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Abstract

Recent work shows that dynamic memory allocation con-
sumes nearly 7% of all cycles in Google datacenters. With
the trend towards increased specialization of hardware, we
propose Mallacc, an in-core hardware accelerator designed
for broad use across a number of high-performance, mod-
ern memory allocators. The design of Mallacc is quite dif-
ferent from traditional throughput-oriented hardware ac-
celerators. Because memory allocation requests tend to be
very frequent, fast, and interspersed inside other application
code, accelerators must be optimized for latency rather than
throughput and area overheads must be kept to a bare mini-
mum. Mallacc accelerates the three primary operations of a
typical memory allocation request: size class computation,
retrieval of a free memory block, and sampling of memory
usage. Our results show that malloc latency can be reduced
by up to 50% with a hardware cost of less than 1500 µm2 of
silicon area, less than 0.006% of a typical high-performance
processor core.

1. Introduction
In the long term, the confluence of technology trends points
steadily towards hardware specialization. Continued transis-
tor density increases, coupled with the end of Dennard scal-
ing, result in the inability to power a whole chip at maximum
performance – the problem known as dark silicon. Hard-
ware specialization has been widely adopted in processors
to solve this problem.

Much existing effort in hardware specialization has fo-
cused on “deep” acceleration following the classic Amdahl’s
90/10 rule. This involves identifying “killer applications”
and optimizing their most costly kernels, be it ranking in
websearch [19], convolutions in image processing [20], or
matrix-vector products in neural network inference [21].
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This strategy has seen especially great traction in mobile
systems-on-chip, where the majority of silicon area in cur-
rent designs is dedicated to specialized blocks [22]. How-
ever, the server chips powering cloud workloads remain pre-
dominantly general-purpose.

A major reason for this omission is that modern datacen-
ter workloads are simply too diverse, without any opportu-
nities for 90% optimization. Not only do they run thousands
of different applications, but the individual workloads them-
selves have also been shown to not have significant hotspots
that can be optimized with deep approaches [12]. This does
not mean hardware acceleration in datacenters is infeasible.
Characterization studies show that a large fraction of cycles
is spent on the so-called “datacenter tax” – low-level routines
like remote procedure calls, data serialization and memory
allocation. While each individual component of this tax is
a relatively mild hotspot (in the 2-8% range), together they
can comprise up to 30% of all cycles in Google datacenters
[12].

The ubiquity of the datacenter tax suggests an alterna-
tive “broad” approach to acceleration: speeding up multi-
ple shared low-level routines that appear in many applica-
tions. This approach may not provide the 10× application
speedups typically associated with hardware specialization.
But accumulating several instances of such several-percent
optimizations can save significant amounts of CPU cycles,
especially when deployed broadly across the hundreds of
thousands of servers that cloud providers operate. Borkar
refers to this approach as “10 × 10 optimization” [2] and
argues that it is a necessity for continued performance in-
creases in the era of dark silicon.

Of the components that comprise the datacenter tax, per-
haps the most familiar one is malloc: dynamic memory al-
location. malloc is such a popular programming paradigm
that many collective developer-years have been spent re-
searching and optimizing allocation strategies and tech-
niques. For example, a typical malloc call takes only 20
CPU cycles on a current-generation general-purpose proces-
sor, setting the bar high for potential hardware implementa-
tions. malloc exemplifies the unique set of challenges fac-
ing broad acceleration: because calls to these routines tend to
be very frequent, fast, and interspersed inside other applica-
tion code, accelerators must be optimized for latency rather
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than throughput, and because each such accelerator brings
a limited amount of overall application speedup, overheads
must be kept to a bare minimum.

In this work, we present the design of Mallacc, a memory
allocation accelerator that meets these constraints. Mallacc
is a tiny in-core hardware block which accelerates the three
primary operations of a typical memory allocation request:
size class computation, retrieval of a free memory block, and
sampling of memory usage. Mallacc is designed not for a
specific allocator implementation, but for use by a number
of high-performance memory allocators commonly found in
datacenters today. Our goal is to make the already fast (20-30
cycle) malloc calls even faster, because they are so frequent,
and Mallacc achieves that goal. It can reduce malloc latency
by up to 50% while occupying less than 1500 µm2 of silicon
area. As we will show, Mallacc far exceeds the “1% speedup
for 1% area” mantra that has informally guided processor
development over the past decades.

2. Background
Dynamic memory allocation has been studied for decades.
In this section, we place our work in the context of past lit-
erature. We discuss historical research on allocators, general
techniques and structures that are still used in modern allo-
cators, and factors that drove evolution of allocators over the
decades.

At a very high level, a dynamic memory allocator sits be-
tween an application and the operating system (often as a
part of the platform’s standard library). It requests continu-
ous blocks of memory from the OS and distributes chunks
of them, with different sizes, to call sites in the application
that explicitly request them. Allocators are judged on both
the speed with which they satisfy a request and their mem-
ory fragmentation, which measures how much memory is
requested from the OS vs. how much memory the applica-
tion actually uses.

In the very early days, main memory was expensive and
scarce, so allocator design focused on minimizing memory
fragmentation and overhead. Starting from the 1960s, re-
searchers studied data structures for storing free objects, no-
tably linked lists [7] and trees [24]. Various strategies for
searching through free lists of memory blocks to identify the
right object to return were examined: such as returning the
first block large enough (“first fit”), the exact size (“best fit”),
and many more [6]. Techniques for efficiently splitting and
coalescing free memory objects were also studied; one no-
table example is the buddy system, in which a free object can
split into two “buddy” objects for small allocations, but can
only be merged with that same “buddy” when a large allo-
cation is needed [14]. The notion of size classes – allocating
memory from a set of specific sizes – was also conceived

decades ago [26].1 Many of these techniques and data struc-
tures are still used in today’s allocators.

