
Demystifying Bayesian Inference Workloads

Yu Emma Wang∗

ywang03@g.harvard.edu
Yuhao Zhu†

yzhu@rochester.edu
Glenn G. Ko∗

gko@g.harvard.edu
Brandon Reagen‡

reagen@fb.com
Gu-Yeon Wei∗ and David Brooks∗

{guyeon,dbrooks}@eecs.harvard.edu

∗John A. Paulson School of Engineering and Applied Sciences
Harvard University

†Computer Science Department
University of Rochester

‡Facebook

Abstract—The recent surge of machine learning has mo-
tivated computer architects to focus intently on accelerating
related workloads, especially in deep learning. Deep learning
has been the pillar algorithm that has led the advancement
of learning patterns from a vast amount of labeled data,
or supervised learning. However, for unsupervised learning,
Bayesian methods often work better than deep learning.
Bayesian modeling and inference works well with unlabeled
or limited data, can leverage informative priors, and has inter-
pretable models. Despite being an important branch of machine
learning, Bayesian inference generally has been overlooked by
the architecture and systems communities.

In this paper, we facilitate the study of Bayesian inference
with the development of BayesSuite, a collection of seminal
Bayesian inference workloads. We characterize the power and
performance profiles of BayesSuite across a variety of current-
generation processors and find significant diversity. Manually
tuning and deploying Bayesian inference workloads requires
deep understanding of the workload characteristics and hard-
ware specifications. To address these challenges and provide
high-performance, energy-efficient support for Bayesian infer-
ence, we introduce a scheduling and optimization mechanism
that can be plugged into a system scheduler. We also pro-
pose a computation elision technique that further improves
the performance and energy efficiency of the workloads by
skipping computations that do not improve the quality of
the inference. Our proposed techniques are able to increase
Bayesian inference performance by 5.8× on average over the
naive assignment and execution of the workloads.

Keywords-machine learning; bayesian inference; workload
characterization

I. INTRODUCTION

Recent advances in deep learning have captivated the
scientific community. Systems based on neural network
models have defeated world champion Go players [1],
surpassed humans at image classification tasks [2], and
advanced the state of the art for speech recognition [3].
However, neural networks are not the end-all solution and
in many cases are not applicable. Deep learning requires
massive datasets for training, is prone to overfitting, and is
not conducive to reasoning about causality.

Bayesian inference is another branch of machine learning
technique that complements deep learning in many ways.
Bayesian inference thrives when data is limited, and its mod-
els are more interpretable, making it possible to understand

how and why decisions are made. These benefits stem from
the ability to combine prior knowledge with new observations.

Bayesian inference is a popular topic among machine learn-
ing researchers. Among top machine learning conferences
(NIPS, ICML, and KDD), over 200 Bayesian inference papers
have been published each year since 2014 and the number is
steadily increasing. Notable milestones for Bayesian inference
include industrial applications [4], [5], [6], Bayesian program
learning for generalization of visual concepts from as few as
one example [7], and the development of an intuitive physics
engine that aids physical scene understanding [8], [9].

As with deep learning, Bayesian inference models are
computationally demanding, requiring attention from the
hardware and systems community to improve performance
and facilitate innovation. To enable systems research in
Bayesian inference and to understand the architectural
implications of these models, we present BayesSuite: a
collection of seminal, representative Bayesian inference
workloads. BayesSuite draws from rich application domains
(ranging from economics to biology) in which Bayesian
inference has been demonstrated to excel. We rigorously char-
acterize BayesSuite on general-purpose processors found in
contemporary datacenter servers. In doing so, we provide an
academic understanding of the computational characteristics
of a wide range of Bayesian inference workloads, including
performance bottlenecks that are amenable to optimization.

Our analysis leads to two major conclusions. First, while
Bayesian inference workloads show no obvious architectural
bottlenecks on single-core machines, we find that varia-
tions in the Bayesian models reveal higher sensitivity to
server architecture on multicore systems. Specifically, the
performance of the workloads with complex probability
distribution between the observed data and the underlying
features causes contention in the last-level cache (LLC). The
workloads with less complicated models result in smaller
working set sizes and thus tend to be more compute-bound.
Leveraging these observations, we developed a scheduling
and optimization mechanism that analyzes Bayesian inference
jobs and automatically identifies the server configuration most
likely to maximize its performance.

Second, we find that the workloads entail substantial
redundant computation in the form of sampling iterations.

1

Thus, eliding unnecessary computation through convergence
detection can improve performance without reducing accu-
racy. We developed an intelligent mechanism that dynamically
determines when to terminate a job to reduce latency and
save energy without jeopardizing model accuracy.

As Bayesian inference continues to transition from aca-
demic to commercial use, bloated, proof-of-concept models
need to be refined and tuned into industrial-grade code
capable of performing at scale. We envision that our
characterizations and proposed techniques can facilitate the
deployment of Bayesian inference as a generic web service,
similar to the “deep learning as a service” paradigm provided
by Google Cloud Machine Learning Engine, Microsoft Azure
Machine Learning, and Apache MXNet on Amazon Web
Services.

This paper makes the following contributions:
• BayesSuite: a benchmark collection of state-of-the-art

Bayesian inference models for research on performance
optimization by computer architects and system design-
ers.

• A detailed characterization of the BayesSuite workloads
on datacenter server architectures. We identify key
bottlenecks to performance scaling and present insights
on performance and energy trade-offs.

• Mechanisms that automatically provision hardware
resources for specific Bayesian inference jobs in order
to optimize performance and power efficiency. Across
BayesSuite, we achieve an average speedup of 5.8×.

II. BAYESIAN INFERENCE

In this section, we briefly go over the concept of Bayesian
modeling and inference to familiarize readers with the
algorithms. This section serves only as a primer; a thorough
treatment is beyond the scope of this paper. For more details
on Bayesian inference, readers can refer to [10].

A. Bayesian Inference

Probabilistic models describe the data that could be
observed from a system and use probability theory to describe
the uncertainty or noise associated with the model. In
supervised learning, such as deep learning, models are trained
using labeled data and the uncertainty or noise is not explicitly
modeled. In a situation where we do not have enough labeled
data or when we are trying to create an uncertain relationship
between observed data of different types, we can construct
a Bayesian model and perform inference to learn what we
want given some data. This process can be done by using
Bayes’ theorem, shown as

P(θ |D) =
P(D|θ)P(θ)

P(D)
, (1)

where D is the evidence, or the observed data and θ is
the hypothesis whose probability is updated on the new
data D. We refer to P(θ |D) as the posterior probability,

the probability of a hypothesis given the observed evidence.
P(D|θ) is the probability of observing D given θ and is called
the likelihood. P(θ) and P(D) are referred to as the prior
probability and marginal likelihood, respectively. Because
P(D) does not depend on θ , the posterior probability of the
hypothesis given evidence is proportional to its likelihood
and prior probability.

Bayesian inference uses Equation (1) to find the posterior
distribution. Analytically computing the conditional probabil-
ity distribution over variables of interest becomes intractable
as the number of variables increases and the complexity of
the model grows. Our work focuses on large and complex
models for which exact inference is impractical. Instead we
use approximate inference that is tractable and still produces
satisfactory results.

