Mitigating the Impact of Process Variations on Processor
Register Files and Execution Units

Xiaoyao Liang and David Brooks

Division of Engineering and Applied Sciences
Harvard University
33 Oxford St., Cambridge, MA 02138

{xliang, dbrooks} @eecs.harvard.edu

Abstract

Design variability due to die-to-die and within-die process vari-
ations has the potential to significantly reduce the maximum op-
erating frequency and the effective yield of high-performance mi-
croprocessors in future process technology generations. One seri-
ous manifestation of this increased variability is a reduction in the
mean frequency of fabricated chips due to fluctuations in device
characteristics causing reduced circuit performance. In this paper,
we propose to mitigate the impact of variations through variable-
latency register files and execution units which are key architectural
components that may encounter variability problems. We also illus-
trate the importance of closing the gap in expected delay of these
distinct structures. A post fabrication test and configuration strat-
egy is proposed. We find that 23% mean frequency improvement
with an average IPC loss of 3% (and never exceeding 5% for worst
case chips) is possible for the 65nm technology node by properly
adopting the proposed schemes.

1. Introduction

Future advanced process technologies will continue to provide tran-
sistor density and speed improvements through aggressive feature
scaling and novel device topologies. Unfortunately, chip design-
ers will soon be forced to design with the expectation of signif-
icant variations in transistor feature sizes and threshold voltages
due to sub-wavelength lithography and random dopant fluctuations.
Process variations (PV) will manifest in several different ways —
through random or systematic (correlated) variations that may oc-
cur within a single die (WID: within-die variations) or across mul-
tiple dies (D2D: die-to-die variations) in a production run. Recent
estimates suggest that process variability could impact performance
by a full process generation and traditional frequency binning alone
cannot solve the strong variation problem [7].

While the last few years have seen an increased interest in de-
veloping statistical timing models and circuit-level techniques to
address variability, there has been comparably little work at higher
levels of design. However, fundamental microarchitectural deci-
sions that impact performance (e.g, selection of pipeline depth [16]
and sizing of architectural resources [18]) have a substantial impact
on the distribution of chip frequency as well as IPC (instructions-
per-cycle). Under strong PV, each fabricated chip has different
characteristics, and therefore we argue that machines should no
longer be designed with rigid, fixed configurations. We propose to
use variable-latency structures to mitigate the impact of PV.

In this paper, we provide a detailed study of the microarchi-
tectural ramifications and circuit implementation of the variable-
latency approach in the integer and floating-point register files (RF)

and execution units, which are similar to EBOX and FBOX in the
Alpha 21264 microprocessor [15]. The register files and execu-
tion units provide a compelling starting point for our investigation
into variable-latency microarchitectures because these units are fre-
quency as well as IPC-critical datapath components. Both struc-
tures are typically thermal hotspots [24], so other techniques like
forward body bias (FBB) cannot be blindly applied due to increased
leakage power [20]. Simply upsizing the transistors for speed can
incur large power and area overhead. Moreover, these structures
provide an example of a direct connection between timing-critical
SRAMs and logic structures which we show provides a special op-
portunity for optimization under PV.

In this initial study, we assume that variability in other microar-
chitectural blocks can be handled through worst-case design or with
other variability-mitigation techniques such as adaptive-body bias
(ABB) [28] or cache resizing [3]. We demonstrate that our ap-
proach moves the register files and execution units off the list of
PV-critical components, and we note that the approach can also ap-
ply to other microarchitectural units (e.g. front-end and memory
hierarchy pipelines).

This paper takes several steps in the direction of PV-tolerant
architecture design and makes three major contributions:

e We motivate and describe a variable-latency register file (VL-
RF) and a variable-latency floating-point unit (VL-FPU). The
VL-REF helps to reduce the number of entries with long access
times in the register file. The VL-FPU helps to mitigate both
random and systematic variations. These techniques provide a
large frequency benefit with a small IPC penalty.

We find under strong variations, there is a large gap in the crit-
ical delay between SRAM-dominated register files and logic-
dominated execution units. We illustrate the importance of aver-
aging the delay between these two distinct structures and show
that circuit techniques like time borrowing (or slack passing)
can be applied to close the gap. We also propose to use selec-
tive FBB for additional frequency improvement with minimal
leakage power overhead.

We propose a test strategy to combine all of these techniques
and generate the best processor configuration under PV. We
present detailed circuit-level Monte-Carlo simulations for the
combined approach that demonstrate a 23% mean frequency
improvement with a 3% average IPC loss for all chips.

The next section describes the key motivation and implementa-
tion necessary to apply VL-RF and VL-FPU. Section 3 illustrates
the delay gap between SRAM and logic under PV and how our

16 stages

decode delay wordline delay

Bit 0-3 Bit 4-7 Bit 60-63
T) o e

/

B -

L] o
bitline delay carry carry carry
w
sum sum

output delay
a. critical path of register file, critical path
shown in shaded blocks and dashed line

b. critical path of 64-bit adder,
critical path shown in shaded blocks

Figure 1. Critical paths of register file and integer ALU.

approach can leverage this gap. Section 4 discusses testing require-
ments for the system and Section 5 describes our modeling and
simulation approach. Section 6 presents simulation results. Section
7 presents related work, and Section 8 summarizes our work.

2. Variable-Latency Microarchitecture

We propose variable-latency approaches to compensate for the
frequency loss due to process variation and we discuss techniques
that are appropriate for different microarchitectural structures with
distinct characteristics under PV: the register file and floating-point
execution unit (FPU). In this section and in Section 3, we use the
intuitive FMAX model [7] to understand the impact of PV on each
component’s frequency distribution and the frequency distribution
is approximated as normal distribution. However, all the simulation
results presented in this paper are derived from detailed circuit-
level Monte-Carlo simulations discussed in Section 5.

The FMAX model provides a prediction for the maximum fre-
quency distribution of a microprocessor as a function of the amount
of PV and circuit parameters which are key to the delay distribu-
tion of functional units: ncp, the number of gates on a critical path,
and Ncp, the number of critical paths in a unit. The FMAX model
provides insight into the fact that the frequency impact due to PV is
not solely determined by the severity of process variations. In fact,
the performance impact is strongly related to the logical organiza-
tion of the functional blocks. A larger logic depth or higher gate
count on a critical path (ncp) helps to cancel out random effects on
the critical path and makes the path less sensitive to variations. On
the other hand, a large number of critical paths (/N cp) makes a unit
very sensitive to PV, because more critical paths in a unit implies a
higher probability that one critical path has delay that cannot meet
timing specifications. PV-tolerant designs prefer a large ncp but a
small Ncp [16]. This has significant ramifications to our approach
and will be further discussed in Section 3.

