

Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs Sampling

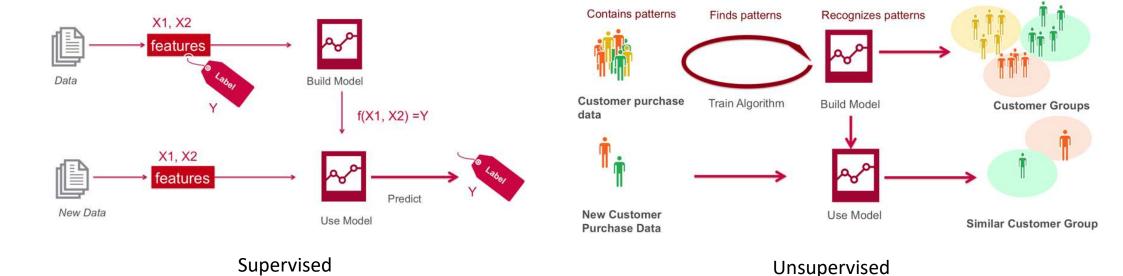
Glenn G. Ko

gko@seas.harvard.edu

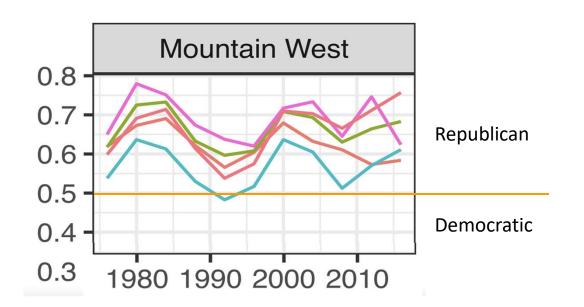
Harvard University

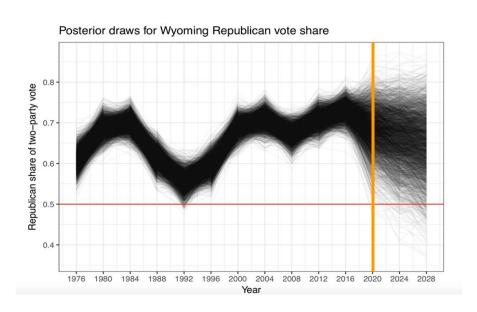
September 10, 2019

Supervised vs. Unsupervised Machine Learning



Why Bayesian Machine Learning





- Predict a probability distribution not a point estimate
- Quantify uncertainty

Deep Learning vs. Bayesian ML

	Deep Learning	Bayesian Inference		
Data Type / Size	Needs large labeled data	Scarce or no labeled data		
Interpretability	Black-box	Interpretable models		
Prior Knowledge	No	Prior + new observations		
Scalability	Parallelizable	Limited parallelism		
Generalizability	Generalizable	Hand-crafted models		
Unsupervised	Good at supervised	Good at unsupervised		

Combining the two: Variational autoencoder, Generative Adversarial Networks, Bayesian neural networks, and etc.

Bayesian Models and Inference

- Unsupervised learning
- Scarce or no labeled data for training
- Ability to represent and manipulate uncertainty
- Generative models

Bayes' Rule:
$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

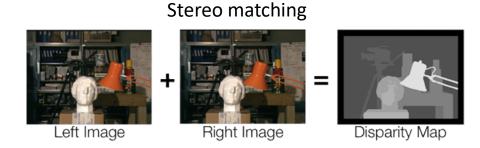
X: Hidden Parameters

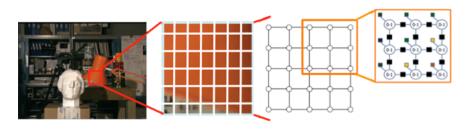
Y: Observed Data

Markov Random Fields and Inference

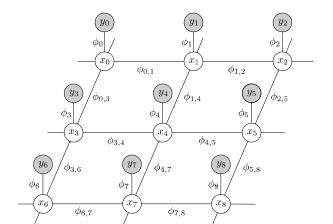
Pixel-labeling problems on MRF:

- Stereo matching
- Image restoration
- Image segmentation
- Sound source separation





