
ISA-Independent Workload Characterization and its
Implications for Specialized Architectures

Yakun Sophia Shao and David Brooks
Harvard University

{shao,dbrooks}@eecs.harvard.edu

Abstract-Specialized architectures will become increasingly

important as the computing industry demands more energy­
efficient designs. The application-centric design style for these
architectures is heavily dependent on workload characterization
of intrinsic program characteristics, but at the same time these
architectures are likely to be decoupled from legacy ISAs. In this
work, we perform ISA-independent workload characterization for
a variety of important intrinsic program characteristics relating to
computation, memory, and control flow. The analysis is performed
using a JIT compiler that emits ISA-independent instructions. We
compare this analysis with an x86 trace and find that several of
the analyses are highly sensitive to the ISA. We conclude that
designers of specialized architectures must adopt ISA-independent
workload characterization approaches.

I. INTRODUCTION

Specialized architectures are emerging as the major driv­

ing force for energy efficient design. Specialization seeks to

harness characteristics of specific workloads, or categories of

workloads, to enable more efficient computing hardware. Archi­

tectural specialization can take many forms. At one end of the

spectrum are fully programmable, general purpose processing

elements evolving from today's flexible, but inefficient, cores.

At the other end of the spectrum are fixed-function accelerators

providing large efficiency gains for very specific tasks such as

video encoding, speech processing, or graph analysis. GPUs

and other progranunable data parallel architectures fit between

these two extremes. Many of these architectural approaches are

not tied to a specific legacy instruction set architecture (IS A),

and in some such designs ISAs are eschewed completely.

Specialized architectures are intrinsically tailored to ap­

plications, and workload characterization will play a large

role in developing these architectures. Tuning an architecture

towards a workload requirement demands a comprehensive

understanding of the intrinsic characteristics of the workload.

Workload characterization for general-purpose architectures is

commonly done by profiling benchmarks on current generation

microprocessors using hardware performance counters. Typical

program characteristics are machine instruction mix, IPC, cache

miss rates, and branch misprediction rates. This approach is

limited because machine-dependent features such as cache

size and pipeline depth will strongly impact the workload

characterization. To overcome the problem, microarchitecture­

independent workload characterization can be employed by

profiling instruction traces to collect information such as work­

ing set sizes, register traffic, memory locality, and branch

predictability [11]. Although this approach removes the effects

of microarchitecture-dependent features, some of these analyses

depend on the particular ISA with which the trace is repre­

sented. Each ISA has different characteristics and constraints

that impact the representation of the workload. As architectural

specialization grows in importance, [SA-independent workload

characterization will become essential for understanding intrin­

sic workload behavior, which will in turn allow designers to

consider a wide range of alternative architectures.

To fully expose the microarchitecture- and ISA-independent

workload characteristics for specialized architectures, we pro­

pose to analyze benchmarks using ISA-independent charac­

teristics that capture inherent program behavior. In order to

perform this analysis, we leverage the existing IS A-independent

nature of a compiler intermediate representation (lR). We use

a JIT compiler to trace workloads using this ISA-independent

program representation and compare program characterization

within the broad categories of program compute, memory

activity, and control flow. In particular, we study program char­

acteristics that are highly relevant to the design of specialized

architectures. Within each category, we analyze and discuss the

differences between ISA-independent and ISA-specific analy­

sis. Finally, we demonstrate cases where the ISA-independent

characterization can help designers categorize workloads into

different specialization approaches. In particular, this paper

makes the following contributions:

I)We compare ISA-dependent characterization with ISA­

independent characterization. To the best of our knowledge,

this is the first such ISA-independent workload charac­

terization study. We show that ISA-dependent results can

be misleading. In particular, the memory behavior of the

workloads, which is critical for many forms of architectural

specialization, will be biased significantly due to the register

spilling effect intrinsic to conventional ISAs.

2)We present a taxonomy to characterize the potential for archi­

tectural specialization using ISA-independent characteristics.

We categorize a workload's ISA-independent characteristics

into program compute, memory activity, and control flow,

each of which corresponds to an important component of

specialized architectures.

3)We present workload characterization of SPEC CPU bench­

marks using IS A-independent characteristics, and we demon­

strate that a truly intrinsic workload characterization allows

accelerator designers to quickly identify opportunities for

specialization.

978-1-4673-5779-1/13/$31.00 ©2013 IEEE 245

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

100%

80%
Vl c: 0 "' u
�
E 60%
:>< u
£l
'0
OJ 40% '"
2 c: OJ
� OJ Q.

20%

Fig. 1: The percentage of stack instructions of total dyanmic

instructions for 32-bit and 64-bit x86 binaries.