Over time, two trends motivated significant changes in
allocator design. First, main memory costs dropped and
densities increased exponentially thanks to Moore’s Law.
However, unlike CPU speeds, main memory access laten-
cies stagnated. The increasing gap between CPU and mem-
ory speeds shifted the focus from memory fragmentation to
speed. Second, the rise of multi-core processors and mul-
tithreaded applications in the last decade motivated alloca-
tor designs that were fast and efficient in the face of prob-
lems like lock contention, false cache sharing, and memory
blowup with large numbers of threads. Modern allocators
like Google’s tcmalloc [11], FreeBSD’s jemalloc [8],
Hoard [1], and others were all designed to support robust
multithreaded performance.2

Modern multithreaded allocators like the ones listed
above all share a common set of design principles. First,
they logically organize available memory in a hierarchical
fashion. The top level is a pool of memory that can only be
accessed by a limited number of threads (often just one) to
mitigate the cost of synchronization. These pools are highly
optimized in software such that a hit in one is likely to be
considered “fast enough”. They are backed by lower-level
pools, which are shared among threads. Memory is migrated
back and forth as necessary. Second, they select a set of
size classes and round requested sizes to the next nearest
size class, which simplifies splitting and coalescing of larger
memory blocks and reduces the amount of metadata needed.
Third, they use different methods to allocate “small” and
“large” chunks of memory (though they differ on the ex-
act thresholds of considering a chunk small). Finally, they
ensure that memory can migrate from thread to thread to
avoid memory blowup in scenarios where one thread allo-
cates memory and another thread frees memory.

Within this framework of common design principles,
modern allocators can differ significantly in their imple-
mentations. For example, size classes are selected based on
different upper bounds of memory fragmentation. Heuris-
tics for determining when to migrate memory from lower
to upper levels, as well as how many blocks to move, vary
greatly too. Lower level pools tend to store larger blocks
of memory that are then sliced into smaller chunks for top
level pools, which is a time-consuming process that requires
synchronization. Similarly, at some point additional mem-
ory must be requested from the operating system, which
requires a costly system call. Developers must balance the
frequency of these requests with the overall memory usage
and consider various allocation patterns from different appli-
cations. Therefore, the parameters of these procedures tend

1Research in allocators has been especially prolific – for a significantly
more complete survey of early approaches, refer to Wilson et al. [27].

2Similarly, Ferreira et al. [10] provide a succinct overview of the
structure of modern allocators.



101 102 103 104 105

malloc duration (cycles)
0

10

20

30

40

50
Ti

m
e 

in
 c

al
ls 

(P
DF

 %
)

Fast path

Get from
central cache

Get from
page allocator

400.perlbench.diffmail

Figure 1: The costs of hits and misses in several allocation
pools in TCMalloc vary by orders of magnitude.

to change relatively frequently as developers seek out new
optimizations and tradeoffs.

Compared to the effort spent on software optimization
and tuninig, creating custom hardware for allocators has re-
ceived next to no attention. We are only aware of one fea-
sibility study [17] and several variations of the buddy tech-
nique [3, 4, 5, 16], which show that it easily maps to purely
combinational logic. While buddy allocation has been avail-
able for decades, modern allocators have converged to sim-
pler techniques in their highest-level pools (most frequently,
first-fit free lists), most likely due to buddy systems’ reported
high degrees of fragmentation [27] and relative complexity.

This presents an opportunity for hardware designers look-
ing to accelerate allocation. Rather than design a whole new
algorithm from scratch to simplify hardware implementa-
tion, they can speed up the common elements of modern
allocators – the “fast enough” top-level pools – and allow
different allocator algorithms to tune the details on the lower
levels in software for their own workload assumptions. In the
rest of the paper, we demonstrate the feasibility of this ap-
proach by optimizing the top-level pools of TCMalloc [11].
While TCMalloc makes for a good anchor point to demon-
strate gains – it is mature, robust and among the faster al-
locators [10] – the optimizations we propose can easily be
used by other modern allocators.

3. Understanding TCMalloc
We start by describing how TCMalloc allocates and deallo-
cates memory and compare and contrast it with other multi-
threaded allocators. We profile the costs of several allocator
code paths and find that the fast path is an overlooked area
for potential optimization.

3.1 TCMalloc overview
Allocation pools Like many other allocators, TCMalloc al-
locates memory from a hierarchy of memory pools. At the
top are thread caches assigned to each thread of a process,
and meant to service small requests (< 256KB). Each cache
contains many singly-linked free lists – lists with addresses
to free chunks of memory of the same size. There is one free
list per size class. TCMalloc currently has 88 size classes,
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Figure 2: Majority of time in malloc in CPU2006 is spent
on calls taking less than 100 clock cycles.

a relatively large number picked to keep memory fragmen-
tation low. When a free list is not empty, a small allocation
can be satisfied by simply popping the head off the list. Since
these caches are thread-local, no locks need to be acquired
and a thread-cache hit is relatively fast. jemalloc’s thread
caches were inspired by TCMalloc [9], and their size class
organization is quite similar.

If a free list is empty, the allocator must first fetch blocks
into a thread cache from a next-level pool. In TCMalloc,
it either attempts to “steal” some memory from neighbor-
ing thread caches, or gets it from a central free list. Both
approaches require locking, and are orders of magnitude
slower than hitting in a thread cache. Should both of these
sources be empty themselves, TCMalloc allocates a span (a
contiguous run of pages) from a page allocator, breaks up
the span into appropriately sized chunks, and places these
chunks into the central free list and the thread-local cache.
Large requests (> 256KB) go directly to spans and bypass
the prior caches. Should the page allocator also be out of
memory, TCMalloc then requests additional pages of mem-
ory from the operating system.

Figure 1 illustrates the cycle costs associated with hit-
ting or missing in several of these pools for 400.perlbench
from SPEC CPU2006. It is a simulated distribution (details
on our methodology follow in Section 5) of time spent in
each malloc() call over the call’s duration in cycles. The
three major peaks correspond to hitting in a thread cache,
missing in a thread cache and hitting in the central free list,
and grabbing a span. Missing in a thread cache has a cost
at least three orders of magnitude higher than that of a hit.
Because of the high costs, too many misses in the highest-
level pool can be detrimental to allocator (and application)
performance. TCMalloc employs several heuristics to trans-
fer chunks of memory between the various pools in an effort
to maximize thread cache hit rates. These heuristics (and the
particular implementation details of the lower-level pools)
are what distinguishes different modern allocators from one
another. Note, however, that despite their very low per-call
cost, thread cache hits represent a significant chunk of allo-
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cator cycles overall for 400.perlbench. We will come back
to this observation in the following section.

