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Abstract-Specialized architectures will become increasingly 

important as the computing industry demands more energy­
efficient designs. The application-centric design style for these 
architectures is heavily dependent on workload characterization 
of intrinsic program characteristics, but at the same time these 
architectures are likely to be decoupled from legacy ISAs. In this 
work, we perform ISA-independent workload characterization for 
a variety of important intrinsic program characteristics relating to 
computation, memory, and control flow. The analysis is performed 
using a JIT compiler that emits ISA-independent instructions. We 
compare this analysis with an x86 trace and find that several of 
the analyses are highly sensitive to the ISA. We conclude that 
designers of specialized architectures must adopt ISA-independent 
workload characterization approaches. 

I. INTRODUCTION 

Specialized architectures are emerging as the major driv­

ing force for energy efficient design. Specialization seeks to 

harness characteristics of specific workloads, or categories of 

workloads, to enable more efficient computing hardware. Archi­

tectural specialization can take many forms. At one end of the 

spectrum are fully programmable, general purpose processing 

elements evolving from today's flexible, but inefficient, cores. 

At the other end of the spectrum are fixed-function accelerators 

providing large efficiency gains for very specific tasks such as 

video encoding, speech processing, or graph analysis. GPUs 

and other progranunable data parallel architectures fit between 

these two extremes. Many of these architectural approaches are 

not tied to a specific legacy instruction set architecture (IS A), 

and in some such designs ISAs are eschewed completely. 

Specialized architectures are intrinsically tailored to ap­

plications, and workload characterization will play a large 

role in developing these architectures. Tuning an architecture 

towards a workload requirement demands a comprehensive 

understanding of the intrinsic characteristics of the workload. 

Workload characterization for general-purpose architectures is 

commonly done by profiling benchmarks on current generation 

microprocessors using hardware performance counters. Typical 

program characteristics are machine instruction mix, IPC, cache 

miss rates, and branch misprediction rates. This approach is 

limited because machine-dependent features such as cache 

size and pipeline depth will strongly impact the workload 

characterization. To overcome the problem, microarchitecture­

independent workload characterization can be employed by 

profiling instruction traces to collect information such as work­

ing set sizes, register traffic, memory locality, and branch 

predictability [11]. Although this approach removes the effects 

of microarchitecture-dependent features, some of these analyses 

depend on the particular ISA with which the trace is repre­

sented. Each ISA has different characteristics and constraints 

that impact the representation of the workload. As architectural 

specialization grows in importance, [SA-independent workload 

characterization will become essential for understanding intrin­

sic workload behavior, which will in turn allow designers to 

consider a wide range of alternative architectures. 

To fully expose the microarchitecture- and ISA-independent 

workload characteristics for specialized architectures, we pro­

pose to analyze benchmarks using ISA-independent charac­

teristics that capture inherent program behavior. In order to 

perform this analysis, we leverage the existing IS A-independent 

nature of a compiler intermediate representation (lR). We use 

a JIT compiler to trace workloads using this ISA-independent 

program representation and compare program characterization 

within the broad categories of program compute, memory 

activity, and control flow. In particular, we study program char­

acteristics that are highly relevant to the design of specialized 

architectures. Within each category, we analyze and discuss the 

differences between ISA-independent and ISA-specific analy­

sis. Finally, we demonstrate cases where the ISA-independent 

characterization can help designers categorize workloads into 

different specialization approaches. In particular, this paper 

makes the following contributions: 

I)We compare ISA-dependent characterization with ISA­

independent characterization. To the best of our knowledge, 

this is the first such ISA-independent workload charac­

terization study. We show that ISA-dependent results can 

be misleading. In particular, the memory behavior of the 

workloads, which is critical for many forms of architectural 

specialization, will be biased significantly due to the register 

spilling effect intrinsic to conventional ISAs. 

2)We present a taxonomy to characterize the potential for archi­

tectural specialization using ISA-independent characteristics. 

We categorize a workload's ISA-independent characteristics 

into program compute, memory activity, and control flow, 

each of which corresponds to an important component of 

specialized architectures. 

3)We present workload characterization of SPEC CPU bench­

marks using IS A-independent characteristics, and we demon­

strate that a truly intrinsic workload characterization allows 

accelerator designers to quickly identify opportunities for 

specialization. 
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Fig. 1: The percentage of stack instructions of total dyanmic 

instructions for 32-bit and 64-bit x86 binaries. 

II. MOTIVATION 

Specialized architectures are unburdened by the requirements 

of legacy ISAs, and a significant part of the efficiency gains 

from such architectures can be attributed to hardware special­

ization of the datapath, memory, and program control. ISA­

independent analysis is attractive for such architectures because 

it avoids artificial constraints imposed by details of a specific 

ISA. Compilers for conventional IS As must generate binaries 

that meet the specification of the instruction set semantics, 

and this process can alter the fundamental program behavior 

because of these constraints. This section discusses the three 

major sources of ISA constraints that we explore: overheads of 

stack operations due to register spilling, ISA-specific complex 

operators, and calling conventions. 