II. MOTIVATION

Specialized architectures are unburdened by the requirements

of legacy ISAs, and a significant part of the efficiency gains

from such architectures can be attributed to hardware special­

ization of the datapath, memory, and program control. ISA­

independent analysis is attractive for such architectures because

it avoids artificial constraints imposed by details of a specific

ISA. Compilers for conventional IS As must generate binaries

that meet the specification of the instruction set semantics,

and this process can alter the fundamental program behavior

because of these constraints. This section discusses the three

major sources of ISA constraints that we explore: overheads of

stack operations due to register spilling, ISA-specific complex

operators, and calling conventions.

A. Stack Overhead

Instruction set architectures support a finite number of regis­

ters which must necessarily be equal to or less than the number

of physical registers in a machine. When writing code in a

high-level language, most programmers are unaware of these

constraints and use as many variables as the program requires.

In order to fit the large number of variables into the ISA-defined

register set, compilers must perform register allocation to map

program variables to registers. When there are more variables

that need to be allocated than available ISA-defined registers,

the compiler will spill additional variables onto the stack, which

is a specially reserved portion of the main memory. Load/store

operations are inserted to manage the allocation of the machine

registers and the stack. These stack memory operations can

be expensive from a run-time performance point of view. For

characterizing workloads for specialized architectures that do

not have a fixed or known ISA, the stack accesses insert

possibly unnecessary load/store operations into the instruction

trace and incur additional memory utilization. These effects are

not true program characteristics; they are artificial constraints

imposed by the ISA.

We demonstrate the effect of stack operation by comparing

32-bit and 64-bit x86 binaries generated by LLVM's Clang

compiler for a set of SPEC CPU benchmarks. One of the major

differences between the 32- and 64-bit x86 ISAs is that 64-bit

x86 has eight more general-purpose registers. Figure 1 plots

the percentage of dynamic instructions that access the stack for

32-bit and 64-bit versions of SPEC benchmarks. We observe

that for all of the benchmarks, the 32-bit binary has a much

higher percentage of stack instructions than the 64-bit binary.

This is because the additional general-purpose registers allow

more variables to stay in registers, so less spilling to memory

is required.

The stack overhead also applies to RISC ISAs. Lee et al.

characterized stack access frequency using the Alpha ISA to

propose a mechanism to separate stack from heap accesses[12].

For the same SPEC2000 workloads, they find a similar percent­

age of stack operation (24%) compared to our observation in

32-bit x86.

B. Complex Operations

We identify two classes of instructions as complex opera­

tions: vector instructions and compute or branch instructions

with memory operands. Both kinds of operations can be split

into multiple simpler primitives. CISC ISAs like x86 contain

complex operations including vector instructions like SSE and

instructions that support memory operands. We note that com­

plex operations can exist even in RISC ISAs. For example,

POWER and ARM include complex operations such as predi­

cate instructions, string instructions, and vector extensions.

Most existing IS As have already encoded some degree of

specialization towards these complex operations by grouping

multiple simple operations into single instructions. However,

designers of specialized architectures may consider specialized

functional units that combine sequences of operations into a

single block. From a program analysis point of view, it is easier

and cleaner to start from simple primitives and explore aggre­

gation possibilities rather than to start from a more complex

version of code resulting from another category of optimization.

We quantify the amount of complex operations in x86 in

Figure 2. In this categorization, we treat an instruction as a

complex operation if it is either a vector instruction (SSE)

or a compute or branch instruction with a memory operand.

The top three categories in Figure 2 are complex operations:

vector operations, vector operations with memory accesses, and

compute or branch instructions with memory operands. The

remaining category includes all single operation instructions.

We see that on average 27% of the total instructions executed

are complex operations.

C. Calling Convention

The ISA calling convention describes how subroutines re­

ceive parameters from callers and how they return results. Any

machine-dependent ISA needs to have its own specifications

to pass arguments between subroutines. For example, x86,

246

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

400

350

V; 300
c:
�
iii 250-
�
'e i5 200
u
c: 0
'5 150 -
2
1;;
E 100 -

50'"'"'

-

_ VEC_MultiOp
c:::J VEC_MEM
c::'J MEM_MultiOp

c:::J SingleOp ... j ...
........

Fig. 2: Instruction breakdown of complex (top three bars) and

single (bottom bar) operation instructions.

due to its limited number of registers, pushes arguments onto

the stack before a subroutine is called, resulting in additional

stack operations. Other ISAs also require various housekeeping

operations for subroutines, and these are also artifacts of the

ISA choice, not intrinsic to the behavior of the workload.

III. METHODOLOGY AND BACKGROUND

To evaluate the importance of performing workload charac­

terization by using machine-independent code representation,

we perform both ISA-independent and ISA-dependent analysis.

After describing how these two analyses are performed, we

provide details about how we sample benchmark executions

and how we generate the code to be analyzed.