Memory deallocation Deallocation follows a similar path.
When memory is being freed, TCMalloc first determines
the size class of the freed object. If that object is small, it
gets pushed to the top of the appropriate thread cache free
list, and if that free list now exceeds a certain size (2MB),
TCMalloc returns unused objects back to the central free list.
If the freed object is large, pages of memory get returned
back to the page allocator.

3.2 Time spent in the allocator
As discussed in the prior sections, research in allocator de-
sign has focused on the lower-level memory pools because
of their potentially catastrophic effects on performance. This
is also partially because the fast paths – those that hit in
thread caches – are already considered sufficiently opti-
mized. Microbenchmark experiments often support such a
hypothesis. For example, our tp_small microbenchmark
(described later) achieves an average malloc() latency of
only 18 cycles.

However, we find that for a range of applications, time
spent on the fast path is not only a significant, but also
a major fraction of time spent in the memory allocator.
Figure 2 shows this property for the four SPEC CPU2006
benchmarks that actually call the system allocator. In the
cumulative distribution of malloc() time, more than 60%
of time is spent on calls that take less than 100 cycles.
For xapian, an open source search engine, we see an even
higher fraction. This need not be the case for all workloads:
for example, the performance tests of masstree, a key-
value store, never free any memory and end up continuously
getting more from the page allocator (which eventually goes
to the operating system). A real deployment of masstree
does free memory and has much better thread-cache hit
rates, but even such corner-case behavior spends more than
30% of allocator time on the fast path.

There are two main reasons for the high fraction of fast-
path time that we observed. First, while individually cheap,
fast-path calls can be very frequent – a classic “death by a
thousand cuts” scenario. This is especially true for appli-
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Figure 4: Time spent in the three main components of the
fast path accounts for ≈ 50% of cycles.

cations that allocate and deallocate at similar rates so that
their requests almost never have to reach the other mem-
ory pool levels. Second, thread caches are very cheap in
microbenchmarks, but can get significantly more expensive
when the requesting application itself is cache-heavy. In that
case, the application’s memory accesses evict the allocator’s
data structures from the CPU’s caches, and a cheap 18-cycle
fast-path call can turn into a hefty 100-cycle stall on main
memory.

Thus, we believe the fast path of memory allocators
presents an overlooked opportunity for optimization and fo-
cus the rest of the paper on speeding it up with specialized
hardware. For that, we need a detailed understanding of the
work done during fast path calls, and the costs associated
with it.

3.3 Analysis of the fast path
By definition, the fast path is a memory request satisfied by
a thread cache free list. And by design, an access on the
fast path has little work to do. For TCMalloc compiled with
GCC 6.1, the fast path is only ≈ 40 static x86 instructions,
and can take 18-20 cycles, assuming cache hits. It contains
a few conditional branches that are easy to predict and no
loops. Microbenchmarks with back-to-back allocations and
deallocations can achieve an IPC of 3.0 on a 4-wide Intel
Haswell core. In other words, it has been heavily optimized.
Thus, speeding it up further is an exercise in performance
microscopy and in reducing the latencies of the different



size_t SizeClass(size_t size) {
size_t class_index;
if (size <= 1024)

class_index = (size + 7) >> 3;
else

class_index = (size + 15487) >> 7;
return size_class_table[class_index];

}

size_t class = SizeClass(requested size);
size_t alloc_size = size_table[class];

Figure 5: Size class lookup function.
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Figure 6: Many benchmarks use a very small number of
size classes.

steps of a fast allocation. Figure 3 illustrates these steps in
the context of an incoming allocation request: 1) finding the
appropriate size class for the requested size, 2) potentially
sampling the request, and 3) satisfying it by popping the
head of the corresponding free list. In the rest of the section,
we go into more detail about the computation in each step
and its cycle costs.

Note that we can (and do) estimate these costs, even if
they are caused by only several instructions, because we rely
on simulation. This is how we construct Figure 4, which
contains cycle costs for several microbenchmarks designed
to stress different fast path aspects. With simulation, we can
simply remove these instructions from simulated execution
and subtract the resulting cycle count from a baseline. These
are estimates, and not strictly additive, since out-of-order
cores explicitly overlap work. When all removed together
(the Combined bars in Figure 4), they make up for half the
cycles of the fast path.

Size class calculation The first part of an allocation re-
quest rounds the requested memory size to the nearest size
class supported by the allocator. The number and spacing of
size classes is carefully tuned to balance fragmentation and
allocator latency, so typically the mapping from size to size
class does not have an easy closed form. For example, be-
cause small size classes are more commonly observed, the
spacing between small size classes is closer, and it grows
the larger the size class is. In TCMalloc, this mapping is im-
plemented by first computing a size class index from the re-

pop:
load temp, MEM[head] ; Get the head.
load next_head, MEM[temp] ; Get head->next.
store MEM[head], next_head ; head = head->next.
return temp

push:
load temp, MEM[head] ; Get the head.
store MEM[head], new_head ; Set new_head as head.
store MEM[new_head], temp ; new_head->next = temp.

Figure 7: Critical memory accesses on a free list
push/pop.

quested size and then indexing into two arrays which are pre-
computed at initialization time for the size class and rounded
size that it represents (Figure 5). The class index only re-
quires an add and a shift, but the two array lookups can be
comparatively costly, even if they hit in the L1 cache be-
cause they are on the critical path of execution. The number
of class indices (the size of the first array) is set by the thresh-
old for a small allocation and by memory alignment require-
ments. This number was fixed at slightly above 2100 in 2007
when TCMalloc was open-sourced and has not changed. The
second array is much smaller, currently at 88 (the number of
size classes), and has seen two small increases since 2007.

