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ABSTRACT

Design variability due to die-to-die and within-die process varia-
tions has the potential to significantly reduce the maximum operat-
ing frequency and the effective yield of high-performance micro-
processors in future process technology generations. This variabil-
ity manifests itself by increasing the frequency variance and de-
creasing the mean frequency of fabricated chips. In this paper we
develop a model for the impact of variability on the performance
of multiported SRAM-based structures such as physical register
files which are key architectural components that may encounter
variability problems. We find that naively resizing or increasing
the access latency of these performance critical datapath resources
can have frequency benefits, but may incur a significant IPC loss
that limits overall system performance. We propose an extension
to latency adaptation called port switching which more efficiently
exploits the technique to remedy the IPC loss. We find that even
under a conservative, worst case study, 18% mean frequency im-
provement with less than 5% IPC loss is possible for the 65nm
technology node. Finally, we contrast the impact of die-to-die and
within-die variations on chip performance and demonstrate that
the proposed technique can compensate the frequency loss mainly
due to within-die variations.

Key Words: Process variations, Multiported SRAM, Latency adap-
tation, Port switching

1. INTRODUCTION

Future advanced process technologies will continue to provide tran-
sistor density and speed improvements through aggressive feature
scaling and novel device topologies. Unfortunately, chip design-
ers will soon be forced to design with the expectation of signif-
icant variations in transistor feature sizes and threshold voltages
due to sub-wavelength lithography and random dopant fluctua-
tions. Process variations (PV) will manifest in several different
ways – through random or correlated variations that may occur
within a single die (WID: within-die variations) or across mul-
tiple dies (D2D: die-to-die variations) in a production run. The
expected increase in within-die variations is especially trouble-
some for high-performance microprocessor designers because of
cell stability and access time problems in SRAMs and the impact
on machine cycle time due to increases in the number and criti-
cality of key timing paths. Recent estimates suggest that process
variability could impact performance by a full process generation
[1].

While the last few years have seen an increased interest in devel-
oping probabilistic timing models and circuit-level techniques to

address variability, there has been comparably little work at the
microarchitectural level. However, key decisions that chip archi-
tects make to increase performance (e.g. sizing of architectural
resources, etc.) has a substantial impact on the number and dis-
tribution of critical paths, and resource sizing benefits can be eas-
ily surpassed by the loss of chip frequency under variations. On
the other hand, many techniques that can be used to combat pro-
cess variations, such as chip-by-chip resource resizing in various
microarchitectural structures, have inherent costs and must be ap-
plied with great caution. Because many of these approaches must
be combined with modifications to the chip architecture, microar-
chitects will have an important role to play in designing future
systems that are more tolerant to process variations [2].

Although techniques like adaptive body biasing (ABB) have po-
tential for reducing the impact of variations [7], these approaches
incur too much design overhead and complexity to be applied for
fine-grain control. Also, large forward body bias incurs exponen-
tial leakage power penalties and can not be blindly used for ther-
mal hotspots such as the register files as this will make these units
hotter and perhaps lead to thermal runaway.

Approaches based on Razor latches [16] have the potential to cor-
rect circuit level errors with double latching. However, there may
be difficulties in applying Razor to a multiported register file be-
cause there is a very high probability of experiencing variations.
Razor may encounter errors and subsequent pipeline flushes very
frequently which is very expensive for deeply pipelined, out-of-
order machines.

Agarwal et al. propose to use post fabrication resource resizing to
combat the impact of PV [3]. This work explores cache memory
resizing and only considers within-die random threshold voltage
variations. With the expected increase in PV, it is of significant
interest to study more performance critical datapath components
like register files (RF). Unlike caches, we find that resizing is not
suitable for performance critical structures such as the physical
register file because resource capacity is very important in these
structures. We therefore proposelatency adaptation. Unlike re-
source resizing which disables slow entries in the SRAM, we pro-
pose to use the slow entries but access them through two clock
cycles while keeping the fast entries operating in a single cycle.

In this work, we study the joint impact of both systematic varia-
tions, like gate length, and random variations. We also consider
differences in compensating for die-to-die and within-die varia-
tions due to the proposed techniques and ABB.