A. Stack Overhead 

Instruction set architectures support a finite number of regis­

ters which must necessarily be equal to or less than the number 

of physical registers in a machine. When writing code in a 

high-level language, most programmers are unaware of these 

constraints and use as many variables as the program requires. 

In order to fit the large number of variables into the ISA-defined 

register set, compilers must perform register allocation to map 

program variables to registers. When there are more variables 

that need to be allocated than available ISA-defined registers, 

the compiler will spill additional variables onto the stack, which 

is a specially reserved portion of the main memory. Load/store 

operations are inserted to manage the allocation of the machine 

registers and the stack. These stack memory operations can 

be expensive from a run-time performance point of view. For 

characterizing workloads for specialized architectures that do 

not have a fixed or known ISA, the stack accesses insert 

possibly unnecessary load/store operations into the instruction 

trace and incur additional memory utilization. These effects are 

not true program characteristics; they are artificial constraints 

imposed by the ISA. 

We demonstrate the effect of stack operation by comparing 

32-bit and 64-bit x86 binaries generated by LLVM's Clang 

compiler for a set of SPEC CPU benchmarks. One of the major 

differences between the 32- and 64-bit x86 ISAs is that 64-bit 

x86 has eight more general-purpose registers. Figure 1 plots 

the percentage of dynamic instructions that access the stack for 

32-bit and 64-bit versions of SPEC benchmarks. We observe 

that for all of the benchmarks, the 32-bit binary has a much 

higher percentage of stack instructions than the 64-bit binary. 

This is because the additional general-purpose registers allow 

more variables to stay in registers, so less spilling to memory 

is required. 

The stack overhead also applies to RISC ISAs. Lee et al. 

characterized stack access frequency using the Alpha ISA to 

propose a mechanism to separate stack from heap accesses[12]. 

For the same SPEC2000 workloads, they find a similar percent­

age of stack operation (24%) compared to our observation in 

32-bit x86. 

B. Complex Operations 

We identify two classes of instructions as complex opera­

tions: vector instructions and compute or branch instructions 

with memory operands. Both kinds of operations can be split 

into multiple simpler primitives. CISC ISAs like x86 contain 

complex operations including vector instructions like SSE and 

instructions that support memory operands. We note that com­

plex operations can exist even in RISC ISAs. For example, 

POWER and ARM include complex operations such as predi­

cate instructions, string instructions, and vector extensions. 

Most existing IS As have already encoded some degree of 

specialization towards these complex operations by grouping 

multiple simple operations into single instructions. However, 

designers of specialized architectures may consider specialized 

functional units that combine sequences of operations into a 

single block. From a program analysis point of view, it is easier 

and cleaner to start from simple primitives and explore aggre­

gation possibilities rather than to start from a more complex 

version of code resulting from another category of optimization. 

We quantify the amount of complex operations in x86 in 

Figure 2. In this categorization, we treat an instruction as a 

complex operation if it is either a vector instruction (SSE) 

or a compute or branch instruction with a memory operand. 

The top three categories in Figure 2 are complex operations: 

vector operations, vector operations with memory accesses, and 

compute or branch instructions with memory operands. The 

remaining category includes all single operation instructions. 

We see that on average 27% of the total instructions executed 

are complex operations. 

C. Calling Convention 

The ISA calling convention describes how subroutines re­

ceive parameters from callers and how they return results. Any 

machine-dependent ISA needs to have its own specifications 

to pass arguments between subroutines. For example, x86, 
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Fig. 2: Instruction breakdown of complex (top three bars) and 

single (bottom bar) operation instructions. 

due to its limited number of registers, pushes arguments onto 

the stack before a subroutine is called, resulting in additional 

stack operations. Other ISAs also require various housekeeping 

operations for subroutines, and these are also artifacts of the 

ISA choice, not intrinsic to the behavior of the workload. 

III. METHODOLOGY AND BACKGROUND 

To evaluate the importance of performing workload charac­

terization by using machine-independent code representation, 

we perform both ISA-independent and ISA-dependent analysis. 

After describing how these two analyses are performed, we 

provide details about how we sample benchmark executions 

and how we generate the code to be analyzed. 

A. ISA-Independent Study 

An ISA-independent representation of code is critical for the 

development of flexible compiler infrastructures, and modern 

compilers use ISA-independent intermediate representations 

to bridge high level source languages (e.g., C) to specific 

IS As (e.g., Intel x86). Since our requirements for a code 

representation are similar to those of compilers, we leverage 

the intermediate representation used in compilers to perform 

our analysis. 