Despite having 88 size classes available, we find that
applications often use a relatively small subset. Figure 6
shows that, for the benchmarks we surveyed, all but one
use less than 5 size classes on 90% of malloc calls. In
fact, masstree almost exclusively uses a single size class.3

xalancbmk has a much broader distribution, but even so, it
uses two size classes over half of the time. This observation
motivates techniques to memorize the most common size
classes.

While usually free is perfectly complementary to malloc
and we rarely mention it, there is a marked difference in
size class computation. free does not take a size parame-
ter, only the pointer to be deallocated, so it must perform
extra work to determine the size class to return it to. In TC-
Malloc, this is implemented by a hash lookup from the ad-
dress being freed to the size class. This hash tends to cache
poorly, especially in the TLB, leading to expensive losses.
C++11 ameliorates this problem because the compiler can
choose to call operator delete() with an extra param-
eter equal to the size of the object being freed, as long as
the object’s size can be determined at compile time. With
-fsized-deallocation, the compiler prefers calling that
variant when it can. In our results, we assume sized delete
when applicable.

Push/pop a free list head Once a size-class is identified,
all that is left is to pop (or push) the head of its free list.
Pushing to or popping from a free list generates a dependent
chain of three memory accesses, as shown in Figure 7. In

3For allocations below 256KB only, which are handled by the fast path.



Valid
Size range

(index range)
Size class Size Head Next

1 0 - 1 1 8 0x8080 0x8088
1 63 - 64 25 512 0x9090 0x9290
1 5 - 6 4 48 0x0 0x0
0 - - - - -

Figure 8: A malloc cache with example values. The cache
is searched by first an associative lookup over requested
size and later by size class. It stores the corresponding
size class, and the first two free-list elements for that size
class.

these cases, the most critical operations are the two loads on
the pop path, because long-latency load misses can stall exe-
cution and commit of younger instructions. Since calls to the
allocator are interspersed among application code, the free
lists are prone to eviction, making these loads likely to miss.
Figure 4 demonstrates this clearly with the antagonist mi-
crobenchmark, which emulates such cache-trashing behav-
ior, and sees a significant increase in Pop time. In contrast,
stores misses are less likely to stall the execution or commit
of younger instructions, making the deallocation path less
performance-critical.

TCMalloc uses a trick to save memory taken up by the
free lists: it stores the next pointer at the address of the
block of memory it is about to return, instead of allocating
a separate field in a struct for it. That is, *head is the value
of the next pointer, rather than a more familiar list node
with fields node->head and node->next. In addition to
reducing allocator memory overhead, dereferencing head
to get the next pointer has the side effect of prefetching
the returned memory block itself, which can likely help the
caller.

Sampling For monitoring and debugging purposes, TC-
Malloc can also sample allocation requests every N bytes.
A sampled allocation dumps and stores a stack trace in addi-
tion to performing the allocation itself. Sampling is invalu-
able in a production setting for analyzing memory usage and
debugging memory leaks without having to stop, let alone
recompile, live jobs, but it adds a measurable overhead to
each malloc request, since a counter must be decremented
and checked against the threshold each time.

Remaining instructions The three main steps described
above account for ≈ 50% of fast path cycles. The remainder
are split roughly evenly between: function call overhead
(pushing / popping registers), addressing calculations (for
example, of a free list in a thread cache) and updates to
metadata fields (such as free list lengths and total size).
While it is tempting to consider hard-coding the latter two in
hardware, this would result in a rather narrow and inflexible
accelerator, and severely limit its applicability to either other
allocators, or even future revisions of the same allocator.

def mcszlookup(ReqSize):
IsHit = Cache.FindRangeContaining(ReqSize)
if IsHit:

SizeClass = Cache[ReqSize].SizeClass
AllocSize = Cache[ReqSize].AllocSize
ZF = 1

else:
ZF = 0

return SizeClass, AllocSize

def mcszupdate(ReqSize, AllocSize, SizeClass):
IsHit = Cache.FindSizeClass(SizeClass)
if IsHit:

SizeRange = Cache[SizeClass]
if not SizeRange.Contains(ReqSize):

SizeRange.LowerBound = ReqSize
else:

if Cache.Full():
Cache.Evict()

SizeRange = (ReqSize, AllocSize)
Cache.InsertRange(SizeRange, SizeClass)

Figure 9: Pseudocode for size class instructions.

4. Mallacc: a malloc accelerator
Based on the characterization in the previous sections, we
propose Mallacc, a fast-path malloc accelerator to augment
a general-purpose processor. Broadly, Mallacc consists of a
tiny dedicated malloc cache and a sampling performance
counter. Its design requirements are extremely stringent.
Since each fast-path call is on average only a few tens of
cycles long, proposed structures must be inside cores, or ac-
cess latency will erase any gains, which implies very tight
area constraints. In addition, we would like to hard-code as
few allocator-dependent details as possible (ideally none),
so that many current and future allocators can benefit from
acceleration. Our proposed design demonstrates that it is
possible to meet these constraints, and the rest of this sec-
tion describes it in detail. Our descriptions assume the x86
architecture, but the general principles and mechanisms are
not x86-specific.

4.1 The malloc cache
In Section 3.3, we identified size class computation and pop-
ping the head of a free list as the biggest contributors to fast-
path cycles, especially with cache-heavy workloads invok-
ing the allocator. We can optimize both with a tiny, two-part
cache that we call the malloc cache. Conceptually, it learns
the mappings from requested allocation sizes to both the size
class they correspond to and the first two elements of the free
list for that size class. In the case of a malloc cache hit, com-
putation can almost immediately return to the caller. By only
storing the most frequently-accessed size classes, the cache
can be kept extremely small (several entries). Lookups, up-
dates and prefetches in the cache are software-managed, so
it is also not tied to a particular allocator implementation.
A four-entry cache, populated with some example values, is
shown in Figure 8. We will go over its main components.



Size class mappings By definition a single size class rep-
resents a range of allocation sizes that get rounded up and
given the same amount of memory. The malloc cache learns
and stores the mappings from a requested size range to the
size class representing it.