B. Inference Algorithm

In this section, we illustrate the Bayesian inference algo-
rithm for computing the posterior distribution. The workloads
in this paper have different models and data, but apply the
same inference algorithm. Common approximate Bayesian
inference algorithms include sampling and optimization
techniques. This paper focuses on one of the sampling
methods; a variant of the Hamiltonian Monte Carlo algorithm
(HMC) [11], nicknamed the No-U-Turn Sampler (NUTS)
[12]. NUTS auto-tunes the Hamilton parameters including
the step size and number of steps. It is implemented in
the Stan [10] probabilistic programming framework, the
framework used in this paper. We describe the more intuitive
Metropolis-Hastings algorithm to illustrate the important
computational characteristics, which are shared with NUTS.
Algorithm Assume we have a model θ and observed data D.
The θ can be replaced with an arbitrary user-defined model.
The likelihood of the data given model θ , P(D|θ), and the
prior probability of model θ , P(θ), are known. The goal is
to estimate the posterior probability P(θ |D). Algorithm 1
shows a naive Metropolis-Hastings algorithm with multiple
Markov chains doing sampling. A Markov chain consists of
a sequence of samples, and the current sample depends on
the previous one. q determines the probability of new sample
θ ′ given previous sample θ(t− 1). u is a random number
drawn from a uniform distribution. In line 4 of Algorithm 1,
Metropolis-Hastings draws samples from arbitrary probability
distribution, often called proposal density, which results in
a random-walk behavior. NUTS explores high-dimensional
space by building a set of likely candidate points recursively,
which eliminates random-walk behavior exhibited by the
Metropolis-Hastings algorithm. In the NUTS implementation
of Stan, the acceptance rate in line 5 is found by averaging
acceptance probability across the entire candidate set. While
each iteration of NUTS tends to be more computationally
expensive, it explores the target distribution much more
efficiently, resulting in faster convergence.

2

Algorithm 1 Metropolis-Hastings Algorithm. An example
of sampling posterior P(θ |D), given observed data D, prior
P(θ), and likelihood P(D|θ).

1: for chain from 1 to nchain do
2: θ(0)∼ init
3: for t from 1 to n do
4: θ ′ ∼ q(θ |θ(t−1))
5: r = P(θ ′)P(D|θ ′)

P(θ(t−1))P(D|θ(t−1))
6: u∼ uni f orm(0,1)
7: if u < min{r, 1} then
8: θ(t) = θ ′

9: P(D|θ(t)) = P(D|θ ′)
10: else
11: θ(t) = θ(t−1)
12: end if
13: end for
14: Collect Samples
15: end for

Computation Algorithm 1 has an outer loop over the Markov
chains and an inner loop that does sampling. Each new sample
is kept or discarded based on the Metropolis-Hastings rule
in lines 7–12. Because the current sample depends on the
previous sample, the inner loop is sequential.

There are two key computation characteristics. The first
is the sampling in line 4, which is defined by specific
models, and the computation of acceptance rate in line 5,
which involves computations such as likelihood computation
iterating over all observed data. The second characteristic
is the loop structure. The outer loop drives the Markov
chains. Its iterations are independent, so the chains can run
on different cores in parallel.
Other Algorithms Other popular practical algorithms in-
clude variational inference, which approximates probability
densities though optimization. However, these techniques do
not output posterior distributions as sampling algorithms do,
and do not have guarantees to be asymptotically exact. They
are not as robust as sampling algorithms and need carefully
crafted models and data types to avoid numerical issues,
which are sometimes unavoidable. We selected NUTS as it
has been widely used in the Stan community, which gives us
access to a rich collection of workloads to study. We briefly
discuss the performance of HMC together with NUTS in
Section IV-A.

III. BAYESSUITE: BAYESIAN INFERENCE WORKLOADS

In this section, we present BayesSuite1: a Bayesian infer-
ence benchmark suite with models and datasets representing
real-world use cases. We study Bayesian inference workloads
developed in Stan [10]. Each BayesSuite workload consists

1We will publish the source code of BayesSuite.

of a model and data, both of which are fed to the NUTS
inference algorithm implemented in the framework.

Workloads were selected to cover key application do-
mains in which Bayesian inference has excelled, leveraging
important models and real datasets, and to have diverse
execution behaviors. The workloads are selected from
StanCon 2017 [29], StanCon 2018 [30], Knitr [25], and
BPA [27]. Below we briefly introduce the workloads. Table
I summarizes the models, applications, sources, and data for
each workload. We also list the corresponding publications
of the workloads. If the work has not been published, we
list the corresponding source.

12cities: Shows that lowering speed limits saves pedes-
trian lives. Uses Poisson regression on data for 12 cities
obtained from FARS [14], the Fatality Analysis Reporting
System maintained by the National Highway Traffic Safety
Administration.

ad: Quantifies the effectiveness of various advertising
channels for the movie industry. Survey data combining
demographics with chosen advertising channels are fitted
into a logistic regression model.

ode: Builds ordinary differential equations (ODE) to
quantitatively study how drug compounds circulate in and
affect the patient’s body. Margossian et al. applied the
Friberg-Karlsson semi-mechanistic model to this nonlinear
system [16].

memory: Models the human mechanism for memory
retrieval in sentence comprehension [18]. Data was collected
via experiments measuring recall accuracy and latency after
participants were asked to memorize words or numbers of
letters. This workload implements a direct access model
based on a content-addressable memory system [31].

votes: Forecasts presidential elections in all states of the
US from 2020 to 2028 using historical election data from
1976 to 2016. A Gaussian process model is applied to the
observed votes. Gaussian processes are very good at modeling
observations over a continuous domain such as space or time.

tickets: Investigates whether the New York Police De-
partment manages officers with productivity targets, which
contravenes New York state law. A generative model is
proposed to describe how officers write traffic tickets. The
trained model indicates that the officers alter their ticket
writing substantially to match departmental targets.

disease: Models the progression of Alzheimer’s disease,
which is described by biomarkers and eventual loss of
memory and decision-making functions. It is useful for
clinical and biological purposes to understand the order of
biomarkers’ deterioration and their distributions for various
stages of the disease. This model uses I-splines to model the
monotonically increasing progression and is fitted with real
patient data.

racial: Tests for racial bias in vehicle searches by police.
Simoiu et al. developed a new statistical test of discrimination,
the threshold test [23]. The test uses a hierarchical latent

3

Table I: A summary of BayesSuite workloads.
Name Model Application Reference Data

12cities Poisson Regression Does lowering speed limits save pedestrian lives? [13] FARS [14]
ad Logistic Regression Advertising attribution in the movie industry StanCon 2017 [15]
ode Friberg-Karlsson Solving ordinary differential [16] [17]

Semi-Mechanistic equations of non-linear systems
memory Hierarchical Bayesian Modeling memory retrieval [18] [18]

in sentence comprehension
votes Hierarchical Forecasting presidential votes StanCon 2017 historical (1976-2016)

Gaussian Processes presidential votes
tickets Logistic Regression Do police officers alter the ticket [19] [20]

writing to match departmental targets?
disease Logistic Regression Measuring the continually worsening [21] [22]

progression of Alzheimer’s disease
racial Hierarchical Bayesian Testing for racial bias in vehicle searches by police [23] [23], [24]

butterfly Hierarchical Bayesian Estimating butterfly species Knitr [25] [26]
richness and accumulation

survival Cormack-Jolly-Seber Estimating animal survival probabilities BPA [27] [28]

Bayesian model, and is applied to a dataset of 4.5 million
police stops in North Carolina. It is found that when searching
minorities, officers apply lower standards of evidence than
when searching whites.

butterfly: Uses a hierarchical Bayesian model developed
by Dorazio et al. to estimate butterfly species richness and
accumulation [26]. Statistical estimation is necessary due
to the difficulty of collecting data in grasslands with small
habitat fragments in south-central Sweden, where the study
was conducted. Predictions show that sample locations could
be reduced by half without affecting the estimation.

survival: Cormack-Jolly-Seber (CJS) models estimate
animal survival from capture-recapture data collected by
capturing, tagging, and releasing animals in the population
being studied. Feeding data on recapture rates into the CJS
model allows survival rate to be estimated.