A. ISA-Independent Study

An ISA-independent representation of code is critical for the

development of flexible compiler infrastructures, and modern

compilers use ISA-independent intermediate representations

to bridge high level source languages (e.g., C) to specific

IS As (e.g., Intel x86). Since our requirements for a code

representation are similar to those of compilers, we leverage

the intermediate representation used in compilers to perform

our analysis.

Our analysis uses a specific intermediate representation (IR)

available in the ILDJIT compiler [5]. Specifically, workload

execution is represented by a trace of semantically equivalent

ILDJIT IR instructions. This trace is generated by executing

the IR code with a special-purpose interpreter that emits IR

instructions as it executes them.

Compared to other possible intermediate representations

available in mainstream compilers, like GCC and LLVM, the

ILDJIT IR has the unique feature of being closer to source

languages than to machine code. As we describe later in

this section, this feature allows us to perform an analysis

that is machine-, ISA-, and system-Library-independent, so that

workload-specific characteristics are exposed. Before describ­

ing the ILDJIT IR in detail, we motivate its use for our specific

analysis by describing the unwanted consequences of relying on

more standard intermediate representations used in mainstream

compilers.

a) Compiler intermediate representation: Intermediate

representations commonly used by compilers are either tree­

based or linear. Tree-based representations like GCe's GIM­

PLE [2] are not designed to be executed to generate a run-time

trace, making the implementation of an interpreter for such

formats more challenging than for other representations. Im­

plementing interpreters for linear representations, like LLVM's

bitcode [3], is more straightforward, since the execution order

to follow is given by the linear order imposed by the language

itself.

Intermediate representations are a bridge from source lan­

guages to ISAs, but the ones used in mainstream compilers

are closer to the latter. The rationale is that compilers are de­

signed to maximize the number of code optimization algorithms

that rely on the intermediate representation (both machine­

independent and machine-dependent), and performing machine­

specific optimization is easier if the representation is closer to

the machine code.

The price paid for having a very low-level intermediate

representation is that code analysis performed at this level

(either at compile or run time) can be influenced by artifacts of

either a specific ISA family or underlying system library imple­

mentations. For example, LLVM's bitcode language specifies

the calling convention to use, and this code is included in the

program representation. Moreover, these representations often

do not identify source-language operations such as memory

allocation, leading to platform-specific execution traces that can

include artificial program behavior that is not intrinsic to the

workload. For example, in ILDJIT, the allocation of an object

is accomplished by a high level memory allocation operation.

In contrast, compilers with low-level IRs often allocate objects

using a generic call to the function malloe which is provided

by the standard C library. In the latter case, a trace of the

generated intermediate representation would include the code

of the malloc function, and this can lead to artificial program

dependencies between malloc invocations. On many common

implementations of the malloc function, e.g. many Linux-based

systems, the return address is computed based on a value of a

local variable of that function. This local variable keeps the

address of a free memory location in internal memory of the

C library; just before returning the allocated address to the

caller, this local variable is updated to point to another free

memory location. Hence, this implementation creates a read­

after-write chain of dependencies among different invocations

of malloc. Notice that this dependence chain is not intrinsic

to the considered workload; it depends on the specific imple­

mentation of the C library in use in the current system. On

the other hand, by providing a memory allocation operation in

the intermediate representation, platform-specific details about

how memory is allocated are hidden, allowing analysis to be

247

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

system-independent.

b) ILDJIT IR: ILDJIT is a modular compilation frame­

work that includes both static and dynamic compilers. As

mentioned earlier, it includes a high-level intermediate rep­

resentation (IR). ILDJIT performs a large set of classical,

machine-independent optimizations at the IR level including

copy propagation, dead-code elimination, loop-invariant code

motion, etc. When the IR code is fully optimized, it is translated

to LLVM's bitcode language and LLVM's back ends are used

to optimize the code using machine-dependent optimizations

and to generate semantically equivalent machine code.

We customized ILDJIT to implement an ad-hoc interpreter

of its intermediate representation to emit IR instructions as

they are executed. The IR instructions interpreted are the ones

used for translation to the bitcode language. By attaching our

interpreter right before the translation to bitcode, we ensure

that the IR is fully optimized; however, machine-dependent

information is still not used for these optimizations, allowing

our analysis to study workload-specific characteristics.

The ILDJIT IR is a linear machine- and ISA-independent

representation that includes common operations of high-level

programming languages like memory allocation (e.g., new, free,

newarray) and exception handling (e.g., throw, catch). It is a

RISC-like language in which memory accesses are performed

through loads and stores. Each instruction has a clear and

simple meaning where only scalar variables, memory locations,

and the program counter are affected by their execution. The

language allows an unbounded number of typed variables (vir­

tual registers), making analysis independent of the number of

physical registers. Moreover, parameters of method invocations

are always passed by using variables, as in the input source

language we use (C), making analysis independent of specific

calling conventions. Finally, the data types described in the

source language are preserved in the IR language, making this

representation closer to the input language compared to other

compiler intermediate representations.

