
Eliminating Voltage Emergencies via Microarchitectural
Voltage Control Feedback and Dynamic Optimization

Kim Hazelwood and David Brooks
Division of Engineering and Applied Sciences

Harvard University
{hazelwood,dbrooks}@eecs.harvard.edu

ABSTRACT
Microprocessor designers use techniques such as clock gat-
ing to reduce power dissipation. An unfortunate side-effect
of these techniques is the processor current fluctuations that
stress the power-delivery network. Recent research has fo-
cused on hardware-only mechanisms to detect and eliminate
these fluctuations. While the solutions have been effective
at avoiding operating-range violations, they have done so at
a performance penalty to the executing program.

Compilers are well equipped to rearrange instructions such
that current fluctuations are less dramatic, with minimal
performance implications. Furthermore, a dynamic opti-
mizer can eliminate the problem at run time, avoiding the
difficult task of statically predicting voltage emergencies.

This paper proposes complementing existing hardware so-
lutions with additional run-time software to address prob-
lematic code sequences that cause recurring voltage swings.
Our proposal extends existing hardware techniques to ad-
ditionally provide feedback to a dynamic optimizer, which
can provide a long-term solution, often without impacting
the performance of the executing application.

We found that recurring voltage fluctuations do exist in
the SPEC2000 benchmarks, and that given very little infor-
mation from the hardware, a dynamic optimizer can locate
and correct many of the recurring voltage emergencies.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing
and Fault-Tolerance; C.0 [Computer Systems Organiza-
tion]: General—hardware/software interfaces

General Terms
Performance, Design, Experimentation

Keywords
Power-aware computing, Hardware-software co-design, dI/dt,
Voltage emergencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

1. INTRODUCTION
Recent efforts at reducing processor power have the unfor-

tunate side-effect of causing large current variations within
the processor, referred to as the dI/dt problem. Due to par-
asitic inductance in the power-supply network, current os-
cillations may cause an undesirable swing in the processor’s
supply voltage [10]. The dI/dt problem (also referred to as
voltage emergencies) can result in supply voltages that vi-
olate the minimum or maximum voltage thresholds for the
processor. This can potentially cause timing problems in a
microprocessor and result in incorrect calculations [5].

Researchers have focused on hardware mechanisms to char-
acterize, detect, and eliminate voltage emergencies [6, 7, 8,
9]. While these solutions have been effective at reducing
dI/dt to the operating range of the processor, the executing
program incurs performance penalties as a result. Joseph et
al. [7] showed an example of an instruction loop that resulted
in a large voltage swing. The swing was reduced by allow-
ing the hardware to turn on or off functional units to control
the necessary current. Their instruction sequence provides
the motivation for our work because if such loops exist in
real applications, then it seems logical to apply a perma-
nent solution at the application level, and therefore limit
the performance penalty of activating control hardware.

We claim that hardware-based solutions work well for
intermittent voltage emergencies, but a loop incurring re-
peated voltage deviations is best handled by a compiler. A
compiler typically has several options when choosing the
order of instructions, and many of the options result in
equally performing software. Therefore, in the case voltage-
emergency loops, the compiler may be able to rearrange the
instructions to avoid the voltage emergency without impact-
ing performance.

Currently, static compilers do not account for voltage fluc-
tuations when scheduling instruction sequences. While tech-
niques exist for producing power-efficient code by the static
compiler, extending these static optimizations to solve the
dI/dt problem is difficult because there is a general lack
of understanding about instruction sequences that result in
voltage fluctuations. Furthermore, even if algorithms were
developed for locating potentially dangerous instruction se-
quences, the decision of whether or not to intervene would
depend on characteristics of the power-supply network and
operating voltage range of the target processor, which typ-
ically are not known at compile time. Finally, static tech-
niques may not avoid all voltage emergencies; many emer-
gencies occur due to dynamic instruction sequencing, which
is difficult to predict prior to program execution.

Binary Transform

Code
Cache

Execute

Profile

Figure 1: Control flow of a software-based dynamic
optimization system.