Our analysis uses a specific intermediate representation (IR) 

available in the ILDJIT compiler [5]. Specifically, workload 

execution is represented by a trace of semantically equivalent 

ILDJIT IR instructions. This trace is generated by executing 

the IR code with a special-purpose interpreter that emits IR 

instructions as it executes them. 

Compared to other possible intermediate representations 

available in mainstream compilers, like GCC and LLVM, the 

ILDJIT IR has the unique feature of being closer to source 

languages than to machine code. As we describe later in 

this section, this feature allows us to perform an analysis 

that is machine-, ISA-, and system-Library-independent, so that 

workload-specific characteristics are exposed. Before describ­

ing the ILDJIT IR in detail, we motivate its use for our specific 

analysis by describing the unwanted consequences of relying on 

more standard intermediate representations used in mainstream 

compilers. 

a) Compiler intermediate representation: Intermediate 

representations commonly used by compilers are either tree­

based or linear. Tree-based representations like GCe's GIM­

PLE [2] are not designed to be executed to generate a run-time 

trace, making the implementation of an interpreter for such 

formats more challenging than for other representations. Im­

plementing interpreters for linear representations, like LLVM's 

bitcode [3], is more straightforward, since the execution order 

to follow is given by the linear order imposed by the language 

itself. 

Intermediate representations are a bridge from source lan­

guages to ISAs, but the ones used in mainstream compilers 

are closer to the latter. The rationale is that compilers are de­

signed to maximize the number of code optimization algorithms 

that rely on the intermediate representation (both machine­

independent and machine-dependent), and performing machine­

specific optimization is easier if the representation is closer to 

the machine code. 

The price paid for having a very low-level intermediate 

representation is that code analysis performed at this level 

(either at compile or run time) can be influenced by artifacts of 

either a specific ISA family or underlying system library imple­

mentations. For example, LLVM's bitcode language specifies 

the calling convention to use, and this code is included in the 

program representation. Moreover, these representations often 

do not identify source-language operations such as memory 

allocation, leading to platform-specific execution traces that can 

include artificial program behavior that is not intrinsic to the 

workload. For example, in ILDJIT, the allocation of an object 

is accomplished by a high level memory allocation operation. 

In contrast, compilers with low-level IRs often allocate objects 

using a generic call to the function malloe which is provided 

by the standard C library. In the latter case, a trace of the 

generated intermediate representation would include the code 

of the malloc function, and this can lead to artificial program 

dependencies between malloc invocations. On many common 

implementations of the malloc function, e.g. many Linux-based 

systems, the return address is computed based on a value of a 

local variable of that function. This local variable keeps the 

address of a free memory location in internal memory of the 

C library; just before returning the allocated address to the 

caller, this local variable is updated to point to another free 

memory location. Hence, this implementation creates a read­

after-write chain of dependencies among different invocations 

of malloc. Notice that this dependence chain is not intrinsic 

to the considered workload; it depends on the specific imple­

mentation of the C library in use in the current system. On 

the other hand, by providing a memory allocation operation in 

the intermediate representation, platform-specific details about 

how memory is allocated are hidden, allowing analysis to be 
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system-independent. 

b) ILDJIT IR: ILDJIT is a modular compilation frame­

work that includes both static and dynamic compilers. As 

mentioned earlier, it includes a high-level intermediate rep­

resentation (IR). ILDJIT performs a large set of classical, 

machine-independent optimizations at the IR level including 

copy propagation, dead-code elimination, loop-invariant code 

motion, etc. When the IR code is fully optimized, it is translated 

to LLVM's bitcode language and LLVM's back ends are used 

to optimize the code using machine-dependent optimizations 

and to generate semantically equivalent machine code. 

We customized ILDJIT to implement an ad-hoc interpreter 

of its intermediate representation to emit IR instructions as 

they are executed. The IR instructions interpreted are the ones 

used for translation to the bitcode language. By attaching our 

interpreter right before the translation to bitcode, we ensure 

that the IR is fully optimized; however, machine-dependent 

information is still not used for these optimizations, allowing 

our analysis to study workload-specific characteristics. 

The ILDJIT IR is a linear machine- and ISA-independent 

representation that includes common operations of high-level 

programming languages like memory allocation (e.g., new, free, 

newarray) and exception handling (e.g., throw, catch). It is a 

RISC-like language in which memory accesses are performed 

through loads and stores. Each instruction has a clear and 

simple meaning where only scalar variables, memory locations, 

and the program counter are affected by their execution. The 

language allows an unbounded number of typed variables (vir­

tual registers), making analysis independent of the number of 

physical registers. Moreover, parameters of method invocations 

are always passed by using variables, as in the input source 

language we use (C), making analysis independent of specific 

calling conventions. Finally, the data types described in the 

source language are preserved in the IR language, making this 

representation closer to the input language compared to other 

compiler intermediate representations. 