IR instructions that perform operations among variables

require homogeneity among their types: an add operation

between variables x and y requires the same type for both

x and y (e.g., 32-bit integer). This characteristic leads to

instructions that convert values between types. Notice that these

conversions are required by the workload as the semantics of

operations in the source language specify them. However, some

of these conversions are unnecessary if a CISC-like ISA is used

instead of the ILDJIT IR. Finally, opcodes (e.g., add, mul)

are orthogonal with data types (e.g., integer, floating point).

This opcode polymorphism constrains the number of different

instructions in the language to 80, allowing an easy parsing of

the executed trace.

B. ISA-Dependent Study

We perform our ISA-dependent analysis using the x86 in­

struction set. The x86 ISA is cOlmnonly used in architecture

studies, and a large number of program analysis tools are

available for workload characterization. For analysis of new

x86-based microarchitectures, architects must understand the

ISA-specific effects of the architecture since they can have

a significant impact on pipeline and memory system design.

When considering new heterogeneous architectures with both

x86 and specialized cores, it would be natural to use existing

workload characterization approaches. However, when perform­

ing workload characterization of specialized architectures, x86

provides a particularly poor starting point, because of the

overheads discussed in Section II. In this study, we compare x86

instruction trace with ILDJIT IR trace. To generate the trace

of x86 instructions executed by the workload, we use Pin, a

dynamic binary instrumentation tool developed by Intel[13].

C. Sampling

Because of storage and processing time constraints, perform­

ing some of the analysis presented in this paper on the full

execution trace is impractical. Therefore, we sample the exe­

cution with SimPoint[16]. We configure SimPoint to generate

10 phases, each of which contains 10 million instructions. Only

instructions that belong to the identified phases are emitted and

then analyzed.

In order to perform a fair comparison between x86 and IR

traces, we sample the execution with the IR trace by configuring

SimPoint to use IR instructions rather than the x86 ones.

Then we instrument the code to identify the x86 instructions

semantically equivalent to the IR code for the identified phases.

In this way, we ensure that the same code region is considered

for both the IR and x86 analysis.

D. Benchmark Suite

We use C benchmarks from SPEC CPU2000 benchmark

suite. These benchmarks are translated to CIL bytecode by

the compiler GCC4CLI [1] (a branch of GCC), and then

they are compiled to IR by ILDJIT. Finally, ILDJIT generates

the machine code by relying on LLVM's x86 back end as

previously described. ILDJIT currently only supports the 32-

bit LLVM back end and all of the results in the paper are for

32-bit operations.

I V. WORKLOAD CHARACTERISTICS ANALYSIS

In this section, we compare x86 and ISA-independent IR­

based program analysis. We compare the two approaches using

three main categories: Compute, Control, Memory. Table 1

sUlmnarizes the metrics that we compare in this section. The

choice of metrics is intended to highlight opportunities for

hardware specialization. Compute, control and memory are the

most important metrics to represent workload characteristics

and help designers gauge the complexity of specialization.

A. Compute

Specialized hardware often exploits custom functional units

that combine multiple operations with predictable control flow

in order to execute code more efficiently. Example of this

approach is Conservation Cores [17], which identifies the

hot functions in a program's execution and designs hardware

accelerators for those functions. In order to uncover the op­

portunity to find sequences of operations that are amenable to

248

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

Category I Analysis I Notes

Unique Opcodes required to
Compute Opcode cover 90% of dynamic

instructions

Total Memory Total number of unique
Footprint memory addresses accessed

Memory 90% Memory
Number of unique memory

Footprint
addresses that cover 90% of
memory accesses

Global Memory Measure of the randomness of
Address Entropy memory addresses

Local Memory Measure of the spatial locality
Address Entropy of memory addresses

Unique Branch Total number of unique

Control Instructions branch i nstructi ons

Measure of the randomness of
Branch Entropy branch behavior, representing

branch predictability

Table 1: Metrics used for workload characterization.

similar specialization, we need to analyze executed instruction

sequences and detect various patterns. For such analysis, the

way the operations are represented in the instruction trace will

have a significant impact on whether certain patterns can be

found or not and, subsequently, whether the workload is worth

the effort of custom hardware design. In this section, we analyze

the instruction breakdown and the most COlmnon opcodes found

in both x86 and IR. We observe that x86 incurs more overhead

for the basic computation performed by the application.

1) Instruction Breakdown: We start the analysis by catego­

rizing the executed instructions from the IR and x86 code. We

split instructions into the following categories: Stack, Memory,

Move (data movement and conversion between registers), Un­

conditional Branch, Conditional Branch and Compute. Figure 3

shows this breakdown. For each benchmark, the left most bar

represents the x86 binary, and the middle bar represents IR.