Therefore, we propose extending the hardware mecha-
nisms to additionally provide feedback to a software-based
dynamic optimization system [3]. Figure 1 shows the con-
trol flow of a typical dynamic optimizer. These systems
observe execution and perform code transformations to a
cached copy of the frequently-executed instructions. The
cached, transformed code is then executed in lieu of the
original instructions. Finally, run-time feedback and profile
information is used to guide other transformations, and the
process continues.

A dynamic optimizer has the ability to effectively bal-
ance the performance/power trade-off, and has the added
benefit of being able to know in real time when a voltage
emergency occurs. Additionally, most dynamic optimizers
already optimize and cache code at the granularity of code
traces—dynamic instruction sequences that span procedure
call and branch boundaries. Therefore, this system can cor-
rect voltage emergencies that arise due to dynamic instruc-
tion sequencing that spans module boundaries.

In this paper, we propose a compiler-microarchitectural
approach for collaboratively handling the dI/dt problem.
The contributions are as follows.

• A description of a collaborative hardware/software ap-
proach to the dI/dt problem.

• A characterization of voltage fluctuations within the
SPEC2000 benchmark suite assuming modern technol-
ogy, as well as an extrapolation to future processors
over the next 10 years.

• Techniques for mapping voltage emergencies back to
original source code.

• Compiler-based techniques for solving voltage emer-
gencies at the application level.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a detailed explanation of the dI/dt problem,
and discusses some existing solutions. Section 3 introduces
a collaborative design for handling both intermittent and
repeated voltage emergencies. Section 4 characterizes the
number and type of voltage emergencies that we can expect
to occur within the SPEC2000 benchmarks over the next 10
years. Section 5 explores the problem of mapping voltage
emergencies back to source code, and proposes techniques
for reducing hardware-to-software communication during an
emergency. Section 6 discusses three compiler algorithms
for altering a problematic area of source code to alleviate a
voltage-emergency region. Finally, Section 7 concludes and
Section 8 discusses ideas for future work.

Operating
Voltage

Hard
Emergency

Soft
Emergency

1.05V

1.03V

1V

0.97V

0.95V

Figure 2: Soft and hard voltage emergencies.

2. BACKGROUND AND PRIOR WORK
Dramatic changes in processor current over a relatively

short time frame are referred to as the dI/dt problem. These
changes in current are problematic because they result in
corresponding voltage changes in the power delivery system.
Processors require a relatively stable power source, and typ-
ically cannot tolerate supply voltage variations exceeding
5%. Therefore, if the changing demands in processor cur-
rent result in supply voltage variations greater than 5%, this
can result in a malfunction within the CPU.

Voltage emergencies aren’t a critical problem today be-
cause hardware designers have taken a conservative approach
when designing power supply systems and CPUs. But, im-
plementing conservative designs is wasteful, and future trends
may make it much more difficult to do so. The International
Technology Roadmap for Semiconductors (ITRS) lists noise
management (dI/dt, ground bounce, etc.) as one of their
grand challenges for the 2010+ time frame [1].

There are three major contributors to the increasing se-
riousness of the dI/dt problem. The first contributor is the
low-power design trend to reduce average power dissipation,
including aggressively clock gating more and more portions
of the microprocessor, i.e. turning off idle resources. How-
ever, the simple act of turning on and off microprocessor
elements results in dramatic variations in the amount of cur-
rent required by the processor as a whole each cycle.

The second contributor is the decreasing voltage trends in
high-performance microprocessors. ITRS estimates suggest
that the operating voltage will drop to 0.7V over the next 15
years, which means that the tolerance for processor voltage
variations will drop to +/- 0.035V.

Finally, as more and more features become incorporated
into future high-performance microprocessors, the overall
device current is expected to increase [1]. This increase in
current results in the potential for larger per-cycle current
variation, or increased dI/dt.