This paper takes several steps in the direction of PV-tolerant ar-
chitecture design using the physical register file as a case study.
Specifically, this paper makes three major contributions:



• We develop a performance variation model for multiported
SRAM-based structure that considers both systematic and
random effects. We model device gate length variations as
well as threshold variations.

• We find that naive resizing or latency adaptation for crit-
ical datapath components will not bring a significant per-
formance benefit because the recovered frequency is easily
compromised by the IPC loss. However, architectural solu-
tions can be used to reduce the IPC loss, and we show that
these simple architectural modification can greatly improve
the overall performance under PV.

• We show that this method can only help to improve the
frequency mean but has little effect on frequency variance.
Since within-die variations impact the frequency mean and
die-to-die variations affect the frequency variance [1], this
method is more effective to combat within-die variations.
Fortunately, die-to-die variations can be easily compensated
by ABB and we show that a combined approach with full
chip ABB can give the best performance.

The remainder of this paper has four sections. Section 2 describes
the details of our proposed performance model for the impact of
variation on multiported SRAM structures. Section 3 shows the
limitation of resizing or naive latency adaptation and proposes an
architectural solution to reduce IPC loss while maintaining the fre-
quency benefit. In Section 4, we present our simulation results.
Finally, our work is summarized in Section 5.

2. PROCESS VARIATIONS MODEL FOR MULTIPORTED
SRAM STRUCTURES

In this section, we introduce our modeling method used to pre-
dict the delay distribution of multiported SRAMs. We model both
within-die and die-to-die variations with systematic and random
effects. While the development of architectural process variation
models is in its infancy, this model provides a preliminary model to
allow architects to reason about variability in multiported SRAM
structures.

2.1. Delay Variations Calculation

Fig. 1 shows a typical 2-read/1-write port SRAM with a detailed
single cell design [15]. As indicated in [3], there are three possible
types of failure in an SRAM cell. These failures are caused by the
mismatch in the device parameters such as gate length and thresh-
old voltage in cells. These device mismatches change the strength
of different transistors resulting in different failure mechanisms.

• Read Stability Failure: This failure only occurs in tradi-
tional 6T SRAM design. During the read operation, the pull
down transistors in the cross coupled inverters may not be
strong enough to pull the bitline down to a low point so the
read may unintentionally flip the value stored in the cell.
In our multiported SRAM, we decouple the read bitlines
with the internal cross coupled inverters, so as to effectively
avoid this type of failure.

• Write Failure: When writing a “0” to a cell storing a “1”, if
the bitline pull down transistors are not strong enough, it is
possible for the stored value not to be toggled resulting in a
write failure. In general this type of failure is less frequent
than the other failure mechanisms [3], and because register

file arrays are usually much smaller than caches, we ignore
write failure in this paper. If a chip has write failure, it will
be discarded.

• Read Access Failure: This is the key failure mechanism in
SRAM structures. Each time the SRAM is read, the read
bitlines are required to discharge to a low voltage point. If
the discharge is slow and cannot meet the cycle time, a read
access failure occurs.

Figure 1: A typical 2-read/1-write SRAM structure.

The read access time is composed of the wordline charge delay and
bitline discharge delay. Two wordline and two bitline transistors
shown in Fig. 1 determine the access time, and variations in any
of these transistors may change the access time. Furthermore, in
a multiported SRAM, read ports attached to different entries may
incur different access times due to potential variability of these
four transistors. The worst case delay on any port/entry combina-
tion clamps the maximum SRAM frequency. Thus, multiported
SRAM are very susceptible to PV because a single bad transistor
can degrade the frequency for the entire structure.

Gate length (L) and threshold voltage (Vth) have been identified as
the two main source of variations for the next several generations
of process technology [4, 5]. In order to extract the delay varia-
tions due to the device parameter variations, we use a first order
approximation which is widely used in statistical timing analysis
[6, 13]. Eq. (1,2,3) shows the relation. The delay for a critical
path is the summation of the path nominal delay (D0) and the ad-
ditional delay caused by parameter fluctuation of each device on
the path, assumingn total devices. For small scale fluctuations, a
first order linear approximation is accurate enough and the coeffi-
cients (ak andbk) can be curved fitted with circuit simulation. Fig.
2 shows the delay and gate length fitting curve for an SRAM, and
the linear fit matches the HSPICE simulation for the range under
consideration.