Furthermore, during our implementation, we found that there

is also instruction overhead associated with IR characteristics

that are not intrinsic to the workloads. One source of such ineffi­

ciency is the number of unconditional branch instructions. The

ILDJIT compiler does not remove these instructions because

the compiler back end performs unconditional branch removal

in a very efficient manner. Another source of overhead is data

movement and conversion between registers. Such instructions

appear in both IR and x86 and are used to support different

data types and simplify optimizations. The right most bar in

Figure 3 is what we call Simplified-IR - the IR trace without

those two classes of instruction. In our following discussion,

"IR trace" will refer to this simplified IR.

Consistent with the results from LLVM's 32-bit Clang com­

piler in Figure 1, we see that the number of stack-referencing

instructions can be significant depending on the application.

This is represented by the top section of the left most bar

for every benchmark. For example, almost half of the x86

instructions for 255.vortex use the stack, while the effect is

Vl c
�

c:J Stack
_ Memory c:J Cond_Branch

. _ · Millie · · · · · · · · c:J ·
C

Ciiiipiite · · ·

� •

:§.
� C ::J o U
c o .,
u

2
1;;
E

Fig. 3: The instruction breakdown for x86, IR and Simplified­

IR (S-IR).

less obvious for benchmarks like 179.art. More importantly,

the large number of stack accesses is caused by constraints

of the x86 ISA (a small register set) and is not part of

the intrinsic program behavior. This is evident from the IR

bars for the stack-heavy benchmarks - moving from x86 to

the infinite-register IR significantly decreases the number of

accesses to the stack. While stack effects can increase the

number of executed x86 instructions, CISC x86 instructions can

combine multiple primitive operations together. This results in

a more compact execution. For example, for benchmarks like

164.gzip and 179.art there are more instructions in the IR trace

compared to the x86 one. The presence of x86-specific effects

that both increase and decrease executed instructions makes it

even harder to extract ISA-dependent overhead and expose the

workload's intrinsic behaviors, further strengthening the case

for analysis on the IR level.

2) Opcode Diversity: Our next experiment examines the

diversity of the opcodes in the x86 and IR traces. Opcode

diversity is relevant since it is related to the complexity of

customized functional units in specialized hardware. Fewer and

simpler opcodes will simplify the design of such hardware

because the functional units will be more modular and reusable.

This allows sharing such functional units across various work­

loads.

In order to compare x86 and IR analysis, we profile the

total number of opcodes and the number of times each single

opcode occurs in the program execution. We do not differentiate

opcodes based on addressing modes, which reduces the number

of required x86 opcodes. Figure 4 plots the number of unique

opcodes and the percentage of dynamic instructions those

opcodes cover for the benchmark 179.art. The dotted line on

the plot shows the cumulative distribution of opcodes needed

to cover the dynamic execution of the program.

249

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

100%

90%
VI c: 0

:;:;
u

5
VI

E:
u

'E '" c: >-Cl
'0
QI Ol
2 c: QI
i: 20% QI 0..

0%0

11 MOV
... CMP. ..

20

ADD
MOV5D_XMM
INC
JL
ADD5D
MUL5D
JNZ

...... JMP. ..
JNL
LEA

40 60 80 100
Num of Unique Opcodes

(a) x86

120 140

90%r-----����· =---------------------------�
• -5 load relative VI c: :8 80%·

u

5
VI

E:
u 60%
'E '" c: >­Cl

f . .. add.� •
•

o
,

mul
branch if

• less than
storeJelative •

e , , ,
,

'0 400/0 ,'
QI Ol
2 c: QI
i: 20%­
�

o

.....

0%0�------�5------�1�0�----�1�5�----�2�0�----�25
Num of Unique Opcodes

(b) IR

Fig. 4: Cumulative distribution of the number of unique opcodes of 179.art. The intersecting lines show the number of unique

opcodes that cover 90% of dynamic instructions.

To meaningfully compare x86 and IR, we use a horizontal

line to highlight the number of unique opcodes required to

cover 90% of the dynamic instrucitons in Figures 4a and 4b.

This metric is meaningful for accelerator studies since it allows

comparison of the number of functional unit types needed

for different workloads. The horizontal line intersects with the

cumulative distribution function to show the required number of

opcodes. The x86 results demonstrate that 90% of the execution

can be covered by 11 unique opcodes, while the same analysis

with IR requires only 5 opcodes. The right portion of the plots

shows the top opcodes used for both instruction sets. For x86,

two MOV instructions, MOV and MOVSD_XMM, and four

different conditional jump instructions are required. Compared

with x86, the top opcodes from IR analysis are much clearer

- the 5 opcodes are all simple primitives, resulting in a much

simpler representation of the actions of the program.