IR instructions that perform operations among variables 

require homogeneity among their types: an add operation 

between variables x and y requires the same type for both 

x and y (e.g., 32-bit integer). This characteristic leads to 

instructions that convert values between types. Notice that these 

conversions are required by the workload as the semantics of 

operations in the source language specify them. However, some 

of these conversions are unnecessary if a CISC-like ISA is used 

instead of the ILDJIT IR. Finally, opcodes (e.g., add, mul) 

are orthogonal with data types (e.g., integer, floating point). 

This opcode polymorphism constrains the number of different 

instructions in the language to 80, allowing an easy parsing of 

the executed trace. 

B. ISA-Dependent Study 

We perform our ISA-dependent analysis using the x86 in­

struction set. The x86 ISA is cOlmnonly used in architecture 

studies, and a large number of program analysis tools are 

available for workload characterization. For analysis of new 

x86-based microarchitectures, architects must understand the 

ISA-specific effects of the architecture since they can have 

a significant impact on pipeline and memory system design. 

When considering new heterogeneous architectures with both 

x86 and specialized cores, it would be natural to use existing 

workload characterization approaches. However, when perform­

ing workload characterization of specialized architectures, x86 

provides a particularly poor starting point, because of the 

overheads discussed in Section II. In this study, we compare x86 

instruction trace with ILDJIT IR trace. To generate the trace 

of x86 instructions executed by the workload, we use Pin, a 

dynamic binary instrumentation tool developed by Intel[13]. 

C. Sampling 

Because of storage and processing time constraints, perform­

ing some of the analysis presented in this paper on the full 

execution trace is impractical. Therefore, we sample the exe­

cution with SimPoint[16]. We configure SimPoint to generate 

10 phases, each of which contains 10 million instructions. Only 

instructions that belong to the identified phases are emitted and 

then analyzed. 

In order to perform a fair comparison between x86 and IR 

traces, we sample the execution with the IR trace by configuring 

SimPoint to use IR instructions rather than the x86 ones. 

Then we instrument the code to identify the x86 instructions 

semantically equivalent to the IR code for the identified phases. 

In this way, we ensure that the same code region is considered 

for both the IR and x86 analysis. 

D. Benchmark Suite 

We use C benchmarks from SPEC CPU2000 benchmark 

suite. These benchmarks are translated to CIL bytecode by 

the compiler GCC4CLI [1] (a branch of GCC), and then 

they are compiled to IR by ILDJIT. Finally, ILDJIT generates 

the machine code by relying on LLVM's x86 back end as 

previously described. ILDJIT currently only supports the 32-

bit LLVM back end and all of the results in the paper are for 

32-bit operations. 

I V. WORKLOAD CHARACTERISTICS ANALYSIS 

In this section, we compare x86 and ISA-independent IR­

based program analysis. We compare the two approaches using 

three main categories: Compute, Control, Memory. Table 1 

sUlmnarizes the metrics that we compare in this section. The 

choice of metrics is intended to highlight opportunities for 

hardware specialization. Compute, control and memory are the 

most important metrics to represent workload characteristics 

and help designers gauge the complexity of specialization. 

A. Compute 

Specialized hardware often exploits custom functional units 

that combine multiple operations with predictable control flow 

in order to execute code more efficiently. Example of this 

approach is Conservation Cores [17], which identifies the 

hot functions in a program's execution and designs hardware 

accelerators for those functions. In order to uncover the op­

portunity to find sequences of operations that are amenable to 
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Category I Analysis I Notes 

Unique Opcodes required to 
Compute Opcode cover 90% of dynamic 

instructions 

Total Memory Total number of unique 
Footprint memory addresses accessed 

Memory 90% Memory 
Number of unique memory 

Footprint 
addresses that cover 90% of 
memory accesses 

Global Memory Measure of the randomness of 
Address Entropy memory addresses 

Local Memory Measure of the spatial locality 
Address Entropy of memory addresses 

Unique Branch Total number of unique 

Control Instructions branch i nstructi ons 

Measure of the randomness of 
Branch Entropy branch behavior, representing 

branch predictability 

Table 1: Metrics used for workload characterization. 

similar specialization, we need to analyze executed instruction 

sequences and detect various patterns. For such analysis, the 

way the operations are represented in the instruction trace will 

have a significant impact on whether certain patterns can be 

found or not and, subsequently, whether the workload is worth 

the effort of custom hardware design. In this section, we analyze 

the instruction breakdown and the most COlmnon opcodes found 

in both x86 and IR. We observe that x86 incurs more overhead 

for the basic computation performed by the application. 