Dpath = D0 +∆DL1 + ...+∆DLn +∆DVth1
+ ...+∆DVthn

(1)

∆DLk =
∂D

∂Lk
×∆Lk = ak ×∆Lk (2)



∆DVthk
=

∂D

∂Vthk

×∆Vthk = bk ×∆Vthk (3)

Figure 2: Curve fitting for HSPICE simulation for an SRAM.

2.2. Monte-Carlo Based Modeling

Since there are no widely accepted models for SRAM performance
under PV, we adopt the Monte-Carlo method in our model which
can be used to closely mimic real chip fabrication. For each tran-
sistor, we model the gate length as in Eq. (4) and threshold voltage
in Eq. (5), whereL0 andVth0 are the nominal values.

L = L0 + ∆L = L0 + ∆LD2D + ∆LWID (4)

Vth = Vth0 + ∆Vth (5)

For the gate length variations, there are die-to-die and within-die
components. For die-to-die variations, we generate a random vari-
able for each chip according to a normal distribution and use this
variable for∆LD2D for every transistor on that chip. For within-
die variations, there are both correlated and random components.
To capture this effect, we use the method introduced in [6]. The
SRAM area is divided into a multi-level quad-tree partitioning as
shown in Fig. 3. For each quadrant we generate a random vari-
able according to a normal distribution. The∆LWID of a transis-
tor can be obtained by adding up all the random variables of the
quadrants it belongs to. For example, the transistor (TX1) shown
in the figure has within-die gate length variations of∆LWID =
rand0,1 + rand1,1 + rand2,1. Therefore, TX1 and TX2 have
strong correlation because they share the variablerand0,1 and
rand1,1, while TX1 has less correlation with TX3, because they
only share the variablerand0,1.

Threshold voltage variations are mainly incurred due to the ran-
dom dopant effect [5] as well as gate length variations. Since the
impact of gate length on threshold has already been encapsulated
in the delay-gate length fitting shown in Fig. 2, we model∆Vth as
a random variable which obeys a normal distribution [3] only due
to random dopant effect.

We use Monte-Carlo simulation to generate all the random vari-
ables necessary in the model and generate the gate length and

Figure 3: Multi-level partitioning for within-die variations.

threshold voltage for each device on the delay path in the mul-
tiported SRAM. For gate length modeling, we apply 6 levels of
quadrants with the top quadrant the entire SRAM and the bottom
quadrant the devices. We then use the fitting curve and equations
introduced in Section 2.1 to calculate the delay of all the possible
paths in the SRAM. We simulate 2000 chips which is sufficient for
our statistical analysis.

3. VARIATION-AWARE ARCHITECTURE FOR
PHYSICAL REGISTER FILE LATENCY ADAPTATION

In this section, we first study the frequency benefit of post-fabrication
chip-by-chip tuning for several technology generations. We then
investigate IPC-frequency trade-offs for the simplest approach. We
proposeport switching, a simple architectural solution to mitigate
the IPC loss due to the additional latency added to the physical
register file.

3.1. Frequency Benefit of Post Fabrication Tuning

Due to the random nature of PV, the small number of transistors
(four in our proposed SRAM structure) on a single delay path, and
the large number of critical delay paths (port number× entry num-
ber× bit number), the multiported SRAM is very likely to have
variations problem in read access time. This requires that the chip
mean frequency be significantly shifted to lower values to accom-
modate for the worst-case delay path [1]. To improve overall yield,
it is necessary to apply post fabrication tuning [3]. Post fabrication
chip-by-chip test (e.g. BIST [8]) can help identify the delay for
each critical path (or entry) in the SRAM. Once we identify the
slow paths, we can take either of the two approaches: resource
resizing [3], which disables the entries that cannot meet the fre-
quency target, or latency adaptation, which allows the slow entries
to operate with two clock cycle latency while the fast entries main-
tain single-cycle latency. These approaches effectively increase
the maximum operating frequency of the SRAM. The frequency
will therefore be determined by the longest of the the remaining
single-cycle slow delay paths.