When a requested size comes in, it is associatively
checked with the upper and lower bounds of the ranges that
currently make up all cache entries. If the request size is
inside a range, the access is declared a hit, and the cache
returns the size class and its corresponding rounded size.
More interestingly, on a miss, execution goes to a fallback
path, where software is left to compute the size class as
it ordinarily would. Software is then responsible to update
the cache with the new (requested size, allocated size, size
class) entry. The cache either inserts a new size class entry
with the new range, or it expands the range for an already
existing size class. If the cache is full for an insertion, an old
entry is evicted based on an LRU policy.

The cache is managed by two new instructions:
mcszlookup and mcszupdate (malloc cache size
lookup/update). mcszlookup takes the requested allo-
cation size in an input register and returns the size class
and allocation size in two output registers if the requested
size is found in the cache. The zero flag (ZF) is set if found
and cleared if not. mcszupdate takes the original requested
size, the computed size class, and the allocation size in
three input registers and either inserts a new entry into the
cache or updates an existing one. No registers are modified.
Pseudocode for the instruction mnemonics is shown in
Figure 9. Figure 10 is an assembly snippet demonstrating
how they integrate with the rest of allocator code.

Our actual implementation has one additional optimiza-
tion – instead of keying the array on the actual requested
size range, we use the range of size class indices, as de-
fined in Figure 5, and add dedicated hardware to compute
the index from the requested size. Because the space of in-
dices is significantly smaller than the space of requested
sizes, the cache can learn mappings faster, with fewer cold
misses. The hard-coded hardware adds an additional cycle
of latency to the cache, which we do model. It is the only
TCMalloc-specific optimization in Mallacc, and can be dis-
abled with a configuration register. In this mode, the malloc
cache will build ranges of known requested sizes, although
with slightly higher miss rates.

Free list caching An allocation call requires popping an
element off a free list. As mentioned in Section 3.3, this
is the most performance-critical part of a fast-path call, be-
cause it caches poorly and accesses memory prone to evic-
tion by the application’s own cache accesses. The malloc
cache tackles this bottleneck by storing copies of the head
and the next head of the free list associated with a size class
alongside the size class mappings. Figure 8 illustrates this
with an example.

Start:
; rax = size class (dest)
; rbx = allocated size (dest)
; rcx = requested size (source)
mcszlookup rax, rbx, rcx ; Sets ZF
je ComputeSizeClass ; if ZF = 1, jump.

Resume:
; Continue with the rest of malloc.

ComputeSizeClass:
; The usual software calculation for the size class (rax)
; and allocated size (rbx). Then update the cache.
mcszupdate rcx, rbx, rax
jmp Resume

Figure 10: Integration of size class instructions in an
allocator.

Storing the first two list items in the malloc cache allows
a Mallacc-enabled allocator to immediately return a value to
the application after a hit. It also allows the next instruction
in a linked list pop, the one that sets the head of the linked list
to the current next element, to commit immediately without
waiting for an often-required L2 or L3 miss in order to first
fetch that next element. We find that second effect especially
important, because the long-latency miss often blocks other
otherwise-ready instructions from committing.

We introduce two new instructions to enable such oper-
ation. Most importantly, mchdpop (Figure 11) takes in the
requested size class as an input (which we have ideally got-
ten from the previous optimization), and returns the cached
copies of the first two list elements on a hit. If either of them
is not present (NULL) in the cache entry, the access is de-
clared a miss, the other one is also invalidated, and execu-
tion falls back on software to perform the pop (Figure 12).
Its dual operation, mchdpush, is invoked on the dealloca-
tion side and updates the cached Head with the pointer being
freed, shifting the previous head to the Next slot.

Note that these instructions are merely performance opti-
mizations meant to isolate free lists from cache antagonists.
The real free list head pointer is always valid and updated in
software on both a hit and a miss, as is any metadata (length,
total size, etc.).

For a pop operation to consistently hit, we need two
elements already cached. To maintain that for differently-
balanced allocation patterns (i.e., with different rates of
allocations and deallocations over time), we introduce
yet another instruction, mcnxtprefetch. Conceptually,
mcnxtprefetch prefetches a memory location into the mal-
loc cache’s Next entry, and is called after a pop hits and
moves its Next element in the Head position. In this case,
a subsequent pop request can immediately hit as long as the
prefetch has had enough time to return from the cache hierar-
chy. While not necessary for correctness, enabling a prefetch
to update the Head field of an empty cache entry as well as
the Next field allows for the prefetch instruction to be called
on a miss, and leads to higher hit rates. We assume that in



def mchdpop(SizeClass):
Found = Cache.FindSizeClass(SizeClass)
if Found:

Head = Cache.GetHead(SizeClass)
Next = Cache.GetNext(SizeClass)
if Head and Next:

Cache.SetHead(SizeClass, Next)
Cache.InvalidateNext(SizeClass)
ZF = 1
return Head, Next

ZF = 0
return NULL, NULL

def mchdpush(SizeClass, NewHead):
FoundEntry = Cache.FindSizeClass(SizeClass)
if FoundEntry:

CurrHead = Cache.GetHead(SizeClass)
Cache.SetNext(SizeClass, CurrHead)
Cache.SetHead(SizeClass, NewHead)

def mcnxtprefetch(SizeClass, NewNext):
CurrHead = Cache.GetHead(SizeClass)
CurrNext = Cache.GetNext(SizeClass)
if CurrHead and not CurrNext:

Cache.SetNext(NewNext)
elif not CurrHead:

Cache.SetHead(NewNext)

Figure 11: Pseudocode for linked list instruc-
tions.

malloc:
; rax = size class.
; rbx = location of the head of the free list.
; rcx = returned: head element.
; rdx = returned: next head element.
; rdi = temporary.
mchdpop rcx, rdx, rax ; Search malloc cache.
je cache_fallback ; If we missed, go to fallback.
mov QWORD PTR [rbx], rdx ; Otherwise, update head.
; ... ; ... and metadata.
jmp malloc_ret

cache_fallback:
; Execute the original software.
mov rcx, QWORD PTR [rbx] ; head = *freelist->head.
mov rdx, QWORD PTR [rcx] ; next = *head.
mov QWORD PTR [rbx], rdx ; freelist->head = next.

malloc_ret:
mcnxtprefetch rax, QWORD PTR [rdx] ; Prefetch the next head.
; Clean up stack and return value.

free:
; rax = freed pointer.
; rcx = size class.
mchdpush rcx, rax ; Update malloc cache head.
; The rest of free

Figure 12: Integration of linked list instructions in an allocator.