IV. PERFORMANCE ANALYSIS

In this section, to understand the execution behavior of
Bayesian inference on general-purpose microprocessors, we
conduct system- and architecture-level analysis of BayesSuite.
Through single core performance analysis, we show that most
BayesSuite workloads have higher computational efficiency
than conventional sequential CPU benchmarks like SPEC
CPU2006, except for some outliers suggesting possible
computational bottlenecks (Section IV-A). By studying
multicore performance, we further find that the bottleneck
for BayesSuite multicore scaling is last-level cache (LLC)
size (Section IV-B).

A. Single Core Performance

In this subsection, we study the single core performance
of BayesSuite. The experiments are conducted on a mod-
ern CPU, the Intel R© CoreTM i7-6700K, which has four
physical cores, 4.2 GHz single-thread frequency, an 8 MB
last-level cache, and 34 GB/s max memory bandwidth. The
performance characteristics are collected with performance
counters. The sampling does not affect the results because the

workloads behave consistently throughout the execution. We
use RStan, the R interface of Stan, with version 2.17.3 [32]
and the R version is 3.4.4.
Workload Diversity The varying complexities of inference
models and datasets among the workloads lead to variations
in runtime behavior. Figure 1 shows several key dynamic
characteristics of the workloads, including instructions per cy-
cle (IPC), instruction cache misses per thousand instructions
(MPKI), branch misprediction MPKI, last-level cache (LLC)
MPKI, average memory bandwidth, and total execution time.

Total execution time and average bandwidth vary signifi-
cantly across benchmarks, and the workloads also differ at
the architecture level. For instance, the IPC of votes is more
than 1.7× that of butterfly. Similar variation in the other
microarchitecture characteristics demonstrate BayesSuite’s
diversity.
Benign Architectural Behavior Although Bayesian infer-
ence workloads differ in absolute behavior, they tend to
employ CPU microarchitecture efficiently, as suggested by
the IPC values in Figure 1a. Instruction-level parallelism is
greater in Bayesian inference workloads than in traditional
sequential applications like event-driven web servers [33] and
most SPEC CPU2006 benchmarks. Higher IPC results from
efficient instruction supply and data feeding. Specifically, for
most workloads the instruction cache MPKI (Figure 1b)
and branch misprediction MPKI (Figure 1c) are several
times lower than for SPEC CPU2006 [34] and datacenter
workloads [35]. Similarly, the LLC miss rate of Bayesian
inference workloads is also insignificant, corroborated by the
low bandwidth requirement (hundreds of MB/s for most of
the workloads shown in Figure 1e, compared to tens of GB/s
reached in server systems). The low data bandwidth indicates
that the working set of Bayesian inference workloads can
largely fit in on-chip memory.
Computation Bottlenecks Although the average perfor-
mance of BayesSuite is benign, there are some special cases.
The i-cache and LLC MPKI of tickets is higher than that of
other BayesSuite workloads. By studying multicore behaviors

4

0.0 1.5 2.0 2.6

butterfly
tickets
racial

memory
ad

disease
12cities
survival

ode
votes

(a) IPC

0.131 3.000 6.498

(b) I-Cache MPKI

0.05 0.50 1.00

(c) Branch MPKI

0.01 1.00 7.70

(d) LLC MPKI

10 1000 14000

(e) Bandwidth
(MB/s)

200 5000 35000

(f) Total Execution
Time (s)Figure 1: Runtime statistics of BayesSuite.

in Section IV-B, we will show more workloads suffering from
architectural bottlenecks in details. The execution times of
tickets, memory, disease and ode are much higher, which is
not intrinsic but an algorithmic artifact. We will examine it
in Section VI.
Performance of HMC The single-core performance char-
acteristics of HMC are very similar to NUTS. As a result
we do not include the HMC data and focus on NUTS in
the rest of this paper. The IPC of HMC ranges from 1.5 to
2.7. The LLC MPKI of tickets is 8.3, and that of the other
workloads is below 1 MPKI. The memory bandwidths of ad
and tickets are over 12 GB/s and that of memory is close to
10 GB/s. The memory bandwidths of other workloads are
all below 100 MB/s.
Architectural Implication The benign architectural behavior
of BayesSuite workloads on a modern CPU, together with
the CPU’s general-purpose programmability, suggests that
the CPU is a good execution target for Bayesian inference.
The observed cache bottleneck is the exception, which we
will analyze in the next section. We will discuss GPUs and
specialized hardware accelerators in Section VII.

B. Architectural Bottleneck

In this subsection, we analyze the performance bottlenecks
of BayesSuite. We find that the multicore scalability of
BayesSuite is strongly correlated with last-level cache (LLC)
size.
Parallelism Opportunity Sampling algorithms are inher-
ently parallel in that the computations of different chains
are independent. The for loop at line 1 of Algorithm 1
can be completely parallelized, providing opportunities for
performance improvement using multiple cores. We sweep
the number of CPU cores used while keeping 4 Markov
chains as suggested in [36], and iterations as defined in the
original applications.
Performance Analysis As shown in the previous section,
branch misses are minimal, the i-cache is private to each
core, and memory bandwidth correlates to LLC miss rates.
Therefore we focus on the LLC miss rate in this section and
show the IPC, LLC MPKI, and speedup in Figure 2. The

0

1

2

IP
C

0

1

2

LL
C

 M
P

K
I 7.7

1115
20.2

ode
butterfly

disease
racial

votes
memory

12cities ad
survival

tickets
0

2

4
S

pe
ed

up
1 4
Cores

Figure 2: The IPC, LLC miss rates, and speedups of running
the workloads on from 1 core to 4 cores of a Skylake
processor. The plot shows that workloads such as ad, survival
and tickets have increasingly frequent LLC misses and lower
IPC. Therefore their speedup saturates at two cores.

workloads are sorted by the LLC MPKI of 4 cores. We use
speedup and IPC as performance metrics.

Speedup is typically the most important performance
metric for users. Across BayesSuite, the speedup using four
cores is less than 4 because the execution times of the 4
chains are not equal and the 4-core execution time depends
on the slowest chain, which will be explained in Section VI.
We observe that the performance scaling is constrained by
LLC misses. This is because when using one core, the four
chains are executed sequentially and only one chain needs
to fit into the LLC at a time. On the other hand, when using
four cores with each core executing one chain, the global
working set becomes 4× larger and sometimes does not fit
in the LLC. This causes more frequent accesses to off-chip
memory, thereby limiting performance scalability.

In Figure 2, when 4-core LLC MPKI is larger than 1, the
speedup does not scale linearly with the number of cores, as
with ad, survival and tickets, whose maximum speedups are
less than 2. tickets has especially frequent LLC misses, up
to 7.7 MPKI for 1 core and 20 MPKI for 4 cores. The high
LLC miss rate leads to up to 25 GB/s memory bandwidth

5

for the three workloads, which is not shown here.
The speedup is affected not only by LLC miss rates but

also by the fact that multicore latency is constrained by the
slowest chain. Thus, we also compare IPC values, which helps
to see how the LLC affects the efficiency of the architecture.
As the number of cores in use increases, workloads such
as memory, 12cities, ad, survival, and tickets have lower
IPC and more LLC misses. Increased working set size leads
to more frequent LLC misses because every chain fetches
data independently. The resulting performance degradation
reduces IPC.
Architectural Implication LLC size is the major archi-
tectural bottleneck for BayesSuite workloads. Therefore,
distinguishing workloads with large LLC needs before
execution is valuable for computing resource management.