2.1 Variable-Latency Register File
2.1.1 Observation

Multi-ported register file delay is dominated by SRAM access time.
We focus on SRAM read access time failures which have been
shown to be the most likely source of failures in SRAMs [3]. Our
RF implementation will not cause read stability failure because
the read bitlines are decoupled from the internal cell, as shown in
Figure 1a, thus preventing the unintentional flip of the stored value.
We defer write failure modeling to future work. The impact of
variability on SRAM structures is severe because of the relatively
small number of gates that impact delay (ncp) and the relatively
large number of parallel critical paths (Nc¢p). Figure 1a illustrates
that only a few gates impact the SRAM read access time and
variation within any of these gates will have a large impact on delay.

0.16 T T

: — original RF

--- 80% VL-RF
60% VL-RF

e
=)

e
S

Probability
=
2

=
=3
=3

=
o>
B

2
=)
S}

0.5 . . 0.8 0.9 1 1.1 1.2 1.3
Normalized frequency

Figure 2. VL-RF frequency distribution improvement.

The number of critical paths for the register file is large, because it
is approximately equal to the product of the number of entries in
the register file, the number of bits per entry, and the number of
read ports. SRAM frequency is limited by the slowest bit of every
entry-port combination. Furthermore, compared to larger SRAM
structures like L1/L2 caches, register file SRAMs tend to have a
smaller amount of wire delay due to fewer global wires [4]. In this
work, we extract wire parasitics from the SRAM layout, and wire
delay is treated as a fixed portion of the nominal delay. We do not
model variations in wires because metal lines are significantly more
PV-tolerant than gates [5]. The behavior of the RF under PV is in
sharp contrast to a logic-dominated integer adder which has many
gates on relatively few critical paths (Figure 1b).

2.1.2 Variable-Latency Technique

To reduce the impact of extremely slow entry-port combinations,
we propose to use variable-latency register files. We will divide
the RF entries into fast entries that perform read access in a single
clock cycle, and slow entries that take two clock cycles. We define
a n% VL-RF to mean that for each read port in the register file,
the slowest (100 — n)% of the entries will be marked slow and
accessed in two clock cycles. The final frequency of the register
file is determined by the slowest access time in the SRAM for
the remaining n% entries for all the ports. The VL-RF effectively
avoids the long delay paths in the SRAM. Figure 2 shows the
frequency distribution with n = 100% (unmodified machine),
n = 80%, and n = 60%. Our detailed simulations show a 27%
mean frequency loss for the register files compared to a machine
without PV. We find that with the 80% VL-RF, the mean frequency
improves about 12% as the slowest 20% entries for each read port
are identified and accessed in two cycles, effectively removing
them from the list of critical paths. Further extension to 60% VL-
RF does not help much (less then 4% improvement). Based on these
results, we will use 80% VL-RF throughout this paper.

Whenever a slow entry for a certain port is read, the pipe that
port belongs to must stall for one clock cycle for RF reading. This
adds an additional bubble into the pipeline and reduces IPC. We
find that VL-RF causes about a 9% IPC loss for SPEC2000 bench-
marks, discussed later in Section 6. Since the frequency improve-
ment is about 12%, most of the benefit is compromised by IPC loss
and the naive variable-latency RF cannot help to improve perfor-
mance. Our previous work also considered marking slow entries as
completely unusable, but we found that this results in a huge IPC
loss [17], and thus we do not consider it further.

RF addrA RF addrB

SR
‘ addr decoder A ‘ ‘ addr decoder B ‘

Port switching
F[Rl [f 2
f R2 f : PortA PortB
rd portA| s R3 f |rd portB stall | R4, R3 nostall
2| f R4 £ stall: R9, R7 nostall
E f RS s E stall | R5, R6 nostall
3l R6 13 stall | v R6 stall
2[f R7 || & i chi
T RS i H port switching
I3 RO S stall : R34—R3 nostall
= S I
f RI10 f no port forwarding ! port forwarding

‘ output latch A ‘ ‘ output latch B ‘

operandA ;‘_:":.': operandB

Function
Unit

Figure 3. Port switching to reduce stalls. Circled registers means
the register causes a stall for reading.

Due to the random nature of PV, different ports in a single
register file can have different characteristics. Thus, it is common
that the same entry may be slow for one port and fast for another
port. We leverage this characteristic with an approach called port
switching. With this technique, we propose to opportunistically
switch from slow ports to fast ports for RF entry access in order
to mitigate IPC loss.

Figure 3 provides a simple example to demonstrate the ap-
proach. In this example, there are 10 entries in the register file with
2 read ports, each of which provides one operand to the execution
unit. For each port, the two slowest entries are marked. The labels
‘t” and ‘s’ identify the fast and slow entries for each port. Without
port switching, every instruction in the code sequence in Figure 3
incurs a stall, because each instruction has operands that require
reading from the slow entries from either or both of the two ports.
However, if we can identify the problem and steer the register ac-
cess from the slow port to the fast port before entering the register
file read stage, we can avoid stalls. For the first ADD instruction,
we can use portA to read R4 and portB to read R3. Since both ports
are fast, we can eliminate the stall. By using port switching, we can
avoid most of the stalls in the sample code sequence. Port switching
cannot help the fourth instruction because there is always one port
reading a slow entry whether switching or not. For the fifth instruc-
tion, switching also cannot help. But because the two operands are
reading the same register, and since portB can read faster, it is pos-
sible to forward the data to portA. In order to simplify the hardware
implementation, we limit port switching to the two read ports con-
nected to the same execution unit. By using port switching, the IPC
loss due to VL-RF can be reduced to 2% and detailed simulation is
presented in Section 6.

2.1.3 Implementation

Microarchitectural modifications are necessary to implement variable-

latency register files with port switching. First, we assume that
the SRAM port entry speed information can be collected using
BIST [27] and that the chip operating frequency is pre-selected
(more details in Section 4). This information is configured into a
ROM at test time. When a free physical register in the free register
pool is called up for renaming, the per-port speed information will
be loaded from the ROM and accompany the standard register entry
address into the rename table. For example, for a 128-entry regis-
ter file with 4 read ports, we use an extended address of 11 bits,

with the lowest 7 bits storing the standard RF entry address and
the highest 4 bits storing the speed information (fast or slow) for
each of the four read ports for that entry. When a source operand is
renamed in the renaming stage, it grabs the physical RF address as
well as the four port speed bits and creates an address bundle. If the
address is not a true register file address (e.g. immediate operands
or other special registers that do not require a register file access),
all the ports speed bits will be set to fast. The 11-bit address bundle
is propagated through the pipeline.

Figure 4 shows the hardware implementation details. When an
instruction is waiting in the issue queue for wake-up, the port speed
bits of both RF addresses are checked. If a switch can help to elim-
inate the stall, the “switch_addr” signal is generated. This switch
signal will be passed (latched), if this instruction is selected and
issued to the register file, to control the multiplexors to properly
steer the address to the address decoder in the RF, and the switched
address will be used to access the register file. At the same time,
the logic compares the two addresses and decides if a port forward-
ing operation is necessary. The port forwarding and switch signal
will be combined to generate “switch_out0” and “switch_outl” sig-
nals and these signals will be latched twice to control the output
multiplexors and switch the operands back or forward the operands
before entering the execution stage.