Pixels = **nodes Edges** to neighbors
Inference for best set of new **labels**



y: input pixels

x: labels for each pixel

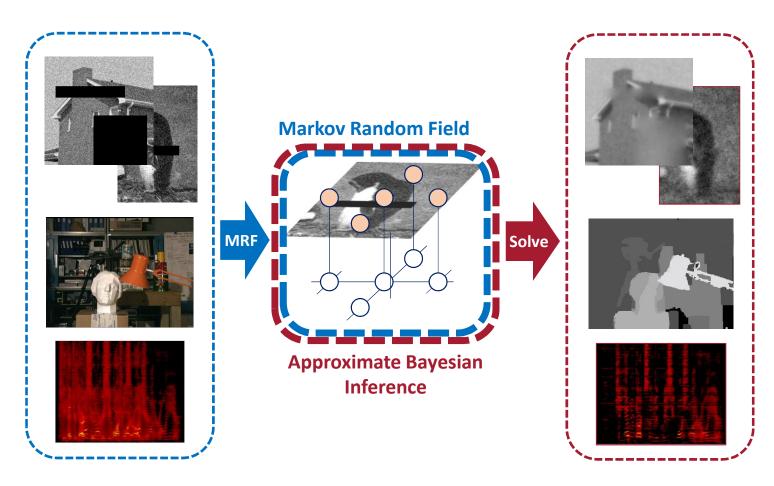
$$P(x,y) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i, y_i) \prod_{i,j \in E} \phi_{i,j}(x_i, x_j)$$
Likelihood (Data cost) Prior (Smoothness cost)

Unsupervised Learning Tasks on MRF

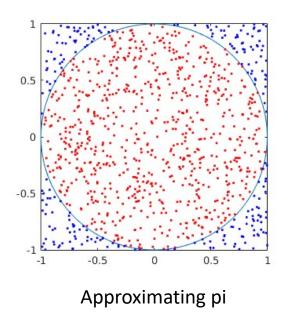
Image Reconstruction

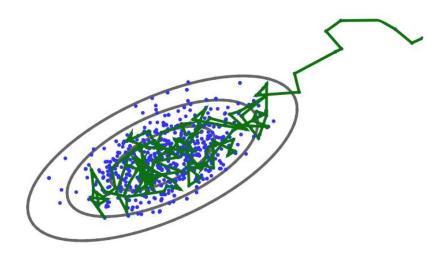
Stereo Matching

Sound Source Separation



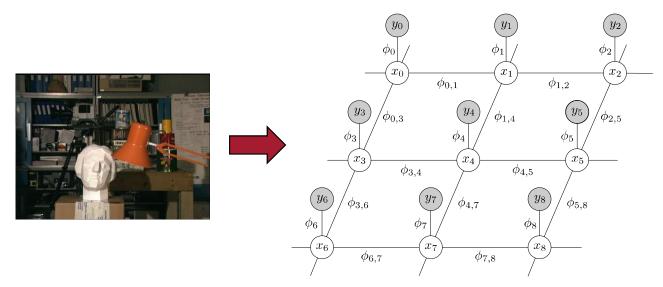
Markov Chain Monte Carlo Methods





A biased random walk that explores the target distribution P

Gibbs Sampling Inference



Maximum A Posteriori Inference:

$$P(x,y) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i, y_i) \prod_{i,j \in E} \phi_{i,j}(x_i, x_j)$$

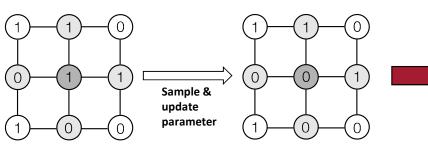
$$x^* = \arg \max P(x|y) = \arg \min_{x} E(x|\theta)$$

$$= \arg\min_{x} \left\{ \sum_{i \in \nu} \theta_{i}(x_{i}) + \sum_{i,j \in \varepsilon} \theta_{i,j}(x_{i}, x_{j}) \right\}$$

Algorithm 1 Gibbs Sampler

- 1: Initialize x^0
- 2: **for** t = 1 to T **do**
- for i = 1 to n do $x_i^{(t+1)} \sim P(x_i|x_1^{(t+1)}, ..., x_{i-1}^{(t+1)}, x_{i+1}^{(t)}, ..., x_n^{(t)})$
- end for
- 6: end for
- 7: **return** x = 0