V. BOTTLENECK RESOLUTION

In the previous section, we showed that BayesSuite
workloads are constrained by LLC size, making it important
to identify workloads with high LLC needs. To avoid the
bottleneck, we first demonstrate our LLC miss prediction,
using static indicators extracted from the model and data
(Section V-A). We then show that prediction can facilitate
a speedup of 1.16× through scheduling of BayesSuite
workloads on appropriate platforms (Section V-B).

A. Last Level Cache Miss Prediction

We find 4-core LLC miss rates can be predicted using a
static feature, the modeled data size. Modeled data are the
observed data required for finding a likelihood distribution.
More specifically, modeled data are used to compute the
acceptance rate in line 5 of Algorithm 1. A larger modeled
data size translates to more computation and possibly a larger
working set size. Note that the exact sizes of modeled data
(on the order of KBs) are not working set sizes (on the
order of MBs), but are only proportional to them, because
there are more computations and intermediate variables in
the inference algorithm, such as the likelihood and the
Hamiltonian computation, and the automatic tuning in NUTS.

Figure 3 plots 4-core LLC miss rates against corresponding
modeled data sizes. Points with labels suffixed -h and -q are
for runs using half and a quarter of the original modeled data,
respectively. We find that modeled data sizes are positively
correlated with the 4-core LLC miss rates. Particularly for
workloads with LLC MPKI larger than 1, modeled data size
accurately predicts LLC miss rate.

For the workloads with LLC MPKI less than 1, the
correlation is weaker, so the points with y-axis less than
1 do not form a straight line. That is because when the LLC
miss rate is low, it is more affected by factors such as the
memory prefetcher, the design of the LLC, including its size
and associativity, the structure of the cache hierarchy, and
the replacement policy.

100 101 102

Modeled Data Size (KB)

10 1

100

101

LL
C

 M
P

K
I -

 4
 C

or
e tickets

tickets-h
tickets-q
survival
survival-h
survival-q
ad

12cities
memory
votes
racial
disease
butterfly
ode

Figure 3: LLC miss rate prediction. For workloads with LLC
miss rates larger than 1 MPKI, modeled data size predicts
miss rate accurately. Points with labels suffixed -h and -q
are for runs using half and a quarter of the original modeled
data, respectively.

Architectural Implications Based on Figure 3, workloads
with larger than 1 LLC MPKI including tickets, survival,
and ad can be identified and predicted by setting a proper
threshold for modeled data size. Resource management
mechanisms can use the prediction to make better use of
available computing resources. The threshold can be adjusted
accordingly when applied to other machines.

B. Evaluation

In this section, we show that choosing proper platforms
based on LLC miss prediction achieves 1.16× speedup in
BayesSuite compared to using one platform alone.

1) Experimental Setup: We use two contemporary Intel
CPU platforms in our evaluation: Broadwell (E5-2697A v4),
and Skylake (i7-6700K), each with distinct specifications.
We summarize the specifications in Table II, including
microarchitecture, technology, peak frequency, physical core
count, LLC size, memory bandwidth, and thermal design
power (TDP).

We use the Broadwell server as our baseline because it
was launched in 2016, later than the Skylake machine. The
Broadwell processor has a large LLC size (40 MB) with
only modest peak CPU frequency (3.6 GHz). In contrast, the
Skylake processor has a high CPU frequency but small LLC
size. We show that they naturally complement each other for
BayesSuite workloads.

2) Performance Comparison: According to the models
presented in Section V-A, the LLC-bound workloads are ad,
survival, and tickets. In order to optimize performance, we
choose to run them on Broadwell for its large LLC and other
workloads on Skylake. We use Broadwell as the baseline and
we achieve 1.16× speedup by adding a Skylake machine.

In Figure 4, we compare the speedup over Broadwell,
IPC, and LLC MPKI of the platforms running with 4 cores.
Speedup shows the end-to-end performance. IPC shows the
throughput and performance regardless of frequency. LLC
miss rate is used to explain speedup and IPC differences.

Skylake outperforms Broadwell on all workloads other than
ad, survival, and tickets. Broadwell outperforms Skylake in

6

Table II: A summary of experiment platforms.
Tech Turbo Freq LLC Bandwidth

Codename Processor # Microarch (nm) (GHz) Cores (MB) (GB/s) TDP (W)
Skylake i7-6700K Skylake 14 4.2 4 8 34.1 91

Broadwell E5-2697A v4 Haswell 14 3.6 16 40 78.8 145

0.0

0.5

1.0

S
pe

ed
up

Skylake Broadwell

0

1

2

IP
C

ode
butterfly

disease racial
votes

memory
12cities ad

survival
tickets

0

1

2

3

LL
C

 M
P

K
I 20.24

Figure 4: Performance comparison of the platforms.

speedup and IPC on those three workloads because its larger
(40 MB) LLC leads to lower LLC miss rates. The IPC of
memory and 12cities is higher on Broadwell, also due to the
much lower LLC miss rates, but Skylake’s high frequency
gives it a slightly better overall speedup than Broadwell.
Architecture Implication Following predictions by models
in Section V, we run ad, survival, and tickets on Broadwell
and other workloads on Skylake. This yields an average
speedup of 1.16×. LLC size and frequency are the key factors
determining the performance of BayesSuite workloads.

VI. ALGORITHM CONVERGENCE

Previous sections analyze the performance and architec-
tural bottlenecks of BayesSuite. In this section, we study
algorithmic aspects, the convergence and result quality of
BayesSuite benchmarks. The number of sampling iterations
(line 3 in Algorithm 1) is selected by users, and we find
that all BayesSuite workloads have redundant iterations. We
propose runtime convergence detection for users who want
quick inference results with minimal overhead (Section VI-A).
We then show that with convergence detection, BayesSuite
workloads reach better design points and save 70% energy, on
average. Overall, we speed up BayesSuite by 5.8× with con-
vergence detection and LLC miss prediction (Section VI-B).

A. Convergence Study

Convergence detection is closely related to the number
of chains used. Multiple chains prevent converging to local
optima, and complex models prefer more chains. Convergence
detection is based on the Gelman-Rubin diagnostic (R̂) [37],

which quantifies sample variations within and between chains.
A smaller R̂ indicates more consistent samples, and when R̂
reaches 1, chains have converged completely. As suggested
by Brooks et al. [36], we typically use 4 chains. Because
several iterations are needed to warm up the chains, we only
use the second half of the samples for inferring the posterior
distribution [36]. A value of R̂ less than 1.1 is taken as
indicating convergence [36].

We study the convergence process and confirm that when
using multiple chains, once R̂ is less than 1.1, the results
(posterior distributions) have good quality. To judge quality,
we estimate the ground truth by running each benchmark
with twice as many iterations as were initially specified by
the model developer. To evaluate the intermediate results, we
compute the KL divergence (a measure of how much one
distribution diverges from another [38]) between intermediate
results and the ground truth. A smaller KL divergence
indicates that the result is closer to the ground truth.