To quantify the frequency improvement, we study a multiported
physical register file. We build three, 80-entry× 64-bit physical
register files on one chip, each with 4 read ports and 2 write ports.
As in the Alpha 21264 processor [9], two register files are used for
the integer pipe and one for the floating point pipe. Our simula-
tions for 65nm and 100nm technology nodes are based on Berkeley
Predictive Technology Models (BPTM) [10] and our 130nm sim-
ulations are based on TSMC foundry technology libraries. In our



SRAM fast entry ratio 100% 90% 80% 70% 60% 50%

Mean Freq. 130nm 1 1.06 1.08 1.09 1.10 1.11

Mean Freq. 100nm 1 1.07 1.09 1.10 1.12 1.13

Mean Freq. 65nm 1 1.08 1.10 1.12 1.14 1.15

Table 1: Chip mean frequency improvement after resizing.

Per-port fast entry ratio 100% 90% 80% 70% 60% 50%

Mean Freq. 130nm 1 1.08 1.11 1.13 1.14 1.16

Mean Freq. 100nm 1 1.09 1.13 1.15 1.17 1.19

Mean Freq. 65nm 1 1.11 1.15 1.18 1.20 1.22

Table 2: Chip mean frequency improvement after latency adapta-
tion.

simulations, we assumeσLD2D/L0 = 5%, σLWID/L0 = 5%.
We assumeσVth/Vth0 = 10%. These assumptions are based on
estimates for future variability forecast in [1, 3], and later in the
paper we study the sensitivity of these assumptions.

Table 1 and Table 2 shows the chip mean frequency improvement
for resizing and latency adaptation under three technology nodes.
All the frequency values in the table are normalized to the fre-
quency before tuning is applied. In both tables, 100% means no
resizing or latency adaptation is applied. For resizing, a 90% fast
entry ratio corresponds to disabling 10% of the entries with the
slowest read access time from any port. The frequency after re-
sizing is determined by the longest delay of the remaining 90%
entries. For latency adaptation, 90% means for each port in the
register file, the slowest 10% of the entries will be accessed in
two clock cycles. Because different ports in the register file have
different PV characteristics, it is quite likely that the same entry
may be slow for one port and fast for another port. The final fre-
quency of the chip is determined by the slowest path delay in the
SRAM for the remaining 90% of the entries for all the ports. This
conservative approach assumes that there must be 90% fast entries
and 10% slow entries for each port. This is a worst case analysis
of latency adaptation, because once the chip frequency is decided
by the slowest port, it is likely that other ports have more then
90% fast entries. We will see that the worst case study places a
lower bound on IPC in Section 4. By marking the slowest paths in
the SRAM, both tuning methods increase the operating frequency
for each chip and boost the mean frequency of all chips. Latency
adaptation is more efficient, because it allows per port entry tun-
ings, while resizing disables an entry if only one port reading that
entry is slow, regardless of the other ports.

3.2. IPC Impact of Post Fabrication Tuning

Although post fabrication tuning can boost the chip frequency un-
der PV, it also greatly affects the IPC of the system by changing
the size or latency of performance critical datapath resources like
the physical register file. The latency of the register file and the
number of free registers available for renaming are key compo-

Units Config
Fetch/Decoder 4 inst

Issue Width 6 inst,4 int 2 fp
ROB 80 entries

Issue Q 20 int 15 fp
Integer RF 80 entries, 41 for renaming, 2-cy
Floating RF 72 entries, 41 for renaming, 2-cy

Exe Unit int 4, fp 2
LD/ST Q 32 entries
L1 I-cache 64KB, 2-way, 1-cy
L1 D-cache 64KB, 2-way, 3-cy
L2 cache 4MB, 4-way, 7-cy

Table 3: Baseline machine configuration.

nent for maintaining parallelism with out-of-order execution and
these structures usually are performance bottlenecks [11]. Thus, a
detailed IPC-frequency trade-off study must be carried out using
performance = IPC × frequency as the metric to measure
the effectiveness of the optimization.

In our processor architecture for resizing, once an entry is iden-
tified as slow and disabled, it will not be used to ensure all the
remaining entries can run at fast speed. The rename stage will not
map any architecture registers to the slow physical register entries.
This shrinks the effective size of the register file. For latency adap-
tation, whenever a slow entry for a certain port is read, the pipe
that port belongs to must stall for one clock cycle for register file
reading. This adds an additional bubble into the pipeline and thus
decreases IPC. For IPC estimation we usesim-alpha, a hardware-
verified Alpha 21264 simulator [12] with a 21264-like configura-
tion listed in Table 3. The physical register file is pipelined into 2
stages for fast clock rate, with the first stage (RF decode) handling
address decoding and second stage (RF read) performing SRAM
array access.