Port switching cannot avoid all stall conditions due to slow reg-
ister file entries so stall detection logic is implemented. Whenever
necessary, a stall signal is generated and latched when this instruc-
tion is issued and passes back to the issue stage so that all the fol-
lowing dependent pending instructions must wait for an extra cycle
and no instruction can be issued to this pipe for the next clock cy-
cle. The stall latch is sticky and it will reset to “0” the next cycle
after it is asserted. In order to allow the register file to take two
clock cycles for access, the stall signal must also be latched twice
to prevent precharge for the second cycle of the access. Forwarding
also needs to be changed. When a back to back instruction needs
a stall, the forwarding data is propagated through the forwarding
path2 rather than forwarding pathl.

All the additional control signals are generated in parallel with
wake-up and selection in the issue queue, so they will not add to
the issue queue critical path delay. However, the new multiplexor
before the decoder in the RF stage adds to RF critical path. Also, the
multiplexors before the ALU is expanded for operand switching.
The delay of this additional hardware can also vary under PV. For
all the results reported in this paper, all of these hardware overheads
and variations have been included into our circuit simulation.

VL-RF also requires some small modifications to the scheduling
logic. The RF stall signal is latched, if necessary, during the begin-
ning of the cycle after the instruction is issued. So all dependent
instructions, including back-to-back instructions, will see the stall
signal at the beginning of their schedule cycle at the same time they
are awakened and deciding whether to issue. Thus, there will not be
any speculative issue problems requiring replays. Figure 5 shows
the hardware modification of the scheduling logic. In a conven-
tional design [26], as shown in Figure 5a, each instruction operand
in the issue queue includes an issue cycle register that records the
issue cycle after the operand wakes up. For example, “111111” in
the issue cycle register refers to a back-to-back instruction that can
be issued the same cycle when it is waken up. A string of “111110”
means that the instruction can be issued one cycle after wake-up.
When the instruction sees the wake-up signal, the information in
the issue cycle register is loaded to a shift register, and the shift
register will shift right to decide when the instruction is ready for
selection/issue. For back-to-back instructions, the wake-up signal

stall

4:—‘ precharge gating
] raten Lateh h
register file Port Port register file > (LJI L
addressA speed bits speed bits addressB = I S
- -~ g > =
ent = o =
2 | op_code [BRRERE R 2 2z I |u =
entryl |™, £ & ™ — §
=]
\i < | VA — 3
—— stall (entry0) I) |
H =
Switch and i o | g, o H ot - 5
stall logic (entry0) switch_out0 (entryO)_»i I S Multiported | switch_ou > 2l »
Tssue Q _ - | = register filc | itch j §
) switch _outl (entry0) B) @ Lo switch_outl
° > ' [I =
[] switch_addr (entry0) 'g : +_
- v —
\ L]
Switch and - D g I perand]
stall logic (entryN) switch&stall (entryN) 2 ™ u — = H——»]
P I lx L & |l
2 & =
entryN £a : o :
. = ~ .
Wakeup and selection logic issue/select < | ’ I forwarding path 1
I forwarding path 2 |
Issue stage RF Read stage EXE stage

Figure 4. Hardware implementation for VL-RF, a ‘1’ in bit ptO means

issue cycle register

issue cycle register

ready for
selectlissue

ready for
selectlissue

RF_stall

shift register

shift register

a. Conventional issue/select logic b. modified issue/select logic with RF stall

Figure 5. Scheduling logic modifications for RF stall.

requires a logical AND with the issue cycle register to ensure con-
secutive issue. The modified version of this logic that includes the
register stall signal is shown in Figure 5b. If there is no RF stall,
everything behaves exactly the same. If there is a stall, the back-
to-back instruction is gated from issuing during the wake-up cycle.
Also, the shift register is loaded with a biased version (left shift 1
bit) of the issue cycle register to include the extra one cycle delay
for the register file access.

2.2 Variable-Latency Floating-Point Unit
2.2.1 Observation

It is well known that circuit techniques like time borrowing (slack
passing) can be applied to pipelined units to mitigate delay im-
balance between pipeline stages [29]. We find that time borrow-
ing has a critical role to play in variable-latency techniques for
the FPU. In contrast to the integer ALU, which is usually de-
signed for single-cycle latency, the FPU typically requires multi-
cycle latencies. While time borrowing is possible with nearly all
clocking disciplines, the approach becomes trivial with pipelined
structures using two-phase clocking. The basic time borrowing ap-
proach is shown in Figure 6. The diagram plots a two stage (4 half
logic stages) pipeline design. The grey boxes indicate pipeline stage
latches while the white boxes indicate half-cycle boundary latches;
these latches are physically identical and are drawn in this fashion
to illustrate the approach. Ideally, all the logic stages are balanced
and should finish in a half clock cycle. However, since data can

portO reading this address is fast, while ‘0’ means slow.

phil phi2

phil

phi2 phil

D half cycle boundary latch

L |:| pipeline stage boundary
2 1
B atch

<> logic

phil

|
. |
phi2 .
|

|

time borrowing across
half-cycle boundary

time borrowing across
pipeline stage boundary

Figure 6. Time borrowing in two-phase clocking design.

pass through latches when latches are transparent, it is possible for
long delay logic to borrow time into the next clock phase. As in the
figure, stagelA borrows time across the half-cycle boundary when
L1A is transparent and stagelB borrows time across the pipeline
stage boundary when L1B is transparent. The maximum borrow-
ing time from one stage to another is limited by Eq. (1), where T,
is the cycle time, ¢setup is the latch setup time, tnonoveriap 1S the
non-overlapping period of the two clocks.

c
toorrow S -

5 (M

Time borrowing between logic stages has the potential to aver-
age out random variations. This is illustrated in Figure 7. The top of
the figure shows a pipelined FPU. The dark boxes designate hard
time boundaries and no time borrowing is allowed beyond these
two blocks to ensure proper operation of the preceding and fol-
lowing stages. White and grey boxes imply soft time boundaries
and time borrowing is allowed across them. For the machine with-
out any variations, each logic stage can fit in its own delay slot, as
shown in Figure 7a. With random variations, it is possible to cancel
out the random delay variation through borrowing. In this exam-
ple, stagel A and stage1B borrow time from stage2A, and stage2B
borrows time from stage3A. For systematic variations, it is possi-
ble that every stage has slower than nominal delay paths, and each

- (tsetup + tnonove'r‘lap)

phil phi2 phil phi2 phil phi2 phil

I stage1B I stage2A I stage2B I stage3A I stage3B

I
I
phil !
- |
phi2 |
I
! |

a. machine without variation
! |
I |
. ||
phil |
|
— |
phiz] |]] |—|_
! |
I
| .

b. machine under random variation
I
i |
phil | |
|
phiz| | S 4
I
T

|
4y<stage1A stage1B stage2A stage2B stage3A IftageaB
| v

c. machine under systematic variation
Figure 7. Time borrowing under process variations.

stage ends up borrowing time from the next stage. This results in
a situation where every stage pushes a little delay overhead to the
next stage from the head of the pipeline, eventually causing timing
errors in the last stage, shown in Figure 7c.