We extend this comparison to all available benchmarks in

the suite and show the result in Figure 5. Not surprisingly, for

all the benchmarks the x86 trace needs more unique opcodes

than the IR trace. Furthermore, the right most bar in Figure 5

shows the number of unique opcodes required to cover all

benchmarks we analyze, computed as a superset of individual

benchmark needs. In order to cover all the benchmarks in

x86, 40 unique instruction opcodes are required; but the IR­

based analysis uncovers only 12 fundamental primitives. Thus,

extracting workload pieces that are amenable to hardware

specialization appears significantly easier on the IR level of

abstraction.

3) Static Instructions: The diversity of opcodes represents

the different types of fundamental computing blocks that cus­

tom hardware might require. Another important metric is the

number of static instructions required to cover the dynamic

execution. In a custom design, different sequences of static

instructions will lead to more or less complex data flow. Similar

to the metric we use for opcode analysis, we compare the

number of unique static instructions required to cover 90% of

the dynamic instructions. As shown in Figure 6, benchmarks

like 186.crafty and 255.vortex with significant stack overhead

require more unique static instructions. The x86 characteriza­

tion hides the truly important instructions, instead highlighting

the stack overhead operations. This potentially misleads the

identification of hot computation.

B. Memory

Memory behavior is crucial for workload performance. In

the case of hardware specialization, the memory system must

be tuned to the workload characteristics in order to realize

significant gains in efficiency. In this section, we compare two

memory characterization metrics, memory footprint size and

memory entropy. We once again discover that ISA-dependent

analysis can be significantly misleading and obscure the work­

loads' intrinsic behavior.

/) Memory Footprint: The first metric we consider is the

size of the data memory that a program uses, including both

stack and heap memory. We look into two types of memory

footprint. The first one is the full memory footprint - the total

size of data memory the program has accessed. It quantifies

the overall memory usage. The second metric identifies the

"important" memory footprint, which we define as the number

of unique memory addresses that covers 90% of dynamic data

memory accesses. This metric shows the most frequently used

addresses that need to be kept close to the computation.

Figure 7 shows the total memory footprint analysis. The Y­

axis in this figure is the number of unique memory addresses

generated. The x86 and IR memory footprints are nearly the

same, because total working set is intrinsic to the workloads

and therefore independent of the program representation.

250

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

45�--r-�--r-�--r-��r-��r-��---ro

! 40 [��:61
2
Vi 35
E
u
·E 30 '" c: >.
o 25
'0
� 20 '"
'" c: .� 15

o � 10 .. "0
8
a. 5
o

�\

Fig. 5: Number of unique opcodes to cover 90% of dynamic

instructions. "All" represents the global superset.

However, the important memory footprint, shown in Figure 8,

has markedly different characteristics between x86 and IR. In

most cases, there are fewer unique memory addresses needed

for x86 compared to IR: although the total number of unique

memory addresses is similar between x86 and IR, the memory

accesses of x86 are dominated by a small number of addresses.

The reason for this once again lies in frequent accesses to the

stack. While the memory space of stack addresses is usually

small, these addresses are accessed very frequently. When iden­

tifying important memory addresses, the few stack addresses

that are frequently accessed will stand out and dominate the

memory behavior. Thus, the important memory addresses found

will be an artifact of the ISA instead of the program behavior.

2) Memory Address Entropy: We introduce the metric of

memory address entropy in order to quantify how easy it

is to keep memory data close to the computation. Intuitively,

memory address entropy quantifies the information content, or

the lack of predictability, in memory accesses. Thus, it is a

metric opposite of memory locality that is often exploited by

custom hardware - locality measures the amount of structure in

memory addresses, while entropy measures its lack. We show

that ISA-Ievel analysis exposes a lower amount of entropy,

leading to false assumptions of memory access structure.

a) Entropy: In information theory, entropy [15] is used to

measure the randomness of a variable, which is calculated as

Equation 1

N

Entropy = - LP(Xi) * log2P(xi) i=1 (1)

where P(Xi) is the probability of Xi, N is the total number

of samples of the random variable x. The result, Entropy,
is a measure of predictability of the next outcome of x. For

example, assume the pattern of variable X is very regular -

always l. In this case, p(l) = 1 and log2p(1) = log21 = 0, so

Entropy = 0, which means that it is very easy to predict x.

'" c:
B 3500

2
� 3000

u
� 2500
VI
..
5- 2000
·c =>
'0 1500
.. � 1000
z

jc:::J X86! _ IR

Fig. 6: Number of unique static instructions to cover 90% of

dynamic instructions.

One the other extreme, if there are N possible outcomes of X
occurring equally often, P(Xi) = tv. According to Equation 1

N

Entropy = - LP(Xi) * lOg2P(Xi) i=1 1 1
= -N * - * log2(-) N N
= lOg2N

which is very high for large N.