We use 11 SPEC2000 benchmarks for our simulations and report
average IPC. Phansalkar et al. point out that eight representative
benchmarks can cover the SPEC2000 test suites [14]. We use these
eight benchmarks (applu, gzip, equake, fma3d, mcf, twolf, mesa,
gcc) as well as three randomly picked benchmarks (vortex, swim,
perlbmk). For each benchmark, we simulate 100 million instruc-
tions.

Table 4 and Table 5 show the IPC impact due to register file re-
sizing and latency adaptation, all normalized to the machine with-
out tuning. From these results we see that the IPC drops signifi-
cantly when many entries are marked slow or require two-cycles
for the SRAM access. Both table also show the chip mean perfor-
mance for three technology nodes, considering the effect of both
frequency benefit and IPC loss. Unfortunately, the frequency ben-
efit due to tuning has been largely compromised by the large IPC
drop. Latency adaptation in this study can improve the mean chip
performance by 4% for the 65nm technology node, while resiz-
ing always degrades performance. The results show that naive ap-
proaches for IPC critical datapath resources do not yield significant
improvement for overall chip performance.

3.3. Port Switching to Reduce IPC Loss

The measured IPC loss is primarily due to the extra stall cycle
caused by latency adaptation. Due to the random nature of de-



SRAM fast entry ratio 100% 90% 80% 70% 60% 50%

IPC 1 0.87 0.61 NA NA NA

Mean Perf. 130nm 1 0.92 0.66 - - -

Mean Perf. 100nm 1 0.93 0.66 - - -

Mean Perf. 65nm 1 0.94 0.67 - - -

Table 4: IPC impact and chip mean performance after resizing,
“NA” means the IPC simulation fails for that node because of dead-
lock, extremely low IPC values/long simulation times.

Figure 4: Port switching to reduce stalls. Circled registers means
the register causes a stall for reading.

Per-port fast entry ratio 100% 90% 80% 70% 60% 50%

IPC 1 0.94 0.90 0.84 0.83 0.76

Mean Perf. 130nm 1 1.02 1 0.95 0.95 0.88

Mean Perf. 100nm 1 1.02 1.02 0.97 0.97 0.90

Mean Perf. 65nm 1 1.04 1.04 0.99 1 0.93

Table 5: IPC impact and chip mean performance after latency
adaptation.

vices on different ports, it is possible that for the same entry, differ-
ent ports may have different read-access delays, particularly under
strong device variations. We leverage this characteristic withport
switching. With this technique, we propose to opportunistically
switch from slow ports to fast ports for register file entry reading
in order to greatly reduce the IPC loss.

Fig. 4 provides a simple example to demonstrate the approach. In
this example, there are 10 entries in the register file with 2 read
ports. For each port, the two slowest entries are marked. The la-
bel ’f’ and ’s’ identifies the fast and slow entries for each port,
e.g. portA reading R3 and R6 is slow, while portB reading R3
and R6 is fast. Without port switching, every instruction in the
code sequence in Fig. 4 incurs a stall, because each instruction has
operands that require reading from the slow entries from either or
both of the 2 ports. However, if we can identify the problem and
steer the register access from the slow port to the fast port before
entering the register file read stage, we can avoid stalls. For the
first ADD instruction, if we use portA to read R3, it is slow and
needs to be stalled, although portB reading R4 has no problem. In-
stead, we can use portA to read R4 and portB to read R3, since both
ports are fast, and hence we can eliminate the stall. By using port
switching, we can avoid most of the stalls in the sample code se-
quence. Port switching cannot help the fourth instruction because
there is always one port reading a slow entry whether switching or
not. For the fifth instruction, switching cannot help. But because
the two operands are reading the same register, and since portB
can read faster, it is possible to forward the data to portA so that
the stall is avoided.