Figure 12. Finally, to ensure that the copies of the list ele-
ments stored in the malloc cache are always consistent (Head
always points to Next), entries with an outstanding prefetch
block and do not service pushes or pops until the prefetch
comes back, or gets rolled back on a misprediction.

Core integration First, it is important to point out that
the malloc cache only stores copies of list elements for
fast access – the definitive version of free lists is always
in regular memory. Thus, at interrupts or context switches,
the whole cache can always be flushed without writebacks
or correctness concerns. Similarly, at branch mispredictions,
entries from the mispredicted epoch can be discarded, just as
they would in any other long-latency unit.

Second, as part of the core, the malloc cache can poten-
tially see instructions out-of-order. In order to not break the
invariant that a cached Head’s next pointer always points
to the adjacent Next element, our three linked list in-
structions are ordered with each other. We implement that
by an implicit read-write register dependency through an
architecturally-invisible register, which out-of-order execu-
tion has to observe. As discussed earlier, blocking the cache
when a prefetch is outstanding is also required to preserve
the linked list invariant.

Finally, the prefetch instruction is slightly unconven-
tional. Like a software prefetch in L1, it is allowed to com-
mit, so that it does not block subsequent code, but a result
still has to make its way from the cache hierarchy to the mal-
loc cache. From the core’s point of view, this is treated in a

virtually identical manner to a store, which is also allowed
to commit with an outstanding memory access, but reserves
a slot in a structure (sometimes called a senior store queue),
where it waits for an acknowledgment from coherency con-
trollers.

4.2 Sampling
The sampling code in TCMalloc (and its equivalents in
jemalloc [9] and others) presents an additional opportu-
nity to remove several cycles from the allocation critical
path. The operation performed by the sampler – accumu-
late a value and capture a stack trace at a threshold – is
precisely what a performance counter does and what the
perf_events subsystem performs when the performance
monitoring unit (PMU) raises an interrupt on an event. We
propose dedicating a hardware performance counter for sam-
pling allocation sizes, which entirely removes a conditional
branch on the fast path. Stack traces are only required when
a user explicitly requests them, and this can be handled
through the perf_events interface as it typically is cur-
rently.

The main difference between our proposal and current
performance counters is that it will need to increment by the
value of a register, which holds the requested allocation size.
As a result, the PMU will need access to the actual register
file (or just the ROB), instead of the more typical occupancy
statistics. As the design of a performance counter is fairly
straightforward, we will focus on the design of the malloc
cache for the remainder of this paper.



cycle error (%)
gauss 5.32

gauss_free 3.67
tp 12.3

tp_small 5.92
sized_delete 4.21

Average 6.28

Table 1: Simulator validation on malloc microbench-
marks.

5. Methodology
To evaluate Mallacc, we ran simulations on two systems – a
conventional aggressive out-of-order processor as a baseline,
and the same processor equipped with Mallacc, as described
in the previous section. We also performed limit studies on
our optimizations for an optimistic upper bound of speedup.
To do so, we ran simulations in which the instructions com-
prising the three steps from Section 3.3 are simply ignored
by performance simulation.

Microbenchmarks To better understand allocator perfor-
mance and the effect from our optimizations, we first con-
structed a suite of microbenchmarks to stress certain as-
pects of the fast path code. They are divided into two cat-
egories based on their allocation patterns: strided and Gaus-
sian. Strided benchmarks allocate in increments of N bytes,
up to some value, while Gaussian benchmarks issue allo-
cation requests by drawing from normal distributions. All
strided benchmarks fit perfectly in L1 caches and represent
the very best baseline cases. Gaussian benchmarks allocate
more and subsequently have larger working sets and more
interesting caching behavior.

• tp: A throughput-oriented microbenchmark. It performs
a series of back-to-back malloc and free calls, which
always hit in thread caches. Each iteration strides through
request sizes in increments of 16 bytes from 32 to 512
bytes.

• tp_small: Same as above, but we only stride up to 128
bytes. This ensures that: (i) each iteration accesses a
different free list; and (ii) we only use four size classes.
This microbenchmark captures the fastest possible fast
path on the allocation side.

• sized_deletes: A variant of tp_small that uses eight
size classes and sized deletes to speed up deallocation.

• gauss: A more realistic allocation pattern. gauss chooses
randomly between small (16-64 byte) and relatively large
(256-512 byte) allocations. 90% of allocations are cho-
sen from the small set to represent typical behaviors for
strings and small lists. Within each range, the size is se-
lected from a Gaussian distribution. However, no objects
are ever freed, which renders free lists virtually useless.

This is a lower bound on the gains from any free-list
centric optimizations.

• gauss_free: Same allocation behavior as gauss, but it
randomly frees allocated memory with 50% probability.

• antagonist: Same allocation behavior as gauss_free,
but after every allocation, invokes a simulator callback
which evicts the less used half of each set of the L1 and
L2 data caches. This mimics the behavior of an appli-
cation that strides through a large working set, without
simulating the millions of instructions required for the
stride.

All microbenchmarks explicitly minimize the number
of instructions between allocator calls (which is important
when each call is only 40 instructions) and are run with
sufficient warmup time.