2.2.2 Technique and Implementation

In a traditional design, the FPU frequency must be reduced to meet
timing path delays under systematic variation. To avoid this, we
propose to use a variable-latency FPU design. Instead of slowing
down the frequency, we will insert an extra pipeline stage into
the datapath and extend the latency of the FPU datapath by one
cycle when systematic PV is large. This is shown in the top of
Figure 8. If there is no significant variation and the delay can fit
into three pipeline stages, the extra latches are clock gated and
the pipeline looks like Figure 8a. But if large delay variations are
present, and the delay can no longer fit into three cycles, the extra
latches are enabled and the pipeline latency is extended to four
cycles as shown in Figure 8b. The dummy stage created has no real
function and is purely for the purpose of time borrowing. Except
for the extra latch and multiplexor delay (delay2), almost a half
clock cycle is added into the middle and the end of the pipeline for
time borrowing. The clock signals for latches in between the two
additional latches should be inverted if an extra stage is inserted
to maintain proper timing. The extra stage makes the FPU tolerant
to very large systematic variations. The frequency improvement is
shown in Figure 9.

In this paper, we do not dynamically change the latency of
pipelines. Once the chip is fabricated and tested, the FPU pipeline
latency is determined and fixed. The latency of the pipeline (e.g.
whether it requires an extra stage) is hardwired into the machine
and cannot change during CPU runtime. Thus, although we call it
a variable-latency pipeline, the pipeline depth is actually fixed for
each individual chip. The scheduler modifications for this approach
are simple, as the scheduler knows the exact latency of each FPU

phi2 phi2
™ lextra latch1
|

.r lextra latch2
i

phil phi2 phil phi2 phil phi2 phil
| (oo || H o et (5
| |
I e B B

delay1 delayl!

|
i
i
a. extra stage not inserted | !
i
i

—

I .
ione stage extension!
\<—>
\

phil ph|2 plul] hi2 phil phi2 phil phi2 ‘ul

e I e
M_| l_l [LI
1] | |
[stageth > stagets > stagezn A)< stageze > stagesn > stagese >)

delay2 delay2

mgua

=14

b. extra stage inserted

Figure 8. Variable-latency FPU.

0.12 T T T

T
—— FPU without extra stage
— FPU with extra stage

0.10

Probability
o o
=4 =1
S &

=
o
£

0.02

0 i H h
0.5 0.6 0.7 0.8 0.9 1 1.1
Normalized frequency

Figure 9. Frequency benefit for VL-FPU.

pipeline and can issue instructions accordingly. Obviously, differ-
ent chips will suffer different amounts of PV and some machines
will require more pipeline stages than others.

The scheme incurs two kinds of overhead. First, the added mul-
tiplexors add delay to the FPU critical path (delayl in Figure 8a).
‘We can overdesign stage2 A and stage3B to accommodate the added
delay but this incurs a power overhead. Time borrowing can also
absorb and average the added delay through the whole pipeline.
We include the delay and power overhead in our simulation. Sec-
ond, there will be an IPC penalty due to deeper pipelining for chips
that engage the extra stage. Because this extra stage is only added
to the floating-point unit (and only for some chips), we find that
the IPC penalty is small compared with the large frequency benefit.
Detailed IPC and simulation results are shown in Section 6.

3. SRAM and Logic Delay Gap

SRAM and logic structures have significantly different delay distri-
bution under PV. If two units with large delay mismatch happen to

o
>

— original RF

--- 80% VL-RF
integer ALU M

------ averaging 80% VL-RF and ALU

I
=

I o
=) <

Probability
=)
8

e
=3
&

e
=
b4

e
1<)
[~3

0
0.5 13

Normalized frequency

Figure 10. Frequency distribution gap between RF and ALU. Av-
eraging delays can improve the final EBOX frequency distribution.

be connected together, time borrowing can be applied to balance the
delay so the frequency is not limited by the unit with worst delay.
This type of borrowing only happens under PV. The unit connec-
tions are specified at the architectural-level, and it is important to
guide circuit designers on where to apply borrowing.

3.1 Delay Gap Between SRAM and Logic Under PV

Previous papers [16, 19] related ncp to logic depth and Ncp to
the gate count of a unit. This is not always true, especially for our
EBOX and FBOX. For example, in the integer ALU, the carry chain
of a 64-bit adder is always the most critical delay path while other
logic paths like AND and XOR are much less critical. Recall Figure
1b which shows the critical path of a carry-bypass adder. The carry
chain needs to propagate through 2 carry propagation blocks, 15
multiplexors, 1 setup and final sum block which makes ncp very
large for the carry path. Furthermore, the Ncp for the ALU is
just “1” because the carry chain is always the dominant critical
path. Although the gates on the other paths can be downsized to
trade speed and power, we assume they should be conservatively
downsized to ensure nominal frequency even under variations [22].

The large ncp and small Ncp make the integer ALU fairly
tolerant to PV. On the other hand, we have shown that the small
ncp and large Ncp make the register file very vulnerable to PV.
This argument is supported by both the FMAX model and our
detailed simulation. We find that the register file is the most delay
critical part for almost all chips, and there is a large gap in the delay
between the register file and ALU. The gap is shown in Figure 10
which plots the frequency distribution of the two components. We
find that even the 80% VL-RF is more delay critical than the ALU.
Because the slower component determines the EBOX frequency, in
many cases there will be some time slack in the ALU execution
cycle which is purely wasted.

3.2 Time Borrowing To Close the Gap

Proper application of time borrowing can average the delay and
close the gap between SRAM and logic datapaths. The EBOX we
studied provides a unique opportunity for time borrowing because
the register file is connected directly to the ALU, and these two
structures happen to be two extremes (in terms of ncp and Ncp)
under PV. The key idea of time borrowing in this situation is illus-
trated in Figure 11. Without time borrowing, there is some wasted
time slack in the ALU execution stage. By properly delaying the

ALU time

I

]

I :

] I

clkA, clkB, ! !
clkC T T

L

RF read stage ALU exe stage

a. without time borrowing

hl:irrowedL_,I

slack |
clkBJ \—%
o

|

|

1
clkA, clkC

RF read stage ALU exe stage

b. with time borrowing

Figure 11. Time borrowing between RF and ALU.

clock of registerB, the RF access time can extend into the ALU
stage and the ALU time slack is “borrowed” by the RF so that the
frequency is increased. The EBOX frequency distribution after time
borrowing is shown in Figure 10.

Although the approach is straightforward, the circuit implemen-
tation is more complex than time borrowing purely within the FPU.
Figure 12 shows our SRAM design and different clocks required
for proper functionality: clk_precis used to control the precharging
PMOS for the bitline precharge, clk_eval is combined with the de-
coder signal to properly fire the array wordline for array access, and
clk_df f is used to latch the output data from the SRAM and serves
as the data source to the next full cycle of ALU execution. The
basic timing scheme for these clocks is shown in Figure 13a. The
SRAM access starts from the decoder. The precharge logic raises
the bitlines in parallel with address decode, effectively hiding the
precharge time. After that, the array starts to evaluate (wordline de-
lay, bitline delay, output buffer delay). Finally, the data is latched.

