of the Solution
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Future Work

* Asynchronous Gibbs Sampling

Hilary Clinton’s emails

* Accelerating more complex graphs
* More complex structured graphs
e Unstructured graphs

* Challenges
* Programmable inference architecture
* Probabilistic programming languages , 2
e Compilers, IR co® [https://bricaud.github.io/HCmails]




THANK YOU

This work is supported by the Semiconductor Research Corporation (SRC) and DARPA.

ada

j UM P Applications Driving Architectures



(Pixel-labeling)

Damaged Image
@ Unsupervised Learning

Markov Random Field

Input pixels O O O
o |10 |[O

a

Nodes represents random variables
corresponding to input pixels and
output labels and edges encode a

e
-_ Q-7
Reconstructed image Output labels
Image reconstruction : 256 labels using 64
Image segmentation : 2 labels
Stereo matching : 16-64 labels

Sound source separation: 2 labels

probability distribution over them.



Gibbs Sampler Optimization for Source Separation

—— Sequential Gibbs
=== Chromatic Gibbs
== Chromatic Gibbs with Shifters
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Width of MRF
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Optimizations:
Multipliers -> Shifters

VERSION LUT LUTRAM FF BRAM DSP BUFG

MULTIPLIER 834 26 825 0 16 1
SHIFTER 929 27 852 0 8 1

MRF size: 513x24
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