1) Instruction Breakdown: We start the analysis by catego­

rizing the executed instructions from the IR and x86 code. We 

split instructions into the following categories: Stack, Memory, 

Move (data movement and conversion between registers), Un­

conditional Branch, Conditional Branch and Compute. Figure 3 

shows this breakdown. For each benchmark, the left most bar 

represents the x86 binary, and the middle bar represents IR. 

Furthermore, during our implementation, we found that there 

is also instruction overhead associated with IR characteristics 

that are not intrinsic to the workloads. One source of such ineffi­

ciency is the number of unconditional branch instructions. The 

ILDJIT compiler does not remove these instructions because 

the compiler back end performs unconditional branch removal 

in a very efficient manner. Another source of overhead is data 

movement and conversion between registers. Such instructions 

appear in both IR and x86 and are used to support different 

data types and simplify optimizations. The right most bar in 

Figure 3 is what we call Simplified-IR - the IR trace without 

those two classes of instruction. In our following discussion, 

"IR trace" will refer to this simplified IR. 

Consistent with the results from LLVM's 32-bit Clang com­

piler in Figure 1, we see that the number of stack-referencing 

instructions can be significant depending on the application. 

This is represented by the top section of the left most bar 

for every benchmark. For example, almost half of the x86 

instructions for 255.vortex use the stack, while the effect is 

Vl c 
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Fig. 3: The instruction breakdown for x86, IR and Simplified­

IR (S-IR). 

less obvious for benchmarks like 179.art. More importantly, 

the large number of stack accesses is caused by constraints 

of the x86 ISA (a small register set) and is not part of 

the intrinsic program behavior. This is evident from the IR 

bars for the stack-heavy benchmarks - moving from x86 to 

the infinite-register IR significantly decreases the number of 

accesses to the stack. While stack effects can increase the 

number of executed x86 instructions, CISC x86 instructions can 

combine multiple primitive operations together. This results in 

a more compact execution. For example, for benchmarks like 

164.gzip and 179.art there are more instructions in the IR trace 

compared to the x86 one. The presence of x86-specific effects 

that both increase and decrease executed instructions makes it 

even harder to extract ISA-dependent overhead and expose the 

workload's intrinsic behaviors, further strengthening the case 

for analysis on the IR level. 

2) Opcode Diversity: Our next experiment examines the 

diversity of the opcodes in the x86 and IR traces. Opcode 

diversity is relevant since it is related to the complexity of 

customized functional units in specialized hardware. Fewer and 

simpler opcodes will simplify the design of such hardware 

because the functional units will be more modular and reusable. 

This allows sharing such functional units across various work­

loads. 

In order to compare x86 and IR analysis, we profile the 

total number of opcodes and the number of times each single 

opcode occurs in the program execution. We do not differentiate 

opcodes based on addressing modes, which reduces the number 

of required x86 opcodes. Figure 4 plots the number of unique 

opcodes and the percentage of dynamic instructions those 

opcodes cover for the benchmark 179.art. The dotted line on 

the plot shows the cumulative distribution of opcodes needed 

to cover the dynamic execution of the program. 
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Fig. 4: Cumulative distribution of the number of unique opcodes of 179.art. The intersecting lines show the number of unique 

opcodes that cover 90% of dynamic instructions. 

To meaningfully compare x86 and IR, we use a horizontal 

line to highlight the number of unique opcodes required to 

cover 90% of the dynamic instrucitons in Figures 4a and 4b. 

This metric is meaningful for accelerator studies since it allows 

comparison of the number of functional unit types needed 

for different workloads. The horizontal line intersects with the 

cumulative distribution function to show the required number of 

opcodes. The x86 results demonstrate that 90% of the execution 

can be covered by 11 unique opcodes, while the same analysis 

with IR requires only 5 opcodes. The right portion of the plots 

shows the top opcodes used for both instruction sets. For x86, 

two MOV instructions, MOV and MOVSD_XMM, and four 

different conditional jump instructions are required. Compared 

with x86, the top opcodes from IR analysis are much clearer 

- the 5 opcodes are all simple primitives, resulting in a much 

simpler representation of the actions of the program. 

We extend this comparison to all available benchmarks in 

the suite and show the result in Figure 5. Not surprisingly, for 

all the benchmarks the x86 trace needs more unique opcodes 

than the IR trace. Furthermore, the right most bar in Figure 5 

shows the number of unique opcodes required to cover all 

benchmarks we analyze, computed as a superset of individual 

benchmark needs. In order to cover all the benchmarks in 

x86, 40 unique instruction opcodes are required; but the IR­

based analysis uncovers only 12 fundamental primitives. Thus, 

extracting workload pieces that are amenable to hardware 

specialization appears significantly easier on the IR level of 

abstraction. 