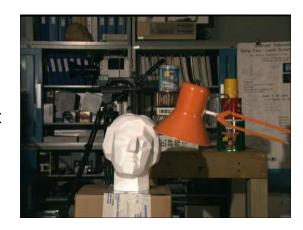
Gibbs sampling on Markov Random Field



 $\forall x \in V : x \perp V \setminus x \mid neighbors(x)$

Stereo Matching Using Gibbs Sampling

Input



Ground Truth

Parallelizing Gibbs Sampling

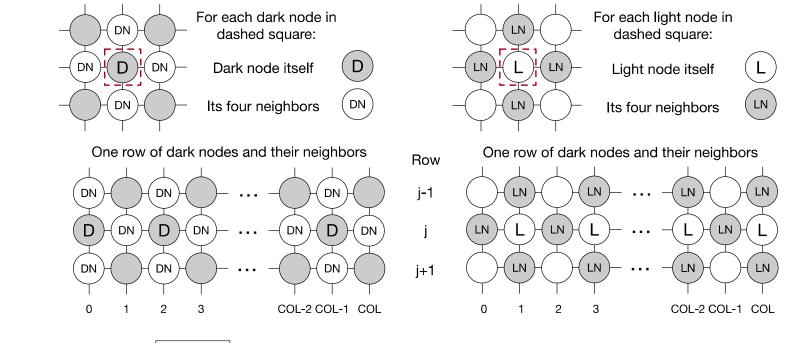
Geman & Geman stated,

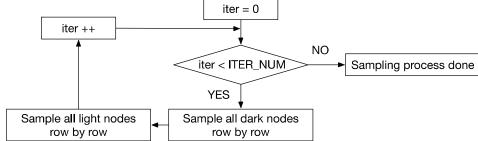
"the MRF can be divided into collections of variables with each collection assigned to an independently running asynchronous processor."

Three types of parallelism:

- Naïve: Run multiple parallel chains independently
- Algorithmic: Graph-coloring and blocking:
 Blocked, Chromatic (Gonzalez), Splash (Gonzalez)
- **Empirical**: Asynchronous (Hogwild!) updates of partitioned graphs Newman et al. (AD-LDA), De Sa et al. (2016 ICML best paper)