Several solutions have been proposed for reducing proces-
sor current and voltage fluctuations. In 1999, Toburen [11]
proposed heuristics for reducing the number of bit-flips be-
tween successive instructions in the execution core of high-
performance microprocessors. In 2002, Grochowski et al. [6]
proposed disabling and enabling functional units to reduce
voltage variation based on a complex calculation of the volt-
age, and in 2003, Joseph et al. extended this idea to use
on-chip voltage sensors, rather than online calculations, as
part of the voltage control mechanism. Their work focused
on voltage ranges rather than specific voltage values and de-
fined two thresholds. A control threshold was derived from

Microprocessor

Voltage Control HW

Executable

SW

HW

Clipped Program

Dynamic
Optimizer

Figure 3: Our collaborative architecture.

a control-theoretic model that included architectural, volt-
age sensor, and power supply parameters. The threshold,
defined as +/- 3% of the source voltage, triggered correc-
tive action by the control system. Ideally, this action pre-
vented the power supply from exceeding the operating volt-
age threshold (+/- 5% of the source voltage), which could
result in processor malfunction. Figure 2 distinguishes these
thresholds, and also aids in distinguishing soft emergencies
from hard emergencies. Soft emergencies occur when the
supply voltage violates the control threshold and triggers
the hardware voltage control mechanisms, while hard emer-
gencies occur when the microprocessor’s operating voltage
threshold is violated.

3. COLLABORATIVE ARCHITECTURE
The hardware-based voltage control mechanisms described

in Section 2 respond whenever the source voltage moves out-
side of a predefined control range. The range is defined
to minimize false alarms, while guaranteeing that sufficient
time will be available to stabilize the voltage through the
actuation response. As the voltage moves outside of the
control threshold range, the actuation mechanism reacts by
performing one of two actions. If the emergency is result-
ing from an abnormally low current draw, the processor re-
sponds by producing phantom firings of one or more func-
tional units. Furthermore, if the current is abnormally high,
the processor disables one or more functional units. While
these techniques effectively correct impending voltage emer-
gencies, the latter case does so at the expense of program
performance, while the former case wastes energy. While
these hardware solutions have been shown to be effective
at reducing voltage swings, the executing program incurs
performance penalties as a result.

Therefore, we extend the hardware mechanisms to addi-
tionally provide feedback to a software-based dynamic op-
timization system. This system can determine whether a
similar voltage emergency has occurred in the past, making
this region of code a candidate for re-optimization.

Figure 3 provides a high-level view of the proposed ar-
chitecture. Hardware-based voltage control mechanisms re-
main intact, while the extensions are shown at the software
level. The voltage control hardware monitors execution of
the application. Upon detection of an imminent voltage
emergency, the control mechanism intercepts execution and
performs various actions to correct the emergency. Simul-

Execution Core
Clock Rate 3.0 GHz
Instr Window 256-RUU, 128-LSQ
Func Units 8 iAlu, 4 fpAlu, 2 iMul/iDiv, 2 fpMul/fpDiv

Front End
Fetch Width 8 instructions
Decode Width 8 instructions
Branch Penalty 10 cycles
Branch Predictor 64KB chooser/64KB bimodal/64KB gshare
BTB 1K entry
RAS 64 entry

Memory Hierarchy
L1 D-Cache 64KB 2-way
L1 I-Cache 64KB 2-way
L2 I/D-Cache 2KB 4-way, 16 cycle latency
Main Memory 300 cycle latency

Table 1: Simulated processor parameters using the
SimpleScalar toolset with Wattch power extensions.

taneously, the control mechanism provides feedback to the
dynamic optimizer relaying pertinent information about the
processor state during the emergency, including instructions
that are currently in-flight or recently completed.

By operating in a lazy optimization mode, the dynamic
optimizer can wait until it is informed by the hardware of
a voltage emergency (after the hardware activates control
mechanisms to eliminate the emergency), and it can then
re-optimize and cache a version of the code that exhibits
more voltage stability. In the ideal case, only one iteration
of a power-virus loop would require hardware intervention,
and the remaining iterations would be executed from the
software-based dynamically-optimized code cache.

Using the feedback from the voltage control mechanism,
the dynamic optimizer performs the following actions:

1. Determines the location in the original source code
that is the apparent cause of the voltage fluctuation.

2. Decides whether this region of code has caused a volt-
age fluctuation in the past, and is therefore a candidate
for region modification.