Macrobenchmarks We evaluate our optimizations on the
four benchmarks from SPEC CPU2006 that use the sys-
tem allocator and two workloads that are more likely to be
found in datacenters. For datacenter-like workloads, we use
the open-source search engine xapian and the key-value
store masstree [18]. xapian is configured as a leaf node
and performs searches on an index of 1.6 million English
Wikipedia pages, as well as on a smaller index of the same
number of page abstracts. The set of queries focuses on pop-
ular Wikipedia pages, obtained from Wikipedia’s weekly top
25 article digests. For masstree, we run its wcol1 and same
performance tests. For SPEC benchmarks, we simulate sev-
eral SimPoints [23] of 1B instructions each per benchmark,
for xapian we skip query parsing and only simulate query
execution, and for masstree we run from start until com-
pletion.

Allocator We use TCMalloc at revision 050f2d. To model
our proposed instructions, we annotate potential optimiza-
tion sites in TCMalloc code by inserting special x86 marker
instructions. Later, in simulation we replace these instruc-
tions with our proposals. These marker instructions were
carefully chosen to a) not already appear in TCMalloc and b)
have the same number and type of operands as our proposed
instructions. This is done so the compiler does not optimize
surrounding code sub-optimally.

Compiler All benchmarks and allocators are built with
GCC 6.1 at -O3 with -fsized-deallocation.

Simulator All experiments are run using the XIOSim sim-
ulator [13], configured for an aggressive out-of-order core
modeled after an Intel Haswell microarchitecture. Since
we are evaluating malloc fast path code, we validated our
performance model on microbenchmarks against a Haswell
desktop processor and achieved a mean error of 6.3% (Ta-
ble 1). We omitted antagonist because it uses a simulator
callback to emulate cache trashing and does not run natively.
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Figure 13: Improvement of time spent in the allocator.

6. Results
6.1 Allocator time speedup
Figure 13 shows the reduction of time spent in allocator
code for our SPEC and cloud workloads. These results use a
32-entry malloc cache to demonstrate the potential of our
accelerator; we will later present a cache size sensitivity
study. On the total time spent in the allocator (including both
malloc and free), Mallacc is able to achieve an average of
18% speedup, out of 28% projected by the limit study. Most
of that is due to improvements on malloc calls, which see
an average of nearly 30% speedup (Figure 14). The amount
of speedup achieved is highly correlated with the fraction of
time on the fast path shown in prior sections. We call out
three particular benchmarks to get a deeper understanding
of the causes for improvement, or lack thereof.

Xapian xapian uses a very small set of size classes, and
malloc calls almost exclusively take the fast path. As shown
in Section 3, this is true whether it is searching over an in-
dex of small documents (abstracts) or an index of large doc-
uments (full articles). This makes xapian a great candidate
for fast path acceleration and Figure 14 confirms that – the
malloc cache provides over 40% speedup on malloc calls.

Figure 15 implies that the causes for this improvement
are the latency-reducing portions of Mallacc – size class
lookups, sampling, and, to a much smaller degree, linked
list caching. It is a distribution of time in malloc calls over
the call duration for three cases: the baseline implementa-
tion, our limit study, and Mallacc. The baseline case is al-
ready very fast – with virtually all calls between 20 and 40
cycles, not unlike our striding microbenchmarks, which im-
plies very small effects from cache antagonism. Our best-
case latency optimizations manage to reduce the average call
length almost twofold, with median calls now at 13 cycles,
and a distribution very close to that of the limit study. The
size class cache in particular is very effective because of the
small number of size classes used by xapian.
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Figure 14: Improvement in time spent on malloc() calls
(both fast and slow paths).

Xalancbmk As demonstrated by Figure 2, xalancbmk
uses the most number of size classes, requiring 30 size
classes for 90% coverage. Nevertheless, it has enough size
class locality to also benefit from Mallacc, achieving over
40% speedup on malloc calls. Figure 16 shows the malloc
call duration distribution for this benchmark. The first spike
corresponds to the fastest of fast path calls, where the effects
are similar to those seen in xapian. The next large spike, be-
tween 20 and 70 cycles includes fast path calls that missed
in L1 and L2 caches and had to go to L3 (34 cycles latency
on Haswell). The malloc cache is particularly beneficial in
this region because of its cache isolation properties. Finally,
note that Mallacc only improves fast-path behavior without
affecting slower calls.

Masstree masstree has the lowest overall malloc speedup
of all the workloads we tested. As we pointed out in Section
3.2, this is because the masstree performance tests never
free any memory, so many malloc calls must request large
amounts from the page allocator. The little time spent on
the fast path results in an allocator time improvement of
just 5%. However, a real deployment of masstree would
inevitably free memory and likely have significantly higher
thread-cache use, so we would expect different results.

6.2 Sensitivity to malloc cache size
The malloc cache is a part of the core, where silicon real
estate is expensive, so we must maximize performance gains
with the least number of entries. To understand the effects
of malloc cache sizing, we sweep malloc cache sizes from
2 to 32 on our suite of microbenchmarks. The results of this
sweep are shown in Figure 17.

Unsurprisingly, we find that too small of a cache will re-
sult in slowdown rather than speedup. At a high enough miss
rate, not only is execution going through the fallback paths
(the same instructions that we started optimizing away), but
also with the additional malloc cache lookups to determine
that. However, once the cache is large enough to capture the
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Figure 15: Xapian sees a significant improvement on
already-fast calls.
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Figure 16: Xalan benefits both from latency reduction
and cache isolation.

majority of allocation requests, we quickly achieve speedup.
One example are the strided benchmarks, which have no
size class locality until we can capture all of their requests,
resulting in very sharp jumps. sized_deletes, tp, and
tp_small use 8, 25, and 4 size classes, respectively, and
we see that the speedup inflection points occur precisely at
those malloc cache sizes. The Gaussian benchmarks have
more size class locality because they are more likely to al-
locate small size classes, which results in a more gradual
increase in speedup until cache size 12, because Gaussian
benchmarks allocate from 13 possible size classes.