The modified clock scheme is shown in Figure 13b. The falling
edge of clk_eval is delayed to extend the array evaluation time. The
delayed clock extends into the ALU execution stage and borrows
ALU time slack. Clk_df f must be delayed accordingly to properly
latch the SRAM output data. The precharge time is squeezed be-
cause the array needs more time for evaluation. Also the precharge
clock can be gated by the precharge gating signal generated from
the variable-latency register file.

Three things decide the amount of time that can be borrowed by
the RF. First, since the precharge time is squeezed, we must guaran-
tee that the bitlines can be precharged back to the high value. The
PMOS precharge transistors can be oversized slightly to account
for the relatively short precharge period. Second, since the array
evaluation extends to the next cycle, the amount of time borrowed
should be less than the fastest decoder path to avoid race between
the current access and the following access (the current array ac-
cess is overlapped with next read decode). Especially under varia-
tion, some decoder paths can be faster than nominal delay. Third,
the time borrowed from the ALU plus the ALU delay should still be
within one clock cycle. Due to these limitations, we use very con-
servative time borrowing. In our design, we set the maximum delay
chain to be 20% of the nominal clock cycle time. The delay chain

clk_prec . .
clk_eval - ™ precharge
=) I | [| I I l [I I
wordline SRAM Array
- I — —
o
L
—> = gl L1 ceeeeen 1
Address g =| I
=] L]
C_ I3 ===]
1) I | | [[[1 |
output buffer
clk_dff DEE
to ALU
Figure 12. SRAM control clocks.
f:{llt{:/?\(l: precharge gating clk_prec
clk_eval
clk—p olk -

clk_dff vk atr
RF access starts | RF access starts |
AN e EEE s S AN S s I

i
i precharge i 1 i precharge
1

I

1

clk_prec clk_prec ! ! |
' array | ! I array | |

idecode evaluatign ! idecode _evaluation_ | !
clk_eval clk_eval | ! |
] | |] !

! RFaccess/ | | RF access/ | i

! finishes/ | i ! |

I

I

! finishes|
I

RS T e TR L S
I I N A b
i i | I i | |
RF read i ALU ! i RF read ld.d"‘-’(ALU !
! chain !

b. time borrowing

a. basic timing scheme
Figure 13. Clock scheme of RF for time borrowing.

also varies, so we use a worst case of 5% of clock uncertainty in
our delayed clock network in the simulation.

After applying time borrowing to allow slack exchange between
the PV-sensitive RF and less PV-sensitive ALU, there is one more
optimization that we can employ if fine grained forward body bias
(FBB) is permitted in the design flow. Previous work has suggested
applying FBB to blocks if those units are impacted by PV, e.g. if
the register file appears to be slow, FBB is applied so that transistors
can have higher speed [28] and thus the whole RF can run faster.
But FBB also causes significant leakage power, and because the
register file is a well-known thermal hotspot [24] composed of
many transistors, applying FBB to register files is something that
designers would like to avoid. Time borrowing in our coupled RF-
ALU design provides an alternative solution. Instead of applying
FBB to the RF, we selectively apply FBB to the carry chain in
the integer ALU. This allows the speed of the ALU to increase
providing more time slack within the integer ALU for borrowing
by the register file. This allows designers to avoid applying FBB to
the register file, but still achieve some of the benefits. Obviously,
the amount of time that can be borrowed is still limited by the RF
precharge time and decoder delay as described above.

We apply time borrowing between the integer RF and ALU
(with and without selective FBB). We also allow the floating-point
RF to borrow slack from the FPU. FBB is not required in this case,
because the longer pipeline and extra stage in the FPU provide
sufficient time slack opportunities to balance the overall delay.

4. Testing Strategy

This paper proposes several variable-latency schemes that seek to
provide the best microarchitectural configuration for each chip. In
this section, we describe an overview of the testing procedures that
will be required by this approach. It is likely that testing method-
ologies will need to adapt to future designs which incur variability
problems and the development of more built-in test strategies will
help mitigate the testing overheads. With our approach, each fab-
ricated chip should go through a standard test flow that must be
augmented to choose the best frequency/microarchitectural config-
uration given the PV-constraints. We assume the processor has im-
plemented BIST for SRAM structures [27] and there is a suitable
range of tunable frequencies.

The test strategy is divided into three major steps. For the first
step, register file BIST is carried out. For each port in the RF, speed
information is collected for each entry, the slowest 20% entries are
found and marked as “slow,” and the remaining entries are marked
as “fast”. This information is configured into a ROM which will be
loaded at CPU runtime for the variable-latency RF. In the second
step, the remaining 80% entries from each port in the integer RF
are connected to the integer ALU and test vectors are inserted to
find the highest stable operating frequency. For each frequency, we
sweep different delay chain configuration to find the proper amount
of time-borrowing. For the third step, the FPU is tested under the
frequency determined by the integer side. We sweep different delay
chain configurations for the floating-point RF to find the necessary
amount of time-borrowing. The need for the extra FPU stage is
also tested. Finally, if the FPU test fails even with the extra latch
(infrequently), we need to loop back to the second step and try the
second highest frequency for the integer side and so on until we
find the best acceptable frequency for all components.

5. Experimental Methodology

This section described the circuit implementation of our design, the
Monte-Carlo based PV-simulation methodology, and our architec-
tural performance simulator.

5.1 Monte-Carlo Circuit Simulation

Since there is no widely accepted analytical model for determining
delay distribution under PV, we apply Monte-Carlo based circuit
simulation, which can be used to closely mimic real chip fabrica-
tion. We do not use any simplified analytical delay equations. All
the delay values used are extracted from Cadence and Synopsys
CAD tools. For all the units considered in this paper, we build cor-
responding circuits and layout. The register file and integer ALU
were designed using a custom flow, while the FPU was designed in
Verilog and synthesized, placed, and routed using Synopsys tools.
The FPU is properly pipelined, path delay balanced, and retimed to
match the delay of the integer ALU and register file. We build four
copies of a 64-bit carry-bypass adder and integer unit, three copies
of an 80-entry, 4-rd/2-wr port register file, a 6-stage FPU adder
and a 6-stage FPU multiplier, both IEEE 754-compliant. All gate
parameters and wire parasitics are extracted from layout and back
annotated. The design and layout is based on UMC 130nm pro-
cess library. The gate delay, transistor sizes, and layout area are lin-
early scaled down to 65nm. Berkeley Predictive Technology Mod-
els (BPTM) [10] are used whenever we need to perform HSPICE
simulation at the 65nm node.