3. Determines the best plan for altering the code region
and performs the optimization.

4. Inserts the new code into a code cache, thereby making
it the default version for subsequent execution.

In summary, the proposed architecture is a collaborative
hardware/software approach. The hardware component in-
cludes voltage control mechanisms and feedback to the soft-
ware component—the dynamic optimizer—which applies a
long-term solution to the executing program.

4. CHARACTERIZING EMERGENCIES
To explore voltage trends in the SPEC2000 benchmarks,

a framework similar to [7] was used. This included a mod-
ified version of the Wattch 1.03 architectural-level power
simulator [4] configured for a 1.0 V supply voltage. Wattch
is based on the SimpleScalar toolset [2] and we simulated
an 8-way superscalar, out-of-order processor configured with
the parameters shown in Table 1. Wattch was modified to
calculate the voltage variation each cycle by performing a
convolution of Wattch’s current estimates and an impulse

Target Soft Hard
Impedance Emergencies Emergencies

100% 0 / 26 0 / 26
200% 5 / 26 0 / 26
300% 20 / 26 0 / 26
400% 24 / 26 3 / 26

Table 2: Number of SPEC2000 benchmarks experi-
encing voltage emergencies.

response to the power-supply network for parameters de-
rived from a model of the Alpha 21364 package [12]. The
convolution is calculated using the following equation:

v(t) =
t�

i=0

h(i) ∗ i(t − 1) (1)

where i(t) is the instantaneous current and h(i) is the im-
pulse response. This calculation was performed each cycle,
based on Wattch’s per-cycle power calculation and the sim-
ple I = P/V dd transformation. After calculation, per-cycle
voltages for the first 100 million instructions (after skipping
1 billion instructions) were output to a voltage trace file. Fi-
nally, the voltage traces were analyzed to produce the results
presented in the following sections.

4.1 Voltage Emergency Results
Using our modified Wattch simulator to output a trace

of supply voltages each cycle during the execution of each
benchmark, we determined the number of voltage emergen-
cies expected in future microprocessors. We used methodol-
ogy similar to [7], where we assume that modern technology
allows the power supply to match the target impedance nec-
essary to avoid voltage emergencies, then look at the case
where the impedance is 200%, 300%, and 400% of what the
power supply can attain. This situation would happen if
either (a) power supply designers can no longer match the
required impedance due to technological limitations, or (b)
voltage control mechanisms mature to the point where mi-
croprocessors can be shipped with less expensive, less con-
servative power supplies.

Table 2 shows the number of emergencies that will occur
at these impedance values across the SPEC benchmarks.
While it’s not until 400% target impedance that voltage
emergencies occur, almost 20% of the benchmarks will trig-
ger the voltage control system (due to a soft emergency)
at only 200% impedance. Since it doesn’t matter whether
a hard emergency would have occurred for the hardware-
based control system to engage, performance implications
would be experienced after the increase to 200% impedance.
Our software extensions could permanently alleviate any re-
curring false alarms, and therefore reduce the performance
effects of a conservative hardware-only control system.

5. MAPPING EMERGENCIES TO SOURCE
Since our design relies on hardware-initiated feedback to a

dynamic optimizer, an important question becomes: After
an emergency, what information should the hardware pro-
vide to the dynamic optimizer? To answer this question, we
explored several options.

All Instructions To form a baseline for comparison, we
began by investigating the option of marking all instructions

0

50

100

150

200

250

16
4.

gz
ip

16
8.

w
up

w
is

e

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke

18
6.

cr
af

ty

18
7.

fa
ce

re
c

18
8.

am
m

p

19
7.

pa
rs

er

20
0.

si
xt

ra
ck

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

30
1.

ap
si

av
er

ag
e

In
st

ru
ct

io
n

s
in

 R
U

U

Branches Other Instructions

Figure 4: Average number of instructions in the
RUU during a voltage emergency.

in SimpleScalar’s Register Update Unit (RUU) as potential
causes of the voltage emergency, and communicating all in-
structions back to the dynamic optimizer. Figure 4 shows
the average number of instructions in the RUU during a volt-
age emergency, for each SPEC2000 benchmark. Overall, an
average of 113 instructions would require communication to
the software system using this heuristic. It is inefficient and
unrealistic to design a feedback system that carries such a
high communication overhead. Therefore, this motivates the
need for address pruning.