We conduct a convergence study for BayesSuite and
find that on average, the workloads have over 70% excess
iterations. As an example, we show the convergence of
12cities in Figure 5. The blue line is R̂ and the green
line shows KL divergence. With more iterations, the KL
divergence decreases monotonically, showing that the results
are getting closer to the ground truth. The trace of R̂ fluctuates
because the four independent chains are exploring different
regions of the space. When they are sampling from the same
region, R̂ gets small; when one chain happens to jump out of
that region, R̂ increases. At the 600th iteration (orange dots),
R̂ is less than 1.1 for the first time and the KL divergence is
minimal, indicating that the results are close to the ground
truth. The original number of iterations of 12cities is 2000.
We find it converges after 600 iterations, eliminating 70%
of the sampling iterations as unnecessary.

Reducing excess iterations can increase performance, but
the iteration reduction percentage does not directly translate
to latency saving. That is because the time required to auto-
tune Hamiltonian parameters in NUTS may vary depending
on the position of the Markov chain. Within a single chain,
the latency per iteration is smaller after the chain converges,
and different chains have different latencies. When multiple
chains run in parallel, the overall latency is constrained by
the slowest chain. For example, for 12cities with 4 chains
of 2000 iterations, the latency ratio of the slowest to the
fastest chain is 1.7. The latency of 2000 iterations is 865
seconds and that of 600 iterations is 401 seconds, thus the
latency is reduced by 53%. For the same reason, we should

7

ConvergeConverge

Figure 5: The convergence process of 12cities in log scale.
The blue line is R̂, for detecting convergence. The green line
is the KL divergence between the current result and ground
truth. The orange dots mark the convergence point.

0 500 1000 1500 2000

40

60

ad

0 1000 2000 3000 4000 5000
40

60

80

ode
User Set
Energy Oracle
1-core
2-core
4-core

0 50 100 150 200 250

40

50

60

survival

0 5000 10000 15000

40

60

memory

0.0 0.2 0.4 0.6 0.8 1.0

Latency (Sec)
0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
 (w

)

Figure 6: Design space exploration examples. ad and survival
are LLC-bound. ode and memory are compute-bound. The
design points in triangles, which are achievable with conver-
gence detection, are much closer to the energy oracle (red
star) than the original user setting (blue star).

expect the average latency savings to be less than the iteration
reductions.
Runtime Convergence Detection Detecting convergence at
runtime can be implemented by dynamically computing R̂ in
the framework, such as Stan in this case. Instead of executing
a preset number of iterations, as in line 3 of Algorithm 1,
the workload exits each iteration when it is determined to
have converged. This detection is optional, for statisticians
whose interests are in developing new models and would
like to choose the number of iterations and test the model.
But convergence detection can give quick results for those
interested in using existing models with their own data.
Overhead Analysis We implement the computation of R̂
in C++, based on the algorithm in [37]. We consider the
worst case by taking the maximum number of iterations in
BayesSuite (2000) and half of the samples for inference
(i.e., 1000 data points of 4 chains). That takes 0.06 seconds
on a single core of Skylake, which is minimal. In reality,
optimizations can be applied to reduce the overhead.
Architectural Implication By our analysis, the overhead of
convergence detection is minimal, and the savings are huge.

B. Design Space Exploration

We evaluate the convergence detection mechanism using
design-space exploration (DSE) techniques and compare the

0

50

100

B
ro

ad
w

el
l

This Work Energy Oracle

ode
butterfly

disease
racial

votes
memory

12cities ad
survival

tickets Avg
0

50

100

S
ky

la
ke

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: A summary of energy savings of our design points
and the energy oracle.

optimization decision with other (suboptimal) design points
in terms of latency and power savings.

Our DSE setup considers three major parameters: the
number of CPU cores, the number of chains, and the number
of iterations. We show the design space of 4 representative
workloads on Skylake as a case study in Figure 6. The
blue stars are original user settings. The triangle markers
denote the design points that are achievable with convergence
detection under 1, 2, and 4 cores. We refer to the design
point that has the lowest energy consumption as the energy
oracle, as denoted by red stars in the figure.

We find that the energy oracle design points always use
only 1 or 2 chains and a small number of iterations while
user-specific settings always use 4 chains with a much
higher number of iterations. Although they have small KL
divergence, without knowing the ground truth a priori, it is
infeasible to use only 1 or 2 chains; hence, the oracle.
Energy Savings The triangles that we choose are much
closer to the red stars than the original user settings. When
applying this technique, a scheduler can be programmed to
choose one of the triangles to optimize power or latency. In
this section, we choose to use energy as the cost function,
considering both latency and power.

We summarize our energy savings for 10 workloads on
two platforms in Figure 7. The savings are in percentage
relative to the original user settings. The average energy
saving is 70% across 2 platforms and 10 workloads.
Architectural Implication BayesSuite workloads reach bet-
ter design points with convergence detection.

C. Overall Speedup

We present the overall speedup resulting from the tech-
niques in this paper: convergence detection in Section VI-A
and selecting the best platform in Section V. In Figure 8 we
show the overall speedups of BayesSuite over the baseline.
ad, survival, and tickets are on Broadwell and the rest of the
workloads are on Skylake. ode and memory achieve higher
speedups than the energy oracle, which can be explained
using Figure 6. ode and memory use 4 cores (orange triangles)
on Skylake, and have lower latency than the red stars, the
oracle points. The same explanation applies to disease.

8

ode
butterfly

disease
racial

votes
memory

12cities ad
survival

tickets Avg
1

10

20

O
ve

ra
ll

S
pe

ed
up

s This Work Energy Oracle

Figure 8: Overall speedup of the techniques proposed in this
paper. Note that the oracle points are with respect to energy,
not performance.

With the techniques proposed, the average speedup of
BayesSuite is 5.8×, and the oracle average speedup is 6.2×,
over the baseline with no convergence detection running on
the Broadwell server.

VII. IMPLICATIONS FOR FUTURE ACCELERATION

Intelligent scheduling on today’s server processors can
readily provide performance improvement for Bayesian
inference jobs. Pushing the efficiency a step further requires
us to apply hardware specialization. Previous work on
hardware specialization only focuses on a specific type
of model. In this section, based on the insights that we
gained from analyzing and improving workload efficiency
on CPUs, we examine opportunities to accelerate Bayesian
inference using specialized hardware such as GPUs, FPGAs,
and ASICs, in preparation for an accelerator-centric system
to further speed up Bayesian inference workloads.

We first discuss the choice of different acceleration
approaches. We argue that a programmable SIMD archi-
tecture augmented with special functional units is a good
accelerator style that matches well with a wide range of
Bayesian inference workloads (Section VII-A). We then
discuss the memory system requirements on LLC and i-
cache (Section VII-B).