3) Static Instructions: The diversity of opcodes represents 

the different types of fundamental computing blocks that cus­

tom hardware might require. Another important metric is the 

number of static instructions required to cover the dynamic 

execution. In a custom design, different sequences of static 

instructions will lead to more or less complex data flow. Similar 

to the metric we use for opcode analysis, we compare the 

number of unique static instructions required to cover 90% of 

the dynamic instructions. As shown in Figure 6, benchmarks 

like 186.crafty and 255.vortex with significant stack overhead 

require more unique static instructions. The x86 characteriza­

tion hides the truly important instructions, instead highlighting 

the stack overhead operations. This potentially misleads the 

identification of hot computation. 

B. Memory 

Memory behavior is crucial for workload performance. In 

the case of hardware specialization, the memory system must 

be tuned to the workload characteristics in order to realize 

significant gains in efficiency. In this section, we compare two 

memory characterization metrics, memory footprint size and 

memory entropy. We once again discover that ISA-dependent 

analysis can be significantly misleading and obscure the work­

loads' intrinsic behavior. 

/) Memory Footprint: The first metric we consider is the 

size of the data memory that a program uses, including both 

stack and heap memory. We look into two types of memory 

footprint. The first one is the full memory footprint - the total 

size of data memory the program has accessed. It quantifies 

the overall memory usage. The second metric identifies the 

"important" memory footprint, which we define as the number 

of unique memory addresses that covers 90% of dynamic data 

memory accesses. This metric shows the most frequently used 

addresses that need to be kept close to the computation. 

Figure 7 shows the total memory footprint analysis. The Y­

axis in this figure is the number of unique memory addresses 

generated. The x86 and IR memory footprints are nearly the 

same, because total working set is intrinsic to the workloads 

and therefore independent of the program representation. 
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Fig. 5: Number of unique opcodes to cover 90% of dynamic 

instructions. "All" represents the global superset. 

However, the important memory footprint, shown in Figure 8, 

has markedly different characteristics between x86 and IR. In 

most cases, there are fewer unique memory addresses needed 

for x86 compared to IR: although the total number of unique 

memory addresses is similar between x86 and IR, the memory 

accesses of x86 are dominated by a small number of addresses. 

The reason for this once again lies in frequent accesses to the 

stack. While the memory space of stack addresses is usually 

small, these addresses are accessed very frequently. When iden­

tifying important memory addresses, the few stack addresses 

that are frequently accessed will stand out and dominate the 

memory behavior. Thus, the important memory addresses found 

will be an artifact of the ISA instead of the program behavior. 

2) Memory Address Entropy: We introduce the metric of 

memory address entropy in order to quantify how easy it 

is to keep memory data close to the computation. Intuitively, 

memory address entropy quantifies the information content, or 

the lack of predictability, in memory accesses. Thus, it is a 

metric opposite of memory locality that is often exploited by 

custom hardware - locality measures the amount of structure in 

memory addresses, while entropy measures its lack. We show 

that ISA-Ievel analysis exposes a lower amount of entropy, 

leading to false assumptions of memory access structure. 

a) Entropy: In information theory, entropy [15] is used to 

measure the randomness of a variable, which is calculated as 

Equation 1 

N 

Entropy = - LP(Xi) * log2P(xi) i=1 (1) 

where P(Xi) is the probability of Xi, N is the total number 

of samples of the random variable x. The result, Entropy, 
is a measure of predictability of the next outcome of x. For 

example, assume the pattern of variable X is very regular -

always l. In this case, p(l) = 1 and log2p(1) = log21 = 0, so 

Entropy = 0, which means that it is very easy to predict x. 

'" c: 
B 3500 

2 
� 3000 

u 
� 2500 
VI 
.. 
5- 2000 
·c => 
'0 1500 
.. � 1000 
z 

jc:::J X86! _ IR 

Fig. 6: Number of unique static instructions to cover 90% of 

dynamic instructions. 

One the other extreme, if there are N possible outcomes of X 
occurring equally often, P(Xi) = tv. According to Equation 1 

N 

Entropy = - LP(Xi) * lOg2P(Xi) i=1 1 1 
= -N * - * log2( -) N N 
= lOg2N 

which is very high for large N. 

