

# Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs Sampling

Glenn G. Ko

gko@seas.harvard.edu

**Harvard University** 

September 10, 2019

# Supervised vs. Unsupervised Machine Learning



# Why Bayesian Machine Learning





- Predict a probability distribution not a point estimate
- Quantify uncertainty

# Deep Learning vs. Bayesian ML

|                  | Deep Learning            | Bayesian Inference        |  |  |
|------------------|--------------------------|---------------------------|--|--|
| Data Type / Size | Needs large labeled data | Scarce or no labeled data |  |  |
| Interpretability | Black-box                | Interpretable models      |  |  |
| Prior Knowledge  | No                       | Prior + new observations  |  |  |
| Scalability      | Parallelizable           | Limited parallelism       |  |  |
| Generalizability | Generalizable            | Hand-crafted models       |  |  |
| Unsupervised     | Good at supervised       | Good at unsupervised      |  |  |
|                  |                          |                           |  |  |

Combining the two: Variational autoencoder, Generative Adversarial Networks, Bayesian neural networks, and etc.

### Bayesian Models and Inference

- Unsupervised learning
- Scarce or no labeled data for training
- Ability to represent and manipulate uncertainty
- Generative models

Bayes' Rule: 
$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

X: Hidden Parameters

Y: Observed Data

### Markov Random Fields and Inference

#### **Pixel-labeling** problems on MRF:

- Stereo matching
- Image restoration
- Image segmentation
- Sound source separation





Pixels = **nodes Edges** to neighbors
Inference for best set of new **labels** 



y: input pixels

x: labels for each pixel

$$P(x,y) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i, y_i) \prod_{i,j \in E} \phi_{i,j}(x_i, x_j)$$
Likelihood (Data cost) Prior (Smoothness cost)

# Unsupervised Learning Tasks on MRF

Image Reconstruction

Stereo Matching

Sound Source Separation



### Markov Chain Monte Carlo Methods





A biased random walk that explores the target distribution P

### Gibbs Sampling Inference



#### Maximum A Posteriori Inference:

$$P(x,y) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i, y_i) \prod_{i,j \in E} \phi_{i,j}(x_i, x_j)$$



$$x^* = \arg \max P(x|y) = \arg \min_{x} E(x|\theta)$$

$$= \arg\min_{x} \left\{ \sum_{i \in \nu} \theta_{i}(x_{i}) + \sum_{i,j \in \varepsilon} \theta_{i,j}(x_{i}, x_{j}) \right\}$$

#### Algorithm 1 Gibbs Sampler

- 1: Initialize  $x^0$
- 2: **for** t = 1 to T **do**
- for i = 1 to n do  $x_i^{(t+1)} \sim P(x_i|x_1^{(t+1)}, ..., x_{i-1}^{(t+1)}, x_{i+1}^{(t)}, ..., x_n^{(t)})$
- end for
- 6: end for
- 7: **return** x = 0

#### **Gibbs sampling on Markov Random Field**



 $\forall x \in V : x \perp V \setminus x \mid neighbors(x)$ 

# Stereo Matching Using Gibbs Sampling

Input



Ground Truth





# Parallelizing Gibbs Sampling

#### Geman & Geman stated,

"the MRF can be divided into collections of variables with each collection assigned to an independently running asynchronous processor."

#### Three types of parallelism:

- Naïve: Run multiple parallel chains independently
- Algorithmic: Graph-coloring and blocking:
   Blocked, Chromatic (Gonzalez), Splash (Gonzalez)
- **Empirical**: Asynchronous (Hogwild!) updates of partitioned graphs Newman et al. (AD-LDA), De Sa et al. (2016 ICML best paper)

# Chromatic Gibbs Sampling





Conditional Independence via Local Markov Property

$$\forall x \in V : x \bot V \backslash x \mid neighbors(x)$$

# Hybrid CPU-FPGA Architecture









# Running Sound Source Separation

#### Noisy mixture







#### Separated source









# **Compute Partition**





230x speedup over ARM Cortex-A53

# Speedups



1048x speedup and 99.8% energy reduction vs. ARM Cortex A53 for binary label MRF Gibbs sampling

# Number of Iterations vs. Quality of the Solution

Stereo matching: tsukuba











Image restoration: house











Sound source separation

| Iterations | SDR    |  |  |
|------------|--------|--|--|
| 2          | 4.6266 |  |  |
| 4          | 5.0489 |  |  |
| 8          | 6.0176 |  |  |
| 16         | 6.8822 |  |  |

### Future Work

- Asynchronous Gibbs Sampling
- Accelerating more complex graphs
  - More complex structured graphs
  - Unstructured graphs
- Challenges
  - Programmable inference architecture
  - Probabilistic programming languages
  - Compilers, IR



# THANK YOU

This work is supported by the Semiconductor Research Corporation (SRC) and DARPA.







Image reconstruction : 256 labels using 64

Image segmentation : 2 labels Stereo matching : 16-64 labels

Sound source separation: 2 labels

Nodes represents random variables corresponding to input pixels and output labels and edges encode a probability distribution over them.

### Gibbs Sampler Optimization for Source Separation



# Optimizations: Multipliers -> Shifters

| VERSION    | LUT | LUTRAM | FF  | BRAM | DSP | BUFG |
|------------|-----|--------|-----|------|-----|------|
| MULTIPLIER | 834 | 26     | 825 | 0    | 16  | 1    |
| SHIFTER    | 929 | 27     | 852 | 0    | 8   | 1    |

MRF size: 513x24