A. Hardware Choice

The first and foremost question is which accelerator style,
e.g., SIMD or CGRA, is a good fit for Bayesian inference
workloads. We find that these workloads exhibit both coarse-
grained and fine-grained parallelism.
Chain-Level Parallelism Both coarse-grained and fine-
grained parallelism exist in sampling algorithms. Coarse-
grained parallelism typically manifests at the chain level (line
1 in Algorithm 1), which can be captured by a multicore
CPU as we discussed in Section IV-B. To better exploit
the chain-level parallelism, the key is to address the LLC
bottleneck inhibiting CPU core scaling shown in Figure 2.
Computation Parallelism Within a chain, there are oppor-
tunities for parallelism in the computation. For example, in
the acceptance rate computation iterating through a series of
observed data (line 5 in Algorithm 1), the computation of
each observed data point can be conducted in parallel. At a
finer grained level, BayesSuite workloads contain a diverse

collection of vector and matrix operations beyond matrix
multiplication, indicating the importance of architectural
support for such operations. Therefore the workloads can
benefit from the parallelism of SIMD-style hardware like
GPUs.
Variable Sampling Parallelism The sampling of variables
(line 4 in Algorithm 1) provides parallelism opportunities as
well, which can benefit from SIMD hardware or specialized
accelerators. When presenting the models as graphs, in which
the model variables are nodes and variable dependencies are
edges, the variables at the same layer can be sampled in
parallel. Previous work on FPGAs and ASICs exploits the
parallelism [39], [40]. With multiple sampling units on chip,
the sampling latency can be shortened.

It is beneficial to implement the sampling units as acceler-
ators. The current implementation of sample drawing needs
cumulative distribution functions (CDFs) of corresponding
distributions. Thus the implementation depends on individual
distributions. We study the distributions in BayesSuite and
find the most popular distributions are Gaussian and Cauchy.
It is worth building accelerators for the most popular
distributions. The CDFs use functions with values stored
in lookup tables, such as the error function er f (Gaussian)
and arctangent function atan (Cauchy), which introduces
overhead to the system and trades off precision for efficiency.
Sampling accelerators can help to reduce system overheads
by having their own scratchpad memory or private cache.
Parallelism in other Algorithms Finally, we note that
different inference algorithms exhibit different opportunities
for parallelism. For instance, sampling algorithms such as
the one studied in this paper are general but sequential.
Exact inference has more parallelism but the complexity is
exponential. Some recent work combines sampling and exact
inference to get the parallelism of exact inference and the
linear complexity of sampling [41], [42], [43]. The general
idea is to do exact inference with a subset of the data within
the MCMC sampling iterations. Such algorithms, exposing
ample parallelism, are promising to explore in future work.
Need for Programmability As we discussed, the workloads
have very diverse models, requiring different combinations
of matrix, vector, and scalar operations, as well as different
preferences for distributions. Thus, to accelerate Bayesian
inference workloads, we need to program the models.

B. Memory System

To reduce the overhead of transferring data between LLC
and main memory, the LLC should be large enough to contain
the whole working set. According to results in Figure 4, an
LLC of 2 MB per core (8 MB / 4 cores on Skylake) is large
enough for workloads other than ad, survival, and tickets.
An LLC smaller than 10 MB per core (40 MB / 4 cores on
Broadwell) is enough to hold ad and survival. Workloads
like tickets need larger LLC. However, with larger datasets
applied to Bayesian models, simply scaling up the LLC is not

9

the solution. Instead, the inference algorithm should be tuned
to subsample the data such that the working set fits the LLC.
Figure 3 can be used to estimate the proper sub-sampled
data size.

In addition to LLC size, a 32 KB i-cache constrains the
performance of tickets, as shown in Figure 1, and leads to
high LLC miss rates in Figure 4. Thus the hardware needs
i-caches larger than 32 KB to better serve workloads like
tickets.

VIII. RELATED WORK

In this section, we compare and summarize the previous
work related to Bayesian models, inference algorithms,
hardware advancement of Bayesian inference, probabilistic
programming, and workload characterization.
Bayesian models In addition to the BayesSuite workloads,
Bayesian inference has been applied to image classifica-
tion [7], [44], semantics analysis [45], language learning [46],
program synthesis [7], [47], [48], intuitive physics [9], [8],
[49], [50], and structure learning [51], [52], [53]. A Bayesian
approach that is sometimes called Bayesian neural networks
(BNN) [54] is being applied to deep learning to learn weight
distributions. These models are known to achieve better
results by using optimization techniques, rather than more
general and easy-to-use approaches like NUTS. It is important
to note that models can have varying results, depending on
the inference algorithm used.
Inference Algorithms Exact inference is often intractable as
it has exponential complexity, while sampling is linear with
regard to the number of samples [55]. This paper focuses on
NUTS, a variant of Hamiltonian Monte Carlo that requires
no hand-tuning of step size and number of steps [12]. It
is a turnkey sampling method that can be used in a black-
box fashion and has been adapted by Stan as the default
inference engine. Other sampling algorithms include Gibbs
sampler, Hamiltonian Monte Carlo, slice sampling, sequential
Monte Carlo, and particle Markov chain Monte Carlo [11].
Variational inference is an optimization algorithm that tends
to be fast but has no guarantee on convergence to global
optima [56].

We discussed the combination of sampling and exact
inference in Section VII-A [41], [42], [43]. Those hybrid
algorithms have the potential to benefit from parallel hardware
such as GPUs and we plan to explore them in future work.
Hardware Advancements Efforts have also been made to
speed up Bayesian inference with specialized hardware. The
BAMBI project2 proposed hardware implementations of
probabilistic computations [40], [57], [58]. Mansinghka et
al. have built stochastic circuits and evaluated them with
Markov Random Fields and the Dirichlet Process Mixture
Model [55], [39]. Some of the acceleration work has been

2Bottom-up Approaches to Machines dedicated to Bayesian Inference:
www.bambi-fet.eu

done as parallel implementations on GPUs [59], [60], [61]
and scalable CPUs [62], [63]. Furthermore, there are FPGA
and ASIC implementations accelerating BNNs [64] and
Markov Random Fields on perceptual applications [65],
[66]. [67] uses a novel device to implement the sampling
procedure.

These projects primarily focus on speeding up a specific
type of model or application and often require substantial
effort for programming GPUs or designing the hardware.
Our work is the first in the literature to introduce Bayesian
inference to the architecture community as a key machine
learning technique and to reveal computational bottlenecks
across a suite of benchmarks on commodity datacenter CPUs.
Probabilistic Programming Some probabilistic program-
ming frameworks focus mostly on language design and
expressiveness [55], and some provide efficient sampling
for a certain subset of models [68], [69], [70]. Infer.NET
focuses on variational approximation [71]. TensorFlow Prob-
ability [72] and Edward [73] support distributed and parallel
training on top of TensorFlow, and Pyro [74] is based on
PyTorch. We choose Stan mainly because of its unmatched
popularity in the science community.
Workload Characterization People develop benchmark
suites to facilitate the advancement of architecture [75],
[76], [77] or to introduce important workloads [78], [79],
[80], as BayesSuite does. We use static workload features
to estimate dynamic characteristics, similar to [81], and we
are different by focusing on a key bottleneck of Bayesian
inference. Therefore our static analysis has minimal overhead.

IX. CONCLUSION

The advances enabled by deep learning have overshadowed
other aspects of the vast field of machine learning. Bayesian
inference is a particularly important machine learning tech-
nique that complements deep learning in many domains. This
paper introduces BayesSuite, a suite of Bayesian inference
workloads to help bridge the gap between Bayesian inference
researchers and computer architects. Through detailed char-
acterization, we show that these workloads exhibit diverse
behaviors that call for a variety of processor architectures.
They also entail inherent redundancy that leads to execution
inefficiency. We propose a scheduling mechanism and a
computation elision technique to automatically speed up
Bayesian inference workloads. Experiments and evaluations
conducted on real systems show that we speed up BayesSuite
workloads by 5.8× on average.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their thoughtful comments and constructive suggestions.
The authors would like to thank Bob Adolf, Glenn Holloway,
Svilen Kanev, Lifeng Nai, Margo Seltzer, and Cliff Young
for their feedback. This work was supported in part by
the Center for Applications Driving Architectures (ADA),

10

one of six centers of JUMP, a Semiconductor Research
Corporation program co-sponsored by DARPA. The work
was also partially supported by NSF grant # CCF-1438983
and Intel.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, pp. 1097–
1105, 2012.