Branch Only One heuristic we explored for pruning
the information sent to the dynamic optimizer was to focus
on the in-flight branch instructions. The logic behind this
heuristic is that we can identify loops using only branch in-
structions. The dynamic optimizer can then focus effort on
optimizing that particular loop. Figure 4 also shows the av-
erage number of in-flight branch instructions during a volt-
age emergency, for each SPEC2000 benchmark. Using this
heuristic, an average of eight instructions must be commu-
nicated to the dynamic optimizer, while individual bench-
marks vary from one branch (as in the case of swim and
mgrid) to 27 branches (in wupwise and ammp.) While com-
municating eight instruction addresses is certainly more rea-
sonable than 113, the worst case of 27 addresses still seems
excessive. Furthermore, the best case of one address begs
the question: Is it ever the case that there are no in-flight
branches to be reported to the dynamic optimizer? Table 3
shows how often such over-pruning occurs. A major outlier
is mgrid, where 25% of emergencies occur while no branches
are in-flight. This is likely the result of a problematic code
region that is located inside a large loop, and the back-edge
branch has already retired from the processor by the time
the voltage emergency occurs.

Last-Executed Branch In the ideal case, the hardware
would only pass a single address to the dynamic optimizer
to trigger an update of a problematic code region. This
would allow the hardware to communicate via a single per-
formance counter register. What single instruction is likely
to provide the most information about a problematic area?
One solution is the last-executed branch instruction. In
hardware, this heuristic could be implemented by extend-
ing the branching hardware to write the PC of every ex-
ecuted branch to a Last Executed Branch register (LEB).
Then, when a voltage emergency occurs, the LEB register
contents can be reported to the dynamic optimizer.

SpecInt Failures Percent SpecFP Failures Percent

gzip 59 0.10% wupwise 0 0%
vpr 99 0.22% swim 0 0%
gcc 11 0.17% art 0 0%
mcf 0 0% mgrid 43809 24.80%

crafty 3938 1.95% applu 6515 5.47%
perlbmk 0 0% mesa 4579 4.83%

eon 1882 0.61% galgel 8 0.01%
parser 201 0.72% equake 0 0%

gap 1 0.02% facerec 1 0.00%
vortex 469 0.34% sixtrack 38 0.07%
bzip2 0 0% ammp 0 0%
twolf 1323 1.34% apsi 14 0.01%

Table 3: Pruning failures during voltage emergen-
cies. Failures is the number of voltage emergencies
where there were no in-flight branches. Percentage
is the dynamic fraction of branch pruning failures.

Using this heuristic, we characterized the number of dis-
tinct voltage emergencies that occurred during program ex-
ecution. Table 4 shows the number of different branch in-
structions found in the LEB register during a voltage emer-
gency. Interestingly, the column labeled Distinct is actu-
ally the number of times that the dynamic optimizer would
need to intervene to correct voltage emergencies, while the
Total column is the number of times that hardware must
intervene if the dynamic optimizer was not part of the so-
lution. We see that the software would intervene between 1
and 329 times during benchmark program execution, for the
cases of ammp and crafty, respectively. On the other hand,
hardware-only solutions would need to intervene between 35
and 306,698 times, for perlbmk and eon, respectively. The
fact that emergencies are clearly associated with particular
static branch instructions strongly suggests the existence of
source-level voltage emergency loops that are well-suited for
a dynamic optimizer. The case becomes even more com-
pelling as we scale the number of instructions executed from
100 million to 1 and 10 billion. The number of distinct emer-
gencies stays constant, while the total emergencies increases
linearly with instructions executed signaling, that for realis-
tic, long-running applications, the execution cycles required
to perform code optimization can easily be amortized.

6. COMPILER-BASED SOLUTIONS
Now that we have established the existence of repeatable

power problems, the next question becomes: What can a
compiler do to correct a dI/dt problem at the source-code
level? We begin by defining the salient features of instruc-
tion sequences that result in large current swings.