Some architectural modifications are necessary to implement port
switching. First, we assume that the SRAM port speed information
can be collected off-line (during BIST) and that the chip operating
frequency is pre-selected. The information is configured into a
ROM at test time. The per-port speed information will accompany
the standard register entry IDs. For example, with our 80-entry
register file with 4 read ports, we use an extended address of 11
bits, with the lowest 7 bits storing the standard physical RF entry
number and the highest 4 bits storing the speed information (fast
or slow) for each of the four ports for that entry. When a source
operand is renamed in the renaming stage, it grabs the physical
RF address as well as the four port speed bits (from the ROM)
and creates an address bundle. If the address is not a true register
file address, (normally used for non-register file reading immediate
operands and other special registers), all the ports speed bits will
be set to fast. The 11-bit address bundle is propagated through the
pipeline.

Fig. 5 shows the hardware implementation details. In this figure,
we assume port0 and port1 provide two operands for a functional
unit. In the RF decode stage, the lowest 7 bits are decoded as



Figure 5: Hardware implementation for port switching, a ’1’ in bit pt0 means port0 reading this address is fast, while ’0’ means slow.

usual. However, we also check the four port speed bits. If address0
can run fast with port1 and address1 can run fast with port0, port
switching occurs. The “switchaddr” signal controls the MUX to
properly steering the decoded address to the address latches, which
will then be used to access the register file in the next RF read
stage. At the same time, the logic compares the two addresses and
decides if a forwarding operation is necessary. The forwarding
and switch signal will be combined to generate “switchout0” and
“switch out1” signals and these signals will be latched twice to
control the output multiplexers and switch the operands back or
forward the operands before execution. Since switching cannot
avoid all the stalls, stall detection logic is implemented. If any of
the two ports is slow and there is no switch or forwarding, a stall
signal is generated. The stall signal passes to the previous issue
stage so that all dependent pending instructions must wait for an
extra cycle and no instruction can be issued to this pipe for the
next clock cycle. In order to allow the register file to take two
clock cycles for access, the stall signal must be latched twice to
prevent precharge for the second cycle of the access.

All the switch, forwarding, and stall signals are generated in paral-
lel with register address decoding so they will not add to the critical
path delay. The output multiplexers before the execution stage can
be merged with the execution bypassing multiplexers to minimize
impact on the execution delay. Only the multiplexers in the RF
decoder stage may affect critical datapaths. To keep this overhead
small, we limit the use of switching. Only two ports connecting to
the same functional unit can be switched or forwarded requiring a
small 2-1 MUX.

The RF stall signal is generated, if necessary, during the beginning
of the cycle after the instruction is issued. So all dependent instruc-
tions, including back-to-back instructions, will see the stall signal
at the beginning of their schedule cycle at the same time they are

Figure 6: Scheduling logic modifications for RF stall.

awakened and deciding whether to issue. Thus, there will not be
any speculative issue problems requiring replays. There will be
some necessary modification to the scheduling logic. Since the is-
sue logic can see the stall signal at the same time the instructions
are awakened, the issue logic should take this stall into consider-
ation. Fig. 6 shows the hardware modification of the scheduling
logic. In a conventional design [17], shown in Fig. 6a, each in-
struction operand in the issue queue includes an issue cycle register
that records the issue cycle after the operand wakes up. For exam-
ple, ”111111” in the issue cycle register refers to a back-to-back
instruction that can be issued the same cycle when it is waken up.
A string of ”111110” means that the instruction can be issued one
cycle after wake-up. When the instruction sees the wake up sig-
nal, the information in the issue cycle register is loaded to a shift
register, and the shift register will shift right to decide when the
instruction is ready for selection/issue. For back-to-back instruc-



tions, the wake up signal requires a logical AND with the issue
cycle register to ensure consecutive issue. The modified version
of this logic that includes the register stall signal is shown in Fig.
6b. If there is no RF stall, everything behaves exactly the same. If
there is a stall, the back-to-back instruction is gated from issuing
during the wake-up cycle. Also, the shift register is loaded with a
biased version (left shift 1 bit) of the issue cycle register to count
in the extra one cycle delay for the register file access.

The RF stall signal is generated early in the phase of the issue
cycle, while the wake up signal is usually performed near the end
of the phase because of the need to perform a CAM-lookup for
address matching. So the stall gating logic will not add much to the
issue critical path delay (only requiring a 2-input AND to change
to a 3-input AND). The additional multiplexers before the shift
register is not on the issue critical path so has no impact on the
delay.