[3] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,
E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng,
G. Chen, et al., “Deep speech 2: End-to-end speech recognition
in English and Mandarin,” in International Conference on
Machine Learning, pp. 173–182, 2016.

[4] R. Analytics, “Google uses R to calculate ROI on advertising
campaigns,” 2014. http://blog.revolutionanalytics.com/
2014/09/google-uses-r-to-calculate-roi-on-advertising-
campaigns.html.

[5] B. Jitwasinkul, B. H. W. Hadikusumo, and A. Q. Memon, “A
Bayesian belief network model of organizational factors for
improving safe work behaviors in thai construction industry,”
Safety science, vol. 82, pp. 264–273, 2016.

[6] D. Ohlssen, “An industry perspective of the value of Bayesian
methods,” 2016. https://pharmacy.ucsf.edu/sites/pharmacy.ucsf.
edu/files/ohlssen.pdf.

[7] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-
level concept learning through probabilistic program induction,”
Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[8] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum,
“Simulation as an engine of physical scene understanding,”
Proceedings of the National Academy of Sciences, vol. 110,
no. 45, pp. 18327–18332, 2013.

[9] J. Hamrick, P. Battaglia, and J. B. Tenenbaum, “Internal
physics models guide probabilistic judgments about object
dynamics,” in Proceedings of the 33rd annual conference
of the cognitive science society, pp. 1545–1550, Cognitive
Science Society Austin, TX, 2011.

[10] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, Bayesian data analysis, vol. 2. Chapman &
Hall/CRC Boca Raton, FL, USA, 2014.

[11] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan,
“An introduction to MCMC for machine learning,” Machine
learning, vol. 50, no. 1-2, pp. 5–43, 2003.

[12] M. D. Hoffman and A. Gelman, “The No-U-Turn sampler:
adaptively setting path lengths in Hamiltonian Monte Carlo,”
Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1593–1623, 2014.

[13] J. Auerbach, C. Eshleman, and R. Trangucci, “A hierarchical
model to evaluate policies for reducing vehicle speed in major
American cities,” arXiv preprint arXiv:1705.10876, 2017.

[14] “Fatality analysis reporting system,” https://www.nhtsa.gov/
research-data/fatality-analysis-reporting-system-fars.

[15] N. Lei, Victor Sanders and A. Dawson, “Advertising
attribution modeling in the movie industry,” 2016.
https://github.com/stan-dev/stancon talks/blob/master/
2017/Contributed-Talks/03 lei/ad attribution.Rmd.

[16] C. Margossian and W. R. Gillespie, “Stan functions for
Bayesian pharmacometric modeling,” in Journal of Phar-
macokinetics and Pharmacodynamics, vol. 43, pp. S52–S52,
SPRINGER/PLENUM PUBLISHERS 233 SPRING ST, NEW
YORK, NY 10013 USA, 2016.

[17] K. T. Baron, M. R. Gastonguay, A. Bioavailability, I. SS,
and M. ADDL, “Simulation from ODE-based population
PK/PD and systems pharmacology models in R with mrgsolve,”
Omega, vol. 2, p. 1x1, 2015.

[18] B. Nicenboim and S. Vasishth, “Models of retrieval in sentence
comprehension: A computational evaluation using Bayesian
hierarchical modeling,” arXiv preprint arXiv:1612.04174,
2016.

[19] J. Auerbach, “Are New York City drivers more likely to get a
ticket at the end of the month?,” Significance, vol. 14, no. 4,
pp. 20–25, 2017.

[20] “Parking or moving violation tickets in New York
City between january 2014 and december 2015.
https://raw.githubusercontent.com/jauerbach/Seventy-Seven-
Precincts/master/data/tickets.csv.zip,”

[21] A. A. Pourzanjani, B. B. Bales, L. R. Petzold, and M. Harring-
ton, “Flexible modeling of Alzheimer’s disease progression
with I-splines,” 2018.

[22] C. R. Jack Jr, M. A. Bernstein, N. C. Fox, P. Thomp-
son, G. Alexander, D. Harvey, B. Borowski, P. J. Britson,
J. L. Whitwell, C. Ward, et al., “The Alzheimer’s disease
neuroimaging initiative (ADNI): MRI methods,” Journal of
Magnetic Resonance Imaging: An Official Journal of the
International Society for Magnetic Resonance in Medicine,
vol. 27, no. 4, pp. 685–691, 2008.

[23] C. Simoiu, S. Corbett-Davies, S. Goel, et al., “The problem
of infra-marginality in outcome tests for discrimination,” The
Annals of Applied Statistics, vol. 11, no. 3, pp. 1193–1216,
2017.

[24] “A dataset of 4.5 million stops conducted by the
100 largest local police departments in North Car-
olina. https://github.com/stan-dev/stancon talks/blob/master/
2018/Contributed-Talks/11 simoiu/north carolina.RData,”

[25] Y. Xie, knitr: A General-Purpose Package for Dynamic Report
Generation in R, 2016. R package version 1.15.1.

[26] R. M. Dorazio, J. A. Royle, B. Söderström, and A. Glimskär,
“Estimating species richness and accumulation by modeling
species occurrence and detectability,” Ecology, vol. 87, no. 4,
pp. 842–854, 2006.

[27] M. Kéry and M. Schaub, Bayesian population analysis using
WinBUGS: a hierarchical perspective. Academic Press, 2011.

[28] Complete code and data files of book ”Bayesian population
analysis using WinBUGS”. http://www.vogelwarte.ch/de/
projekte/publikationen/bpa/complete-code-and-data-files-of-
the-book.html.

[29] “Stancon 2017,” 2017. http://mc-stan.org/events/stancon.
[30] “Stancon 2018,” 2018. http://mc-stan.org/events/stancon2018/.
[31] B. McElree, “Sentence comprehension is mediated by content-

addressable memory structures,” Journal of psycholinguistic
research, vol. 29, no. 2, pp. 111–123, 2000.

[32] Modeling Language User’s Guide and Reference Manual,
Version 2.17.0. http://mc-stan.org/users/documentation/.

11

[33] Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, “Mi-
croarchitectural implications of event-driven server-side web
applications,” in Proceedings of International Symposium on
Microarchitecture, 2015.

[34] A. Jaleel, “Memory characterization of workloads
using instrumentation-driven simulation,” Web Copy:
http://www.glue.umd.edu/ajaleel/workload, 2010.

[35] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a warehouse-
scale computer,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on, pp. 158–
169, IEEE, 2015.

[36] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook
of Markov chain Monte Carlo. CRC press, 2011.

[37] A. Gelman and D. B. Rubin, “Inference from iterative
simulation using multiple sequences,” Statistical science,
pp. 457–472, 1992.

[38] J. R. Hershey and P. A. Olsen, “Approximating the Kullback
Leibler divergence between Gaussian mixture models,” in
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, vol. 4, pp. IV–317, IEEE,
2007.

[39] E. M. Jonas, Stochastic architectures for probabilistic com-
putation. PhD thesis, Massachusetts Institute of Technology,
2014.