Gate length (L) and threshold voltage (V;}) have been identified
as the two main sources of transistor variations for the next several
generations of process technology [8, 11]. In order to extract the

40

% HSPICE data
— fitting curve | |

FO4 delay (ps)
2 .

50 55 60 65 70 75 80
Gate length (nm)

Figure 14. HSPICE curve fitting for an FO4 inverter.

delay variations due to the device parameter variations, we use a
first order approximation which is widely used in statistical timing
analysis [1, 21]. Egs. (2, 3, 4) show the relation. The delay for a
critical path is the summation of the path nominal delay (Do) and
the additional delay caused by parameter fluctuation of each gate
on the path, assuming n total gates. For small scale fluctuations,
a first order linear approximation is sufficient and the coefficients
(ar, and by) can be curve-fitted with circuit simulation. Figure 14
shows the delay and gate length fitting curve for an FO4 inverter
using BPTM, and the linear fit matches the HSPICE simulation for
the range under consideration.

Dpath = Do+ ADLl + ...+ ADLn +ADVM1 + ...+ ADVthn

2

ADr, = g—i X AL = ap X ALy 3)
ADy,, = c’;?/—ik X AVin, = b, X AVin, “@
L=Lo+AL=Lo+ ALp2p +ALwip 5)
Vin = Ving + AVip (0)

For each gate, we model the gate length as in Eq. (5), where
Lo is the nominal gate length. We consider both die-to-die and
within-die components of the variations. For die-to-die variations,
we generate a random variable for each chip according to a nor-
mal distribution and use this variable for AL p2p for every gate on
that chip. For within-die variations, we consider systematic corre-
lations. To capture this effect, we use the method introduced in [1].
The component area is divided into a multi-level quad-tree parti-
tioning as shown in Figure 15. We show the layout of the FPU adder
in the figure to illustrate how the method works. The FPU adder
area is covered with several layers of quadrants. For each quadrant
we generate a random variable according to a normal distribution.
The ALwip of a gate can be obtained by adding up all the ran-
dom variables of the quadrants it belongs to. For example, the gate
(nand1) shown in the figure has within-die gate length variations
of ALwip = rando,1 + randi,1 + randsz,1. Therefore, nand1
and nand2 have strong correlation because they share the variable
randp,1 and rand; 1, while nand1 has less correlation with nand3,
because they only share the variable randp,i. The exact location
of the three gates is marked on the FPU layout. This method cap-
tures the proximity related correlations. According to the data in

Figure 15. Multi-level partitioning for within-die gate length vari-
ations.

Issue Width 4 instructions Issue Queues 20-entry INT, 15-entry FP
Load Queue 32-entries Store Queue 32-entries
Reorder Buffer 80-entry Physical Register File 80-entry INT, 72-entry FP

Instruction TLB 128-entry Fully-Associative Data TLB 128-entry Fully-Associative

Integer Functional Units | 4 FUs Floating Point Functional Units | 2 FUs

Instruction Cache 32KB, 2-way Set Associative | Data Cache

L2 Cache 2MB 4-way Branch Predictor

32KB, 2-way Set Associative

21264 Tournament Predictor

Table 1. Baseline processor configuration.

[1, 13], 4 levels of quadrants are enough to model the correlation of
the 250um x 250um area, resulting in the finest quadrant having
an area of 32um X 32um. All the gates located in the same finest
quadrant have perfect gate length correlations.

The threshold voltage is modeled in Eq. (6), where Vi, is the
nominal value. Threshold voltage variations are mainly incurred
due to the random dopant effect [8] as well as gate length varia-
tions. Since the impact of gate length on threshold has already been
encapsulated in the delay-gate length fitting shown in Figure 14,
we model AV}, as a random variable which obeys a normal distri-
bution [3] only due to the random dopant effect.

We use Monte-Carlo simulation to generate all the random
variables necessary in the model and generate the gate length and
threshold voltage for each gate in all our modeled units. We then
use the fitting curve to calculate the delay of all the gates in the chip.
We generate 400 test chips and each chip has a unique delay profile
for simulation. We then perform chip-by-chip delay simulation
and obtain the frequency of each individual chip according to
the testing flow introduced in Section 4. For our simulations, we
assume ocLpap/Lo = 5%, oLwip/Lo = 5%. We assume
oVin/Ving = 10%. These assumptions are based on estimates for
future variability forecast in [3, 7], and later in the paper we study
the sensitivity of these assumptions.

5.2 Architecture Simulation

For our baseline machine, we use a 19FO4 design which is com-
parable to the reported pipeline logic for out-of-order microproces-
sors such as the Alpha 21264 and POWERA4 [14, 25]. For our IPC
simulations, we utilize the validated sim-alpha simulator which
provides ample parameters for size and latency scaling [9]. The
baseline machine uses parameters comparable to the Alpha 21264
and POWERA4 listed in Table 1. We use 25 of the 26 SPEC2000
benchmarks (we had difficulty simulating “galgel”) using Sim-
Point for sampling [23]. For each benchmark, 500 million instruc-
tions are simulated after fast forwarding to the specific checkpoint.

=}
=3
T

Chip count
(52}
o

L.,

Q
0.6 0.65 07 075 0.8 0.85 0.9 0.95 1 1.05 1.1

i . . Frequency distribution (original chips) . . .

Chip count
(9
o

ﬁj T 1os 1

0
0.6 0.65 0.7 0.75 0.8 0.85 .9 0.95
Frequency dist‘ribution (80% VL-RF)

Chip count
(9
=]
T

0 I I I —
06 0.65 0.7

075 08 085 09 095 1, 1. .
Frequency distribution (80% VL-RF+tnjne borrowing)
[reavency dismibution, T T T T

100

50~

Chip count

0 Il Il Il Il
06 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11
Frequency distribution (80% VL-RF+time borrowing+carry chain FBB)

Figure 16. Chip frequency distribution with applied techniques.

When we report single IPC numbers in this paper, this is the har-
monic mean of all benchmarks.

6. Simulation Results

We present our detailed simulation results in this section based
on the experimental methodology described in Section 5. We first
introduce the performance results in terms of frequency gain, [PC
reduction, and total performance. We then discuss power and area
overheads of the scheme and discuss the sensitivity of our results
to the amount of process variability.

6.1 Frequency and Performance Improvement

Figure 16 shows the frequency improvement for the 400 simulated
chips after application of the proposed techniques. The chip mean
frequency of the unmodified machines degrades about 27% under
process variations leading to unacceptable performance loss; this
performance loss is within the range of other estimates [7]. We
find that for most chips, the frequency is initially limited by slow
register files. When the proposed variable-latency RF is used, the
slowest entries in the RF no longer impact the critical delay, and
the frequency is improved by about 12%.

We find that another 8% mean frequency improvement can
be obtained after application of time borrowing in conjunction
with the variable-latency FPU. As discussed in Section 2, time
borrowing can efficiently close the gap between the register file
and execution units, so the machine frequency is determined by the
average delay across units rather than solely that of PV-sensitive
SRAM structures.