(2)

Yen, et aI., describes the idea of using entropy to repre­

sent the randomness of instruction addresses[18]. According

to Equation 1, in the case of memory entropy, variable x
represents the memory addresses that appear in the program

execution. The probability P(Xi) is the frequency of a spe­

cific memory address Xi. After profiling the unique memory

addresses accessed in the workloads and the number of times

each address is referenced, we can compute the memory address

entropy of the workloads. When the memory entropy is high,

the memory access stream is more random and less amenable to

architecture techniques that require locality. Conversely, if the

entropy is low, memory accesses are very regular and easier to

predict.

b) Global Memory Address Entropy: Global memory en­

tropy describes the randomness of the entire data address stream

using all address bits (32 in our case). Figure 9 shows the

calculated global memory address entropy for both x86 and

IR. For each benchmark, the leftmost bar is the global entropy

of x86 memory addresses. The rightmost bar is the case for

IR memory addresses. We can see that the entropy of x86 is

generally much lower than for IR. In order to find the reason for

the difference, we compute the x86 memory address entropy

without the stack addresses, shown in the middle bar. As we can

see, after removing the stack addresses, the x86 address entropy

is comparable with the IR memory address entropy, which

represents the intrinsic address randomness of the workloads.

251

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

5

Vi c:
� 4

E

-

1 .

• I

1

Il r. r--.
)I.e I � I. , I ').

ICJ x861
_ IR

I ······

,.-,. r. I I i- .;J.

'" c:

2.sr-r---='---r--�---'----'--�---r--�-�---'----' ICJ X86 1
_ IR

g 2.0 .

E

O.O'9""--'-I"''--::''=r--=!''"--9---,''IL-'-I'''''---,------'-.,-.-r---'=1'1L...J

Fig. 7: Number of unique memory addresses to cover 100% of Fig. 8: Number of unique memory addresses to cover 90% of

dynamic memory accesses. dynamic memory accesses.

18

16

14

� g 12
c: w
� 10
I!! "
� 8
�
o � 6
:;:

4

o

..... •

..... .

..... •

)I.e �

CJ x86 ' I
.... CJ·x86w/ostack

_ IR

......

L

, '). i- .;J.

Fig. 9: Memory address entropy of x86, x86 w/o stack, IR

traces. Lower values indicate more regularity in the access

stream.

From this we can see, the ISA overhead has a big impact on

the memory address behavior.

c) Local Memory Address Entropy: Local memory en­

tropy computes the address entropy using a subset of the

entire address bits. Local entropy can help us detect spatial

locality in the workloads. For example, we can skip the lower­

order bits of the addresses, and compute entropy only with

the high-order address bits, as seen in Figure lOa. If the local

address entropy with, for example, 28 bits shrinks significantly

compared to global entropy, memory accesses are less random,

and significant spatial locality is present. After we ignore the

lower order bits, such spatial locality is expressed by grouping

those addresses that are close together.

Figure 10 shows two examples of the local address entropy

when we sweep the number of low order bits ignored from

o to 10. The two benchmarks, 179.art and 255.vortex, are

representative of the patterns we have seen among the rest of

the benchmark suite. For both cases, the local entropy of x86

drops faster than for IR. This is very obvious for 255.vortex .

This is due to the fact that stack addresses are usually in close

proximity, which means they have usually have good locality.

Ignoring the lower-order bits results in steeper drops in entropy

for x86. This also shows ISA-dependent analysis will bias

the workload characteristics towards better locality due to the

impact of stack operations.

C. Control

Control flow complexity is a very important metric for

workload characterization. From our experience in general

purpose processor design, we know that speculative execution

is necessary to exploit parallelism. In a heterogeneous archi­

tecture, there maybe a variety of cores or computing engines

with different degrees of support for speculation. In order to

choose the appropriate ones to run the workloads, the control

complexity of the workloads needs to be fully understood and

not dependent on a specific architecture. In this section, we

compare the control complexity analysis of x86 and IR and

show that both analyses are consistent with each other, showing

that ISA choice has a minimal effect on a workload's control

flow.

1) Branch Instruction Count: Our first-order control flow

analysis counts the number of unique conditional branch in­

structions to cover 90% of the branches. This is similar to the

unique opcode analysis but focused on branch instructions. This

is important for hardware specialization because it measures

the number of control flow decisions that must be handled in

a design.

As Figure 11 shows, the number of unique branch instruc­

tions to cover 90% dynamic branches is consistent between

252

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

Address Stream A Address Stream B
(less spatial locality) (more spatial locality)

0000 0000

0100 0001

1000 0010

1100 0011

Local 2� ••. t
Entropy � � � �

1 , : ,
: : : :

o 1 2 3 4
of Bits Skipped

(a) Example of Local Entropy

10

4 6
of Bits Skipped

(b) 179.art

·.IR
00 x86

10 ��--�----�4----�6----�--�10
of Bits Skipped

(c) 255.vortex
Fig. lO: Local memory entropy as a function of low-order bits omitted in calculation. A faster dropping curve indicates more

spatial locality in the address stream.

x86 and IR. Both sets of bars track each other very well. This

implies that ISA choice does not have a significant impact

on the number of branch instructions generated, which mostly

depends on the way programs are written.