Chromatic Gibbs Sampling

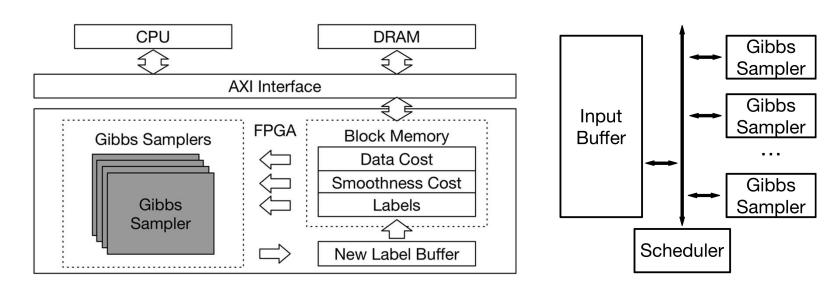


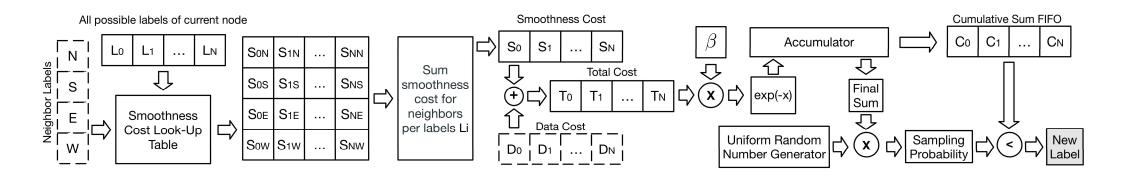


Conditional Independence via Local Markov Property

$$\forall x \in V : x \bot V \backslash x \mid neighbors(x)$$

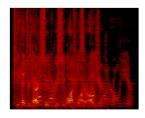
Hybrid CPU-FPGA Architecture



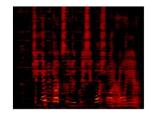


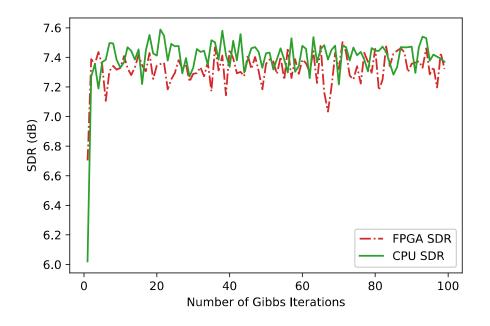
Running Sound Source Separation

Noisy mixture

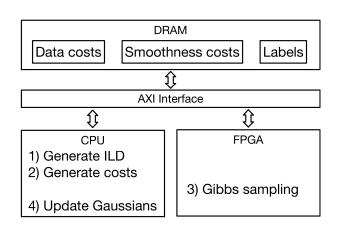


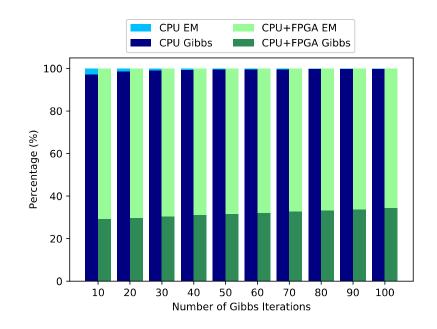
Separated source





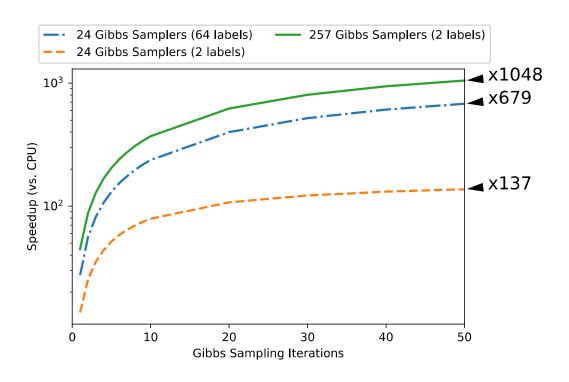
Compute Partition





230x speedup over ARM Cortex-A53

Speedups



1048x speedup and 99.8% energy reduction vs. ARM Cortex A53 for binary label MRF Gibbs sampling

Number of Iterations vs. Quality of the Solution

Stereo matching: tsukuba



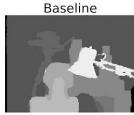
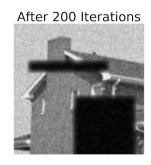
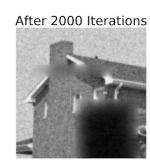
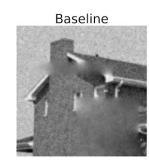


Image restoration: house





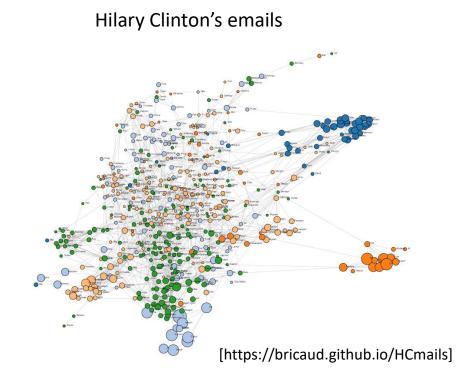


Sound source separation

Iterations	SDR		
2	4.6266		
4	5.0489		
8	6.0176		
16	6.8822		

Future Work

- Asynchronous Gibbs Sampling
- Accelerating more complex graphs
 - More complex structured graphs
 - Unstructured graphs
- Challenges
 - Programmable inference architecture
 - Probabilistic programming languages
 - Compilers, IR



THANK YOU

This work is supported by the Semiconductor Research Corporation (SRC) and DARPA.

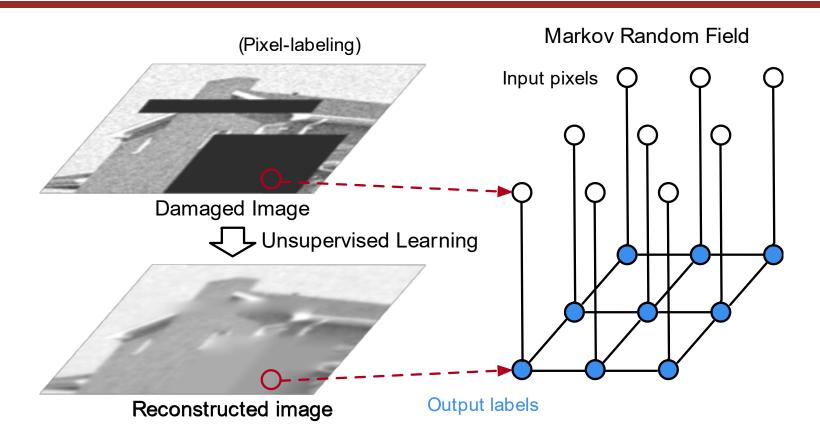


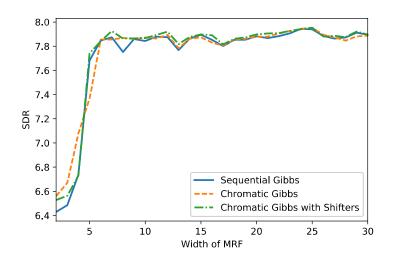
Image reconstruction : 256 labels using 64

Image segmentation : 2 labels Stereo matching : 16-64 labels

Sound source separation: 2 labels

Nodes represents random variables corresponding to input pixels and output labels and edges encode a probability distribution over them.

Gibbs Sampler Optimization for Source Separation



Optimizations: Multipliers -> Shifters

VERSION	LUT	LUTRAM	FF	BRAM	DSP	BUFG
MULTIPLIER	834	26	825	0	16	1
SHIFTER	929	27	852	0	8	1

MRF size: 513x24