The final plot in Figure 16 shows the impact of applying forward
body bias to the integer ALU carry chain. Forward body bias can
potentially improve the ALU critical path by about 15% [20]. But
since we use conservative time borrowing, most of the extra time
slack from FBB cannot be borrowed by the register file so we only
apply a small amount of FBB (less than 300mV). After applying
FBB to the carry chain in the integer ALU and leveraging time
borrowing, an extra 3% frequency improvement is possible.

Applying all of these optimization techniques together helps
to improve the chip mean frequency by about 23%. Since the
total mean frequency loss is about 27%, most of the chips are

returned to a small region around the nominal design frequency,
thus effectively mitigating the impact of process variation.

The variable-latency approaches that we propose will increase
the amount of stalls in the pipeline, and we must understand the
IPC impact of these stalls across a range of applications. Figure
17 shows the relative IPC reduction compared to the baseline ma-
chine for each of the techniques. The first two bars in the plot
show the VL-RF approach with and without port switching. The
remaining three bars show the IPC impact of increasing FPU la-
tency, when combined with VL-RF with port switching. We find
that the variable-latency register file mainly impact the IPC of inte-
ger benchmarks. On average, an 80% variable-latency RF without
port switching causes about 9% IPC loss, while port switching help
to reduce the IPC loss to just 2%. As expected, the VL-FPU has
almost no impact on integer benchmarks. For floating-point bench-
marks, if the FPU multiplier has one extra stage inserted, 3% IPC
loss is observed. The FPU adder is more sensitive to an extra stage
and we observe a 4% IPC loss with the longer pipeline depth. If
both of these units need an extra stage, there is a 5% IPC loss.

We find that all 400 simulated chips require the 80% variable-
latency RF. However, the required FPU pipeline depth depends on
each chip’s PV condition and final operating frequency. About 15%
of the chips need to open an extra stage in the FPU multiplier and
13% of the chips need an extra stage in the FPU adder. We find
that 14% of the chips need an extra stage in both units. Given that
many chips do not require the extra stage to be enabled, the average
IPC loss is about 3% for all the simulated chips, with a worst-
case IPC loss of 5%. We plot the performance (i.e. frequency X
IPC) of each chip before and after optimization in Figure 18. We
observe a 20% mean performance improvement which is the total
performance improvement achieved by applying all the proposed
schemes.

6.2 Area and Power Overhead

In this section, we will quantify the area and power overhead for
the approach. The area overhead mainly results from the added
latches in the FPU, added logic for RF port switching and latency
adaptation, and some extra multiplexor and wires. Our scheme adds
about 2% area overhead to the execution units and issue queue.

The power overhead is mainly due to the extra latch power in
the FPU, added logic and multiplexors, and delay chain power. Our
scheme increases the power of the execution units by 5% in the
worst case when all extra stages are needed. As discussed earlier,
many of the chips do not need to open the extra stage so these
latches can be clock gated. Compared with the total chip area and
power consumption, both of these overheads are negligible.

Another advantage of our scheme is that we only need to ap-
ply a very moderate amount of FBB to the ALU carry chain. In
addition, if FBB is not available or is difficult to implement, the
scheme only loses 3% of the additional frequency benefit as most
of the frequency loss is recaptured using architecture and circuit so-
lutions. Compared to solutions that purely apply FBB to slow chips
or units, the proposed scheme will have significantly less leakage
power overhead. On the contrary, power saving techniques like re-
verse body bias (RBB) can be applied to overly fast components in
our design as usual and there is likely to be an interesting tradeoff
between more aggressive application of variable-latency architec-
tural approaches and RBB.

6.3 Sensitivity Analysis

Section 2.2.2 describes how the VL-FPU can tolerant large random
as well as systematic variations. We now perform a sensitivity anal-

@ 80% VL-RF no switching
O VL-RF, FP-MUL extra cycle

B 80% VL-RF with port switching
@ VL-RF, FP-ADD/FP-MUL extra cycle

O VL-RF, FP-ADD extra cycle

0.95 + 1 wrm 1 n N
0.9 i a
0.85
0.8 t 1
s N & & & § o Q& L S I R I SR NI SR NS
& N & O ¢ ¢ KPP KRS ¥OY S F QLT FEELEE Ny & L >
& ¢ DI & R & NN ST >
Qé\ & S $ LN & RSN ? & &
Integer benchmarks Floating point benchmarks
Figure 17. SPEC2000 benchmarks IPC value with applied techniques.
150 1
SLwi/L0=5% 6Vt/Vt0=10%
— = —— oLw/L0=5% &Vt/Vt0=20%
2 0ol oLwi/L0=15% oVU/Vt0=10% J
= 100- 1
8 >
= 2 J !
2 501]] 08f more random g 1
&) = variations .-~ 1
s vy T e 3
& ([L— | 4 K - It
= o7 - [
0 Il Il Il Il Il GN) H
06 0.65 07 075 08 085 09 095 1 1.05 1.1 = e ¢ &
Performance distribution (original machine) E ool _/.»"' : |
150 z ?_,—"'/ =774 more systematic
g » e variations
0.5 4
E A
E 100+ -
=]
; 0.4t i i i
= 5o i original VL-RF VL-RF+time borrowing
]
Figure 19. Sensitivity to systematic and random variations.
0
06 0.65 07 075 08 085 09 095 1 1.05 1.1

Performance distribution (optimized machine)

Figure 18. Performance improvement.

ysis to study the impact of systematic and random variations on the
VL-RF and time borrowing. In this section we consider two ad-
ditional scenarios which provide additional PV. The first scenario
has extremely large random V; variations with oV, /Vin, = 20%,
and the second scenario has extremely large systematic gate length
variations with o Lwp /Lo = 15%. All other variation values are
left unchanged. We simulate the VL-RF in isolation and when com-
bined with time borrowing under these extreme parameter variation
scenarios. The mean and standard deviation (error bars) of chip fre-
quency is shown in Figure 19.

By utilizing a VL-REF, the normalized mean frequency improves
from 0.55 to 0.69 for a machine with more random variations while
it only improves from 0.5 to 0.6 for machine with significant sys-
tematic variations. This suggests that the VL-RF is more effec-
tive at correcting random V3, variations than the more correlated
gate length variations. The reason for this is because the approach
can more effectively identify and correct slower paths when varia-
tions are dispersed randomly rather than if large blocks comprising

many entries in the SRAM are slow. It has been shown that in large
SRAMs, threshold voltage variations due to random dopants are
the key source of failure [3], and these results show that the VL-RF
approach is well-suited to reducing the impact of these variations.

Time borrowing will also lose some efficiency under strong
systematic PV. However, because time borrowing is applied across
different functional units and the correlation between different units
is relatively small, time borrowing can still help reduce the PV
frequency impact.

7. Related Work

Bowman, et al. perform some of the first analysis in the area of
process variations and point out that a technology generation of
performance can be lost due to PV [7]. They also introduce the
FMAX model which has been validated against a large number of
chips. In recognition of the increasing problem of PV, researchers
have developed statistical timing analysis techniques to be applied
for deep sub-micron chip designs [1, 2, 21].