Prior work [7] pointed out that the most problematic pro-
cessor current profiles include successive periods of high and
low processor activity. It is when these high and low dura-
tions approach the processor’s resonant frequency that the
problem becomes more serious. To prove their point, Joseph
et al. developed an artificial application that was hand-tuned
to simulate periods of high and low activity that matched
the processor’s resonant frequency. It was this synthetic
benchmark (depicted in Figure 5) that provided the initial
motivation for our work, as the source code consists of a sin-
gle loop body, but causes thousands of voltage emergencies
during execution. We will now discuss a set of existing com-
piler optimizations that can alleviate these periods of high
and low activity dynamically.

SpecInt Distinct Total SpecFP Distinct Total

gzip 47 57376 wupwise 4 54
vpr 86 45789 swim 5 218193
gcc 64 6346 art 11 59133
mcf 37 3525 mgrid 24 176668

crafty 329 201847 applu 18 119133
parser 278 28049 mesa 102 98509

eon 40 306698 galgel 7 58914
perlbmk 4 35 equake 7 119753

gap 45 6528 facerec 14 99140
vortex 197 139072 sixtrack 88 55234
bzip2 12 1284 ammp 1 94
twolf 57 98947 apsi 37 241056

Table 4: Number of distinct voltage emergencies, as
indicated by the LEB register.

Software Pipelining A widely used compiler algorithm
for increasing the instruction-level parallelism of cyclic code
is software pipelining. By unrolling loops and overlapping
the execution of instruction sequences from several loop iter-
ations, the instructions can be scheduled more tightly. Typ-
ically, the result of software pipelining is that n-iterations
of a loop will be combined to form one larger loop iter-
ation. The nature of the software pipelining algorithm has
two interesting side-effects. First, the technique allows high-
activity periods in one loop iteration to be combined with
low-activity periods of the next loop iteration potentially
leading to a more stable sequence of instructions that will
often complete faster than the original sequences. Second,
by changing the amount of work done in a loop iteration,
periods of high and low activity that fall on the resonant
frequency will be disrupted.

Figure 6 depicts the result of applying software pipelining
to the loop body in Figure 5. By unrolling the loop body
once, and therefore lengthening the period of low activity
originally resulting from three subsequent divide operations,
we were able to move the stressmark off of the resonant fre-
quency. This reduced the resulting voltage fluctuations and
potentially eliminated numerous invocations of the hardware
throttling mechanism.

dI/dt Stressmark
BEFORE AFTER

ldt $f1, ($4) ldt $f1, ($4)

ldt $f2, ($6) ldt $f2, ($6)

divt $f1, $f2, $f3 divt $f1, $f2, $f3

divt $f3, $f2, $f3 divt $f3, $f2, $f3

divt $f1, $f2, $f3 divt $f1, $f2, $f3

stt $f3, 8($4) divt $f3, $f2, $f4

ldq $7, 8($4) divt $f4, $f2, $f4

cmovne $31, $7, $3 divt $f3, $f2, $f4

stq $3, ($4) stt $f4, 8($4)

stq $3, ($4) ldq $7, 8($4)

stq $3, ($4) cmove $31, $7, $3

stq $3, ($4) stq $3, ($4)

... ...

stq $3, ($4) stq $3, ($4)

Figure 5: Alpha instructions in a dI/dt stressmark
loop before and after loop unrolling with software
pipelining.

0.97V

0.98V

0.99V

1.00V

1.01V

1.02V
Before Software Pipelining After Software Pipelining

Figure 6: The effect of software pipelining on the
voltage stressmark loop.

Code Motion Since we have no guarantee that the last-
executed branch is a loop back-edge, algorithms that target
acyclic code regions are also necessary.

When a static compiler schedules instructions, it often has
several options for scheduling an instruction that result in
equal run-time performance of the application. Thus, the
compiler may inadvertently create regions of high and low
processor activity simply due to its predefined settings for
scheduling instructions in the event of a performance tie. By
recognizing these schedule slips, a dynamic optimizer can
later apply code motion to move instructions from high to
low processor utilization regions. This technique can result
in the removal of a voltage emergency without degrading
application performance.