4. DETAILED SIMULATION RESULTS AND
SENSITIVITY ANALYSIS

In this section, we highlight the performance benefits of port switch-
ing, discuss the impact of the technique on the chip performance
distribution, and perform sensitivity analysis.

Our simulations shows that the IPC loss due to RF latency adapta-
tion can be greatly reduced by port switching. We plot SPEC2000
benchmark results in Fig. 7. This figure shows the effectiveness
of port switching with 70% fast entries per port, and we see that
port switching only incurs a small IPC drop compared with the
standard register file.

Figure 7: SPEC2000 benchmark results.

Table 6 shows the average IPC with register file latency adaptation
utilizing port switching and the chip mean performance improve-
ment. With port switching and a 70% fast entry ratio per port, only
a 5% IPC drop is observed. Because port switching reduces the
IPC loss, the frequency benefit translates directly into a significant
increase in system performance. The results demonstrate that the
optimal configuration includes 70% -80% fast entries depending
on the process technology. Essentially this means that for these
configurations we can avoid the slowest 20%-30% entries for each
port and increase frequency. The chip mean performance is sig-
nificantly improved compared with naive latency adaptation, and

Per-port fast entry ratio 100% 90% 80% 70% 60% 50%

IPC 1 0.99 0.97 0.95 0.89 0.87

Mean Perf. 130nm 1 1.07 1.08 1.07 1.01 1

Mean Perf. 100nm 1 1.08 1.10 1.09 1.04 1.04

Mean Perf. 65nm 1 1.10 1.11 1.12 1.07 1.06

Table 6: IPC for latency adaptation with port switching and chip
mean performance improvement.

a 12% mean performance improvement can be obtained for the
65nm node for the worst case.

4.1. Performance Distributions and Full-chip ABB

Fig. 8 shows the chip performance distribution before and after
RF latency adaptation for the 70% point, including port switch-
ing, using 65nm technology. The performance mean as well as
the whole distribution is shifted to the faster end. So for a certain
performance point (e.g., the “Performance 1” point, shown by the
dashed line), the yield increases, from 25% to 83%. Alternatively,
for a certain yield requirement (90% yield in the figure), the per-
formance point grows from 0.90 to 0.98.

Figure 8: Chip performance distribution before and after latency
adaptation at the 70% point with port switching.

Fig. 8 also shows that although latency adaptation can help to
improve the chip frequency mean, it cannot help to reduce the
frequency variance. This can be seen in the figure as the distri-
bution shifts to higher performance, but the variance stays almost
unchanged. Bowman et al. show that within-die variations di-
rectly impact the frequency mean and die-to-die variations impact
the frequency variance [1]. This can be used to explain this phe-
nomena. The SRAM tuning is carried out chip-by-chip so it can
only reduce the slow paths on a single chip. If we assume there is
no within-die variations but only die-to-die variation, then all the
paths on a single chip share the same variation and there is no de-



lay difference between paths, and this approach will not have any
benefit.

Thus, latency adaptation can only mitigate within-die parameter
variations. As forecast in [1], within-die variations will become
the dominant factor for the next several generations of technol-
ogy. Die-to-die variations, on the other hand, can be overcome
by applying full chip adaptive body bias [7]. ABB cannot be ap-
plied at the fine granularity required to mitigate within-die vari-
ations, such as the entry-to-entry performance variations experi-
enced within multiported SRAMs, without incurring substantial
design complexity and area overheads.

We propose to combine full chip ABB with latency adaptation to
achieve the best performance improvement under strong PV. In
our simulations, ABB will be used to correct die-to-die variation
by sampling different corners on a chip and comparing the aver-
age delay with nominal. If the delay is larger (meaning die-to-
die device variations degrade chip frequency), full chip forward
body bias is used to accelerate the chip. If the delay is smaller
(meaning die-to-die device variations increase the frequency), full
chip reverse body bias is used to slow down the chip to save leak-
age power. Full chip ABB makes all the chips behave more uni-
formly and eliminates the die-to-die variations. Fig. 9 shows the
approach. Full chip ABB can largely reduce the variance caused
by die-to-die variations and make the distribution sharper while
latency adaptation shifts the mean to the higher performance end
reducing the impact of within-die variations. The combined ap-
proach helps to increase the 90% yield performance point from
0.9 to 1.03. Compared with the result in Fig. 8, the additional im-
provement (from 0.98 to 1.03) is due to the application of full chip
ABB. Also, now the yield for the “Performance 1” point is 100%,
compared with 83% in Fig. 8 without full chip ABB.