[40] M. Faix, R. Laurent, P. Bessière, E. Mazer, and J. Droulez,
“Design of stochastic machines dedicated to approximate
Bayesian inferences,” IEEE Transactions on Emerging Topics
in Computing, 2016.

[41] D. Maclaurin and R. P. Adams, “Firefly Monte Carlo: Exact
MCMC with subsets of data,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[42] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and
H. Neven, “Bayesian sampling using stochastic gradient
thermostats,” in Advances in neural information processing
systems, pp. 3203–3211, 2014.

[43] M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran, “Speeding
up MCMC by efficient data subsampling,” Journal of the
American Statistical Association, no. just-accepted, pp. 1–35,
2018.

[44] R. Salakhutdinov, J. Tenenbaum, and A. Torralba, “One-shot
learning with a hierarchical nonparametric Bayesian model,” in
Proceedings of ICML Workshop on Unsupervised and Transfer
Learning, pp. 195–206, 2012.

[45] T. L. Griffiths, M. Steyvers, and J. B. Tenenbaum, “Topics
in semantic representation,” Psychological review, vol. 114,
no. 2, p. 211, 2007.

[46] F. Xu and J. B. Tenenbaum, “Word learning as Bayesian
inference,” Psychological review, vol. 114, no. 2, p. 245, 2007.

[47] K. Ellis, A. Solar-Lezama, and J. Tenenbaum, “Unsupervised
learning by program synthesis,” in Advances in Neural
Information Processing Systems, pp. 973–981, 2015.

[48] Y. Pu, Z. Miranda, A. Solar-Lezama, and L. Kaelbling,
“Selecting representative examples for program synthesis,” in
International Conference on Machine Learning, pp. 4158–
4167, 2018.

[49] C. Bates, P. Battaglia, I. Yildirim, and J. B. Tenenbaum, “Hu-
mans predict liquid dynamics using probabilistic simulation,”
in CogSci, 2015.

[50] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and
A. Tacchetti, “Visual interaction networks: Learning a physics
simulator from video,” in Advances in Neural Information
Processing Systems, pp. 4539–4547, 2017.

[51] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian networks: The combination of knowledge and
statistical data,” Machine learning, vol. 20, no. 3, pp. 197–243,
1995.

[52] C. Kemp and J. B. Tenenbaum, “The discovery of structural
form,” Proceedings of the National Academy of Sciences,
vol. 105, no. 31, pp. 10687–10692, 2008.

[53] J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman,
“How to grow a mind: Statistics, structure, and abstraction,”
science, vol. 331, no. 6022, pp. 1279–1285, 2011.

[54] R. M. Neal, Bayesian learning for neural networks, vol. 118.
Springer Science & Business Media, 2012.

[55] V. K. Mansinghka, Natively probabilistic computation. PhD
thesis, Massachusetts Institute of Technology, 2009.

[56] M. J. Wainwright and M. I. Jordan, “Graphical models,
exponential families, and variational inference,” Foundations
and Trends R© in Machine Learning, vol. 1, no. 1–2, pp. 1–305,
2008.

[57] R. Canillas, R. Laurent, M. Faix, D. Vaufreydaz, and E. Mazer,
“Autonomous robot controller using bitwise Gibbs sampling,”
in The 15th IEEE International Conference on Cognitive
Informatics and Cognitive Computing. IEEE, 2016.

[58] A. Coninx, P. Bessière, and J. Droulez, “Quick and energy-
efficient Bayesian computing of binocular disparity using
stochastic digital signals,” International Journal of Approxi-
mate Reasoning, vol. 83, pp. 400–412, 2017.

[59] L. Zheng, O. Mengshoel, and J. Chong, “Belief propaga-
tion by message passing in junction trees: Computing each
message faster using GPU parallelization,” arXiv preprint
arXiv:1202.3777, 2012.

[60] J. Ferreira, P. Lanillos, and J. Dias, “Fast exact Bayesian
inference for high-dimensional models,” in Workshop on
Unconventional computing for Bayesian inference (UCBI),
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

[61] Y. Wang, W. Qian, S. Zhang, X. Liang, and B. Yuan, “A
learning algorithm for Bayesian networks and its efficient
implementation on GPUs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 1, pp. 17–30, 2016.

[62] V. K. Namasivayam and V. K. Prasanna, “Scalable parallel
implementation of exact inference in Bayesian networks,” in
Parallel and Distributed Systems, 2006. ICPADS 2006. 12th
International Conference on, vol. 1, pp. 8–pp, IEEE, 2006.

[63] Y. Xia, Exploration of parallelism for probabilistic graphical
models. University of Southern California, 2010.

[64] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian,
M. Pedram, and Y. Wang, “VIBNN: Hardware acceleration
of Bayesian neural networks,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 476–488,
ACM, 2018.

[65] G. G. Ko and R. A. Rutenbar, “A case study of machine
learning hardware: Real-time source separation using Markov
Random fields via sampling-based inference,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2477–2481, March 2017.

[66] G. G. Ko and R. A. Rutenbar, “Real-time and low-power
streaming source separation using Markov Random field,”
ACM Journal on Emerging Technologies in Computing Systems,
vol. 14, pp. 17:1–17:22, May 2018.

[67] S. Wang, X. Zhang, Y. Li, R. Bashizade, S. Yang, C. Dwyer,
and A. R. Lebeck, “Accelerating Markov random field in-
ference using molecular optical Gibbs sampling units,” in

12

Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 558–569, IEEE Press, 2016.

[68] A. Pfeffer, Practical Probabilistic Programming. Manning
Publications Co., 2016.

[69] S. Hershey, J. Bernstein, B. Bradley, A. Schweitzer, N. Stein,
T. Weber, and B. Vigoda, “Accelerating inference: towards a
full language, compiler and hardware stack,” arXiv preprint
arXiv:1212.2991, 2012.

[70] L. Li and S. J. Russell, “The blog language reference,”
tech. rep., Technical Report UCB/EECS-2013-51, EECS
Department, University of California, Berkeley, 2013.

[71] S. S. J. Wang and M. P. Wand, “Using Infer.NET for statistical
analyses,” The American Statistician, vol. 65, no. 2, pp. 115–
126, 2011.

[72] “TensorFlow probability,” 2018. https://www.tensorflow.org/
probability/.

[73] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang,
and D. M. Blei, “Edward: A library for probabilistic modeling,
inference, and criticism,” arXiv preprint arXiv:1610.09787,
2016.

[74] “Uber AI labs open sources Pyro, a deep probabilistic
programming language,” 2017. http://eng.uber.com/pyro/.

[75] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1–17, 2006.

[76] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks,
“Machsuite: Benchmarks for accelerator design and customized
architectures,” in Workload Characterization (IISWC), 2014
IEEE International Symposium on, pp. 110–119, IEEE, 2014.

[77] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite
for chip-multiprocessors,” in Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation, June
2009.

[78] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks,
“Fathom: reference workloads for modern deep learning
methods,” in Workload Characterization (IISWC), 2016 IEEE
International Symposium on, pp. 1–10, IEEE, 2016.

[79] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego
vision benchmark suite,” in Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on, pp. 55–64,
IEEE, 2009.

[80] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau,
S. Garcia, and M. B. Taylor, “CortexSuite: A synthetic brain
benchmark suite,” in Workload Characterization (IISWC),
2014 IEEE International Symposium on, pp. 76–79, IEEE,
2014.

[81] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient
and QoS-aware cluster management,” in ACM SIGPLAN
Notices, vol. 49, pp. 127–144, ACM, 2014.

13