(2) 

Yen, et aI., describes the idea of using entropy to repre­

sent the randomness of instruction addresses[18]. According 

to Equation 1, in the case of memory entropy, variable x 
represents the memory addresses that appear in the program 

execution. The probability P(Xi) is the frequency of a spe­

cific memory address Xi. After profiling the unique memory 

addresses accessed in the workloads and the number of times 

each address is referenced, we can compute the memory address 

entropy of the workloads. When the memory entropy is high, 

the memory access stream is more random and less amenable to 

architecture techniques that require locality. Conversely, if the 

entropy is low, memory accesses are very regular and easier to 

predict. 

b) Global Memory Address Entropy: Global memory en­

tropy describes the randomness of the entire data address stream 

using all address bits (32 in our case). Figure 9 shows the 

calculated global memory address entropy for both x86 and 

IR. For each benchmark, the leftmost bar is the global entropy 

of x86 memory addresses. The rightmost bar is the case for 

IR memory addresses. We can see that the entropy of x86 is 

generally much lower than for IR. In order to find the reason for 

the difference, we compute the x86 memory address entropy 

without the stack addresses, shown in the middle bar. As we can 

see, after removing the stack addresses, the x86 address entropy 

is comparable with the IR memory address entropy, which 

represents the intrinsic address randomness of the workloads. 
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Fig. 9: Memory address entropy of x86, x86 w/o stack, IR 

traces. Lower values indicate more regularity in the access 

stream. 

From this we can see, the ISA overhead has a big impact on 

the memory address behavior. 

c) Local Memory Address Entropy: Local memory en­

tropy computes the address entropy using a subset of the 

entire address bits. Local entropy can help us detect spatial 

locality in the workloads. For example, we can skip the lower­

order bits of the addresses, and compute entropy only with 

the high-order address bits, as seen in Figure lOa. If the local 

address entropy with, for example, 28 bits shrinks significantly 

compared to global entropy, memory accesses are less random, 

and significant spatial locality is present. After we ignore the 

lower order bits, such spatial locality is expressed by grouping 

those addresses that are close together. 

Figure 10 shows two examples of the local address entropy 

when we sweep the number of low order bits ignored from 

o to 10. The two benchmarks, 179.art and 255.vortex, are 

representative of the patterns we have seen among the rest of 

the benchmark suite. For both cases, the local entropy of x86 

drops faster than for IR. This is very obvious for 255.vortex . 

This is due to the fact that stack addresses are usually in close 

proximity, which means they have usually have good locality. 

Ignoring the lower-order bits results in steeper drops in entropy 

for x86. This also shows ISA-dependent analysis will bias 

the workload characteristics towards better locality due to the 

impact of stack operations. 

C. Control 

Control flow complexity is a very important metric for 

workload characterization. From our experience in general 

purpose processor design, we know that speculative execution 

is necessary to exploit parallelism. In a heterogeneous archi­

tecture, there maybe a variety of cores or computing engines 

with different degrees of support for speculation. In order to 

choose the appropriate ones to run the workloads, the control 

complexity of the workloads needs to be fully understood and 

not dependent on a specific architecture. In this section, we 

compare the control complexity analysis of x86 and IR and 

show that both analyses are consistent with each other, showing 

that ISA choice has a minimal effect on a workload's control 

flow. 

1) Branch Instruction Count: Our first-order control flow 

analysis counts the number of unique conditional branch in­

structions to cover 90% of the branches. This is similar to the 

unique opcode analysis but focused on branch instructions. This 

is important for hardware specialization because it measures 

the number of control flow decisions that must be handled in 

a design. 

As Figure 11 shows, the number of unique branch instruc­

tions to cover 90% dynamic branches is consistent between 
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Fig. lO: Local memory entropy as a function of low-order bits omitted in calculation. A faster dropping curve indicates more 

spatial locality in the address stream. 

x86 and IR. Both sets of bars track each other very well. This 

implies that ISA choice does not have a significant impact 

on the number of branch instructions generated, which mostly 

depends on the way programs are written. 

2) Branch History Entropy: Another important metric is 

control flow predictability, which is intrinsic to the workload. 

Generally speaking, if the branch taken patterns are more 

regular and less random, branches are easier to predict. In 

this sense, the degree of the regularity of the branch behavior 

will indicate the predictability of the control flow. Based on 

this intuition, Yokota proposed the idea of Branch History 

Entropy using Shannon's information entropy idea to represent 

a program's predictability[19]. 

We use a string of bits to encode taken or not taken branch 

outcomes. In this sense, the program as the producer of the 

sequence can be viewed as an information source and we can 

compute the entropy of the information source to represent the 

regularity of branch behavior. In our implementation, we use a 

sequence of n consecutive branch results as the random variable 

and compute the entropy of the benchmarks. The results are 

shown in Figure 12. We can see that the branch entropy 

from x86 and IR also track each other very well. This shows 

that both ISA-dependent analysis and ISA-independent analysis 

fully expose the program's control behavior. This matches our 

intuition that ISA does not affect control flow significantly. 