Several groups have proposed various circuit solutions for pro-
cess variation. Narendra et al. [20] and Tschanz et al. [28] propose
the use of adaptive body bias (ABB) to mitigate the impact of vari-
ation, but these works did not consider system-level effects.

Recently, researchers have begun to explore the system-level
impact of PV. Borkar et al. conceptually demonstrate that the per-
formance gain of deeper pipelines decreases due to the impact of
within-die process variation [6]. Kim et al. perform a more quan-
titative analysis on pipeline depth under PV [16]. Recently, Mar-
culescu and Talpes proposed using globally-asynchronous, locally
synchronous (GALS) design techniques to design processors under
PV [19]. Agarwal et al. propose to use post fabrication resource re-
sizing to combat the impact of PV on caches [3]. Liang and Brooks
study the impact of design-time microarchitectural tradeoffs on
process variations [18]. Approaches based on Razor latches [12]
have the potential to correct circuit level errors with double latch-
ing. However, there may be difficulties in applying Razor to a mul-
tiported register file because there is a very high probability of ex-
periencing variations. Razor may encounter errors and subsequent
pipeline flushes very frequently which is very expensive for deeply
pipelined, out-of-order machines.

8. Conclusion

Process variations will be a significant impediment to continued
nanoscale technology scaling. We propose the use of variable-
latency techniques to mitigate the impact of variations on the reg-
ister file and execution units in a microprocessor. We also point
out that SRAM structures may be more sensitive to PV in future
technologies and show that the proposed approach allows design-
ers to balance the delay of slower SRAMs with less PV-sensitive
logic structures. Our method effectively removes the register file
and execution units from the set of delay critical components with
minimal IPC impact.

Future research will be needed to develop microprocessors that
are resilient to extreme process variations. We believe that the gen-
eral concept of flexible, variable-latency pipeline structures will be
applicable to other microarchitectural units in the machine such as
the front-end and memory hierarchy, although the implementation
challenges and IPC-tradeoffs are likely to be quite different.

Acknowledgments

This work is supported by NSF grants CCF-0048313 (CAREER),
CCF-0429782, Intel, and IBM. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the NSF,
Intel or IBM.

References

[1]1 A. Agarwal, D. Blaauw, S. Sundareswaran, V. Zolotov, M. Zhou,
K. Gala, and R. Panda. Path-based statistical timing analysis
considering inter and intra-die correlations. In International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems
(TAU), June 2002.

[2] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis for
intra-die process variations with spatial correlations. In International
Conference on Computer-Aided Design, November 2003.

[3] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy. A
process-tolerant cache architecture for improved yield in nanoscale
technologies. IEEE Transactions on Very Large Scale Integration
Systems, 13(1), January 2005.

[4] B. Amrutur and M. Horowitz. Speed and power scaling of SRAM’s.
Journal of Solid-State Circuits, 35, February 2000.

[5] S. Borkar. Microarchitecture and design challenges for gigascale
integration. In Keynote Speech, 37th International Symposium on
Microarchitecture, December 2004.

[6] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and
V. De. Parameter variation and impact on circuits and microarchitec-
ture. In 40th Design Automation Conference, June 2003.

[7] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration. Journal of Solid-State Circuits,
37(2), February 2002.

[8] K. Bowman, X. Tang, J. Eble, and J. Meindl. Impact of extrinsic and
intrinsic parameter fluctuation on CMOS circuit performance. Journal
of Solid-State Circuits, August 2000.

[9] R. Desikan, D. Burger, S. Keckler, and T. Austin. Sim-Alpha: a
validated, execution-driven Alpha 21264 simulator. In TR-01-23, CS
Department, University of Texas, 2001.

[10] Device Research Group, UC Berkeley. BPTM homepage. http://
www-device.eecs.berkeley.edu/~ptm/mosfet.html.

[11] S. Duvall. Statistical circuit modeling and optimization. In 5th
International Workshop Statistical Metrology, June 2000.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In International
Symposium on Microarchitecture, 2003.

[13] P. Friedberg, W. Cheung, and C. J. Spanos. Spatial variability
of critical dimensions. In Proceedings of VLSI/ULSI Multilevel
Interconnection Conference, 2005.

[14] M. Hrishikesh, D. Burger, N. P. Jouppi, K. I. Farkas, and P. Shivaku-
mar. The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter
delays. In International Symposium on Computer Architecture, 2002.

[15] R. Kessler. The Alpha 21264 microprocessor. IEEE MICRO, 19(2),
1999.

[16] N. S. Kim, T. Kgil, K. Bowman, V. De, and T. Mudge. Total power-
optimal pipelining and parallel processing under process variations
in nanometer technology. In International Conference on Computer-
Aided Design, November 2005.

[17] X. Liang and D. Brooks. Latency adaptation for multiported register
files to mitigate the impact of process variations. In Workshop on
Architectural Support for Gigascale Integration (ASGI-06, held in
conjuction with ISCA-33), June 2006.

[18] X. Liang and D. Brooks. Microarchitecture parameter selection to
optimize system performance under process variation. In International
Conference on Computer-Aided Design, November 2006.

[19] D. Marculescu and E. Talpes. Variability and energy awareness:
A microarchitecture-level perspective. In 42nd Design Automation
Conference, June 2005.

[20] S. Narendra, A. Keshavarzi, B. Bloechel, S. Borkar, and V. De.
Forward body bias for microprocessors in 130-nm technology
generation and beyond. In IEEE Journal of Solid-State Circuits,
Vol. 38, No. 5, May 2003.

[21] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and C. Hu. Impact of
spatial intrachip gate length variability on the performance of high-
speed digital circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 21(5), May 2002.

[22] D. Patil, S. Yun, S. Kim, A. Cheung, M. Horowitz, and S. Boyd. A
new method for design of robust digital circuits. In International
Symposium on Quality of Electronic Design, 2005.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In International
Conference on Architectural Support for Programming Languages
and Operating Systems, October 2002.

[24] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. Temperature-aware microarchitecture. In International
Symposium on Computer Architecture, 2003.

[25] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N.
Strenski, and P. G. Emma. Optimizing pipelines for power and
performance. In International Symposium on Microarchitecture,
2002.

[26] J. Stark, M. Brown, and Y. Patt. On pipelining dynamic instruction
scheduling logic. In International Symposium on Microarchitecture,
2000.

[27] M. Tehranipour, Z. Navabi, and S. Falkhrai. An efficient BIST
method for testing of embedded SRAMSs. In Proceedings of IEEE
International Symposium on Circuits and Systems, 2001.

[28] J. Tschanz, J. Kao, and S. Narendra. Adaptive body bias for
reducing impacts of die-to-die and within-die parameter variations
on microprocessor frequency and leakage. In Journal of Solid-State
Circuits, Vol. 37, No. 11, November 2002.

[29] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems
Perspective, Third Edition. Addison Wesley, 2004.