Once the malloc cache is sufficiently sized, Mallacc can
achieve within 10-20% of ideal speedup. The lone exception
is tp. For certain points of execution, this microbenchmark
allocates and deallocates from the same size class in a very
tight loop (≈ 30 cycles for a malloc-free pair). In this case,
the malloc cache blocks until each of the malloc prefetches
returns with a value, causing the slowdown. The prefetch
instruction is based on exactly the opposite assumption –
that there is enough time between requests to prefetch for the
next one and this slowdown is expected. None of our macro
workloads exhibit slowdown due to prefetch blocking.

It is important to remember that these microbenchmarks
are designed to stress the fast path of malloc, not to exhibit
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Figure 17: Effect of cache size on malloc speedup.

realistic allocation behavior. As we showed in Figure 6, most
benchmarks use a very small number of size classes. We
swept malloc cache sizes and only xalancbmk is meaning-
fully affected by a smaller size – it loses 6 percentage points
of allocator time improvement between 32 and 16. Because
of that, we consider 16 sufficient for most workloads.

6.3 Full program speedup
Finally, we present improvements on full benchmark execu-
tion time, not only allocator time. This speedup is obviously
bounded by the total time each benchmark spends in the al-
locator. Figure 18 shows these fractions for our workloads,
compared to published data from Google’s datacenters [12].
Most of our workloads spend a much lower fraction of time
in allocator code, so we can expect small gains. As men-
tioned before, the masstree performance tests have very
high malloc time because they exclusively allocate mem-
ory and never free any, resulting in many slow path calls.

Table 2 shows full program speedup for workloads where
the measured speedup through simulation is statistically sig-
nificant. For them, the mean program speedup is 0.43%, with
a maximum of 0.78% for perlbench.

Because absolute time in the allocator speedup tends to
be small, run-to-run variance on some of the workloads is
enough to mask out any improvements we achieved with
the malloc accelerator. More precisely, we do not include
the workloads for which a single-sided Student’s T-test fails
to reject a hypothesis of full-program slowdown with 95+%
probability. Note that for all workloads, the speedup in allo-
cator code is always statistically significant: in Figure 13 the
improvement in allocator time is always much higher than
typical run-to-run variation (error bars), even so if we pes-
simistically add simulation bias (6% from Table 1) in the
least favorable direction. Non-allocation code is unchanged
between our baseline and optimized experiments, but it dom-
inates execution time, so even small random variations in
simulating it can appear to mask all the gains in allocator
code. This is why we prefer reporting gains in the allocator
alone, where we can be certain in the significance of results.



6.4 Area cost of Mallacc
Mallacc consists of the malloc cache and a performance
counter. The malloc cache requires 152 bits of storage
per entry. Because the malloc cache is fully associative, it
must be implemented using content addressable memories
(CAMs) for lookup and standard SRAM for storage. We do
not lay out the malloc cache to provide precise area esti-
mates, but it is so small that a reasonable upper bound will
suffice. Also, we ignore the area of the performance counter,
since it is just one 64-bit register per hardware thread.

The malloc cache requires three CAM arrays to imple-
ment the index and size class search and LRU functions,
while the rest of the data – allocated size and list pointers
– can be stored in an SRAM array. The index CAM requires
24 bits per entry to store two 12-bit indices, while the size
class CAM requires 8 bits per entry to store size classes,
and the LRU CAM stores log2 n bits per entry, where n is the
number of entries. The SRAM array requires 117 bits per en-
try to store two 48-bit pointers (currently, x86 only uses the
lower 48-bits of 64-bit addresses), 20 bits for the allocated
size, plus a valid bit. Our analysis has shown 16 entries to be
sufficient for the workloads analyzed; this means the CAMs
and SRAM are 72 bytes and 234 bytes, respectively.

We used CACTI 6.5+ [15] to estimate the sizes of these
four arrays in 28nm. The CAMs collectively occupy 873
µm2 and the SRAM occupies 346 µm2 for a total of 1219
µm2. This is certainly a pessimistic upper bound; Jeloka et
al. recently demonstrated a 512 byte configurable CAM ar-
ray occupying merely 1208 in 28nm µm2 [25]. We scale
published area numbers of shifters and adders (for the addi-
tional index computation) from accelerator models [22] by
ITRS technology scaling factors and estimate a total area of
265 µm2, bringing our upper bound to about 1500 µm2.

Consider this area in the context of a typical high-
performance CPU. An Intel Haswell core measures 26.5
mm2 (including private L1 and L2 caches). If integrated into
a Haswell CPU, Mallacc is merely 0.006% of the core area.
Pollack’s Rule states that historically, the performance in-
crease of a chip is approximately proportional to the square
root of the increase in complexity, where complexity refers
to area [2]. By this rule, an area increase of 0.006% would
only produce 0.003% speedup. In contrast, Mallacc demon-
strates average speedup of 0.43%, which is over 140×
greater. It is clear that Mallacc far surpasses the “1% per-
formance for 1% area” rule of thumb that has informally
guided processor development over the last few decades.

7. Conclusion
Dynamic memory allocation is a widely used programming
paradigm that has seen decades of software research and
optimization. Recent work has discovered that despite be-
ing well-optimized, memory allocation can consume a sig-
nificant percentage of datacenter cycles. In this work, we
present Mallacc, a tiny in-core hardware block for accel-
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Speedup Stddev p-value
400.perlbench 0.78% 0.05% <0.001

465.tonto 0.35% 0.08% 0.025
483.xalancbmk 0.27% 0.06% 0.043
masstree.same 0.49% 0.05% 0.002

xapian.abstracts 0.55% 0.05% 0.002
xapian.pages 0.16% 0.02% 0.012

Table 2: Full program speedup.

erating dynamic memory allocation. Mallacc does not im-
plement a new allocator; rather, it is designed to accelerate
various operations that are common to many existing high-
performance allocators. Unlike many hardware accelerators
that target maximum throughput, Mallacc is designed to
minimize latency. We show that Mallacc can accelerate the
most commonly observed malloc behavior – fast allocation
requests that only take 20-30 cycles on modern processors –
by up to 50%, while consuming less than 1500µm2 of silicon
area. Integrating Mallacc into a CPU provides speedups that
greatly outstrip the typical “1% performance for 1% area”
Pollack’s Rule tradeoff.
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