Figure 9: Chip performance distribution with full chip ABB and
latency adaptation at 70% point with port switching.

Figure 10: Mean chip performance under different variation sce-
narios. Assumes full chip ABB and latency adaptation with a 70%
adaptation setting with port switching.

4.2. Sensitivity to Amount of PV

All the previous simulations assume thatσLWID/L0 = 5% and
σVth/Vth0 = 10%. We now perform a sensitivity analysis on
these within-die variation parameters by sweepingσLWID/L0

from 3% to 11%, andσVth/Vth0 from 8% to 16%. We believe the
range swept can cover most of the variation situations for the next
several technology generations. We also assume full chip ABB
can correct die-to-die variations. In Fig. 10, we plot the mean
performance of the chips at the 70% adaptation point with port
switching. The simulation is at the 65nm technology node. The
approach works almost equally well for different variation scenar-
ios. The plot shows that the approach is more effective at correct-
ing randomVth variations, because the more random the critical
delay paths appear to be, the more efficiently the approach can
identify and correct slower paths. While within-die gate length
variations have correlated components, the approach is less effec-
tive at correcting large scale systematic variations. In large SRAM
structures, threshold voltage variations due to random dopants are
the key source of failure and this approach is well-suited to reduc-
ing the impact of these variations.

4.3. Impact of Pessimistic Assumptions

As mentioned before, we base our simulations on a worst-case
study. In particular, we always assume a fixed and equal fast-slow
entry ratio for each port in an SRAM. For example, with an 80-
entry SRAM with 70% fast ratio, we always assume 56 fast en-
tries and 24 slow entries for each port. But in our Monte-Carlo
simulation, we find that there is usually only one port that is re-
duced to this number of fast entries while the other ports can have
more fast entries once the chip frequency is determined. Table 7
shows the true fast entry number for three randomly picked chips
as well as our worst case assumption. For each chip shown in the
table, only 1-2 ports have a 70% fast ratio while other ports can
have more fast entries. We simulated the IPC for the three chips
and show the results in Fig. 11. It is clear that our worst case as-
sumption places a lower bound on the IPC values for all the chips.
Since it is not possible to simulate IPC for each chip, our current
results are a conservative estimation in evaluating the efficiency
of latency adaptation. Most chips should have higher IPC and thus
higher performance than reported in this paper. In our future work,



Port chip1 chip2 chip3 worst case
RF1, Port0 56 73 61 56
RF1, Port1 57 74 63 56
RF1, Port2 59 68 68 56
RF1, Port3 56 72 70 56
RF2, Port0 75 56 61 56
RF2, Port1 72 60 65 56
RF2, Port2 72 57 57 56
RF2, Port3 71 56 68 56
RF3, Port0 62 69 56 56
RF3, Port1 67 62 64 56
RF3, Port2 60 67 62 56
RF3, Port3 66 66 63 56

Table 7: Number of fast entries for each port for three random
chips and the worst case. Each register file is an 80-entry, 4-read
port SRAM.

we plan to develop methods to better estimate the true IPC without
exhaustive simulation.

Figure 11: IPC for three chips and for the worst case. The worst
case study places a lower bound on the IPC for all chips.

5. CONCLUSION

In this paper we study an approach to mitigate the impact of pro-
cess variations within the design of multiported register files. We
describe a modeling method to consider PV for multiported SRAM
structures. We find naive resizing or latency adaptation cannot help
significantly because of large IPC loss, and we propose to use port
switching to reduce the IPC loss and boost the overall system per-
formance. We study the impact our approach has on die-to-die
variations and within-die variations and find that the approach is
well-suited to random, within-die variations. Combining this tech-
nique with full chip ABB can give satisfactory results even under
significant PV.

This paper implicitly assumes that the register file is the only source
impacting the overall chip frequency. Our future research plans to
explore whether similar techniques can be used for other delay
critical components like the issue queue and other storage units.
This work effectively reduces the PV impact on the physical reg-
ister file and can be combined with other approaches like cache
resizing [3]. We hope that this work can encourage architects to
begin to integrate the impact of PV and associated optimization
techniques into the early architecture design phase.
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