D. Workload Characterization Using ISA-Independent Charac­

teristics 

We compare the eleven SPEC benchmarks with five IS A­

independent metrics from our analysis: the number of opcodes, 

the value of branch entropy, the value of memory entropy, the 

unique number of static instructions (I-MEM), and the unique 

number of data addresses (D-MEM). In terms of specialized 

architecture design, smaller values for each of these metrics 

indicate more regularity in the benchmarks and better oppor­

tunity to exploit specialization. For each metric, we choose 

the maximum value across all the benchmarks and for each 

benchmark we plot the relative value with respect to this maxi­

mum value. We generate kiviat plots for all benchmarks, shown 

in Figure l3, in which each axis represents one of the IS A­

independent characteristics. The plot in the lower, right corner 

of the figure provides a legend for the individual axis. The kiviat 

plots are ordered by the area of the resulting polygon. With 

an equal weighting of the five characteristics, area provides a 

rough approximation for overall benchmark regularity (smaller 

area is more regular). We observe very different behavior across 

the benchmark suite. For example, 255.vortex demonstrates 

regularity across all the metrics, while 186.crafty has relatively 

low regularity in most of the dimensions. These insights will 

be helpful for specialized architecture designers to identify the 

opportunity for acceleration. 

V. RELATED WORK 

A. Microarchitecture-Dependent Characterization 

There has been a significant amount of prior work on 

using performance counters to understand and optimize the 

performance of workloads [8], [14], [4], [7]. These studies 

use highly microarchitecture-dependent metrics like cycles per 

instruction, cache miss rate, and branch misprediction rate. 

These studies are helpful in finding performance bottlenecks 

on various platfonns for different benchmarks. However, the 

characteristics profiled are biased by the microarchitecture the 

workloads are running and the target ISA. 

B. Microarchitecture-Independent Characterization 

Hoste and Eeckhout propose metrics of characterizing bench­

marks based on microarchitecture-independent characteristics 

[11]. They instrument program binaries to profile characteristics 

like instruction mix, ILP, working set size, and branch pre­

dictability. They demonstrate that the program characteristics 

from performance counter style characterization can be mis­

leading. As an example of the utility of these metrics, Eeckhout, 

et aI., demonstrate that microarchitecture-independent charac­

teristics can be used to determine benchmark similarity, with the 

goal of sampling representative programs from the benchmarks 

suite [6]. In both cases, Alpha ISA traces are used to analyze 

microarchitecture-independent behavior. 
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C. Specialized Architecture 

Specialized architectures offer large potential for perfor­

mance and energy improvements. Hameed et al. explore the 

sources of performance and energy overheads in general­

purpose processors by quantifying the overheads of a H.264 

encoder running on a general-purpose system[ lO]. They iden­

tify that fully specialized hardware can be 500x more en­

ergy efficient than general-purpose processors, and in order to 

achieve ASIC-like energy efficiency designers need to apply 

customized storage and functional units tuned to the specific 

application. Triggered by the potential efficiency benefits, sev­

eral research efforts have investigated the approach of spe­

cialized architecture design. For example, Venkatesh et al. 

proposed accelerating irregular hot functions using specialized 

C-Cores[17]. Another example is DySER[9], which integrates 

specialized functional units into a general-purpose processor's 

pipeline. Unlike other studies, our characterization tool is not 

intended to build specialized cores, but to provide an ISA­

independent workload characterization that designers can use 

to more easily design accelerators. This is analogous to the 

role that machine-dependent workload characterization plays 

in helping designers develop microarchitectural extensions for 

general-purpose machines. 

VI. CONCLUSION 

This paper presents a new workload characterization ap­

proach targeting specialized architectures. Existing character­

ization approaches do not differentiate intrinsic workload char­

acteristics from microarchitecture- and ISA-influenced program 

behavior. Specialized architectures can be radically different 

from traditional designs, including fixed function accelerators 

without ISAs. These designs have very different compute and 

memory behavior, and conventional workload characterization 

includes artifacts that can mislead designers of specialized ar­

chitectures. In our study, we use the ISA-independent property 
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Fig. 12: Branch entropy per workload. Lower values imply better 

branch predictability. 

of a compiler IR to profile ISA-independent characteristics 

of workloads. We compare both ISA-dependent and ISA­

independent approaches for several analyses that are likely 

to be highly relevant for developing specialized architectures, 

including computation, memory behavior, and control flow. We 

discover that ISA-dependent characterization is misleading in 

identifying the intrinsic characteristics of the workloads. In 

particular, we discover that stack overhead due to the ISA can 

significantly bias the memory behavior which is crucial for 

workload characterization. We also perform workload charac­

terization using the ISA-independent characteristics and show 

that this characterization can be helpful to guide accelera­

tor designers towards opportunity for hardware specialization. 

Overall, ISA-independent optimization can identify the intrinsic 

characteristics of workloads and discover opportunities for 

hardware acceleration. 
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