Instruction Padding A final optimization is one that
can be applied to acyclic regions when performing code mo-
tion is not possible. Instruction padding involves inserting
unnecessary calculation into a low-utilization code region.
This transformation masks the low-utilization region in a
manner similar to the hardware technique of phantom fir-
ings of the functional units. Instruction padding is not used
in traditional compiler optimization phases as it has no per-
formance benefits. While the processor will ideally sched-
ule the unnecessary instructions off the critical path on idle
functional units, this approach may degrade performance of
an instruction sequence, and therefore should be considered
as a last resort.

7. CONCLUSIONS
Voltage emergencies are becoming a problem in the design

of microprocessors. Aggressive clock gating, decreasing volt-
age, and increasing current trends are aggravating the prob-
lem. In this paper, we propose a hybrid hardware/software
approach to solving the dI/dt problem, which avoids the
performance penalties of a hardware-only solution and the
inaccuracies of a software-only solution. We use hardware
to correct intermittent dI/dt problems, but provide feed-
back to a software-based dynamic optimizer for correcting
repeatable problems at the source-code level. We found that
hardware-to-software communication can be effectively min-
imized using a Last-Executed Branch (LEB) register. Using
a combination of software pipelining, code motion and in-
struction padding, we can move problematic code regions
off of the resonant frequency of the microprocessor package,
resulting in a reduction in soft emergencies.

8. FUTURE WORK
Now that the potential for improved performance dur-

ing dI/dt emergencies has been identified, our next logical
step is to modify a dynamic optimizer to enable it to re-
ceive hardware feedback during an emergency, and to imple-
ment the optimizations described in Section 6 in response
to that feedback. This infrastructure can be used for much
more than reducing dI/dt. As temperature-related research
closely mirrors dI/dt research, we can apply this architec-
ture to the temperature domain, allowing the optimizer to
reschedule hot sections of code. Low-power versions of com-
monly executed portions of code can be generated, cached,
and executed all at run time.

Acknowledgments
We would like to thank Russ Joseph for his guidance during
the process of replicating his infrastructure and stressmark.
This work was sponsored by a Harvard DEAS Fellowship.

9. REFERENCES
[1] International technology roadmap for semiconductors.

Semiconductor Industry Association, 2003.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. IEEE
Computer, pages 59–67, February 2002.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In PLDI,
pages 1–12, 2000.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In ISCA-27, 2000.

[5] A. P. Chandrakasan, W. J. Bowhill, and F. Fox.
Design of High-Performance Microprocessor Circuits.
Wiley-IEEE Press, 2000.

[6] E. Grochowski, D. Ayers, and V. Tiwari.
Microarchitectural simulation and control of
di/dt-induced power supply voltage variation. In
HPCA-8, pages 7–16, 2002.

[7] R. Joseph, D. Brooks, and M. Martonosi. Control
techniques to eliminate voltage emergencies in high
performance processors. In HPCA-9, 2003.

[8] R. Joseph, Z. Hu, and M. Martonosi. Wavelet analysis
for microprocessor design: Experiences with wavelet
based di/dt characterization. In HPCA-10, 2004.

[9] M. D. Powell and T. N. Vijaykumar. Pipeline
damping: A microarchitectural technique to reduce
inductive noise in supply voltage. In ISCA-30, pages
72–83, 2003.

[10] L. Smith, R. Anderson, D. Forehand, T. Pelc, and
T. Roy. Power distribution system design
methodology and capacitor selection for modern
CMOS technology. IEEE Transactions on Advanced
Packaging, 22(3):284–291, August 1999.

[11] M. C. Toburen. Power analysis and instruction
scheduling for reduced di/dt in the execution core of
high-performance microprocessors. Master’s thesis,
NC State University, 1999.

[12] M. Tsuk, R. Dame, D. Dvorscak, C. Houghton, and
J. St.Laurent. Modeling and measurement of the
Alpha 21364 package. In 2001 Electrical Performance
of Electronic Packaging (EPEP), October 2001.