2) Branch History Entropy: Another important metric is

control flow predictability, which is intrinsic to the workload.

Generally speaking, if the branch taken patterns are more

regular and less random, branches are easier to predict. In

this sense, the degree of the regularity of the branch behavior

will indicate the predictability of the control flow. Based on

this intuition, Yokota proposed the idea of Branch History

Entropy using Shannon's information entropy idea to represent

a program's predictability[19].

We use a string of bits to encode taken or not taken branch

outcomes. In this sense, the program as the producer of the

sequence can be viewed as an information source and we can

compute the entropy of the information source to represent the

regularity of branch behavior. In our implementation, we use a

sequence of n consecutive branch results as the random variable

and compute the entropy of the benchmarks. The results are

shown in Figure 12. We can see that the branch entropy

from x86 and IR also track each other very well. This shows

that both ISA-dependent analysis and ISA-independent analysis

fully expose the program's control behavior. This matches our

intuition that ISA does not affect control flow significantly.

D. Workload Characterization Using ISA-Independent Charac­

teristics

We compare the eleven SPEC benchmarks with five IS A­

independent metrics from our analysis: the number of opcodes,

the value of branch entropy, the value of memory entropy, the

unique number of static instructions (I-MEM), and the unique

number of data addresses (D-MEM). In terms of specialized

architecture design, smaller values for each of these metrics

indicate more regularity in the benchmarks and better oppor­

tunity to exploit specialization. For each metric, we choose

the maximum value across all the benchmarks and for each

benchmark we plot the relative value with respect to this maxi­

mum value. We generate kiviat plots for all benchmarks, shown

in Figure l3, in which each axis represents one of the IS A­

independent characteristics. The plot in the lower, right corner

of the figure provides a legend for the individual axis. The kiviat

plots are ordered by the area of the resulting polygon. With

an equal weighting of the five characteristics, area provides a

rough approximation for overall benchmark regularity (smaller

area is more regular). We observe very different behavior across

the benchmark suite. For example, 255.vortex demonstrates

regularity across all the metrics, while 186.crafty has relatively

low regularity in most of the dimensions. These insights will

be helpful for specialized architecture designers to identify the

opportunity for acceleration.

V. RELATED WORK

A. Microarchitecture-Dependent Characterization

There has been a significant amount of prior work on

using performance counters to understand and optimize the

performance of workloads [8], [14], [4], [7]. These studies

use highly microarchitecture-dependent metrics like cycles per

instruction, cache miss rate, and branch misprediction rate.

These studies are helpful in finding performance bottlenecks

on various platfonns for different benchmarks. However, the

characteristics profiled are biased by the microarchitecture the

workloads are running and the target ISA.

B. Microarchitecture-Independent Characterization

Hoste and Eeckhout propose metrics of characterizing bench­

marks based on microarchitecture-independent characteristics

[11]. They instrument program binaries to profile characteristics

like instruction mix, ILP, working set size, and branch pre­

dictability. They demonstrate that the program characteristics

from performance counter style characterization can be mis­

leading. As an example of the utility of these metrics, Eeckhout,

et aI., demonstrate that microarchitecture-independent charac­

teristics can be used to determine benchmark similarity, with the

goal of sampling representative programs from the benchmarks

suite [6]. In both cases, Alpha ISA traces are used to analyze

microarchitecture-independent behavior.

253

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

ti 300 .
E
� 250
�

CD

� 200
'c ::J
� 150 .
OJ .c
E
� 100

�

Ie] x861
_ IR

.

Fig. 11: Number of unique branch instructions to cover 90% of

dynamic branches.

C. Specialized Architecture

Specialized architectures offer large potential for perfor­

mance and energy improvements. Hameed et al. explore the

sources of performance and energy overheads in general­

purpose processors by quantifying the overheads of a H.264

encoder running on a general-purpose system[lO]. They iden­

tify that fully specialized hardware can be 500x more en­

ergy efficient than general-purpose processors, and in order to

achieve ASIC-like energy efficiency designers need to apply

customized storage and functional units tuned to the specific

application. Triggered by the potential efficiency benefits, sev­

eral research efforts have investigated the approach of spe­

cialized architecture design. For example, Venkatesh et al.

proposed accelerating irregular hot functions using specialized

C-Cores[17]. Another example is DySER[9], which integrates

specialized functional units into a general-purpose processor's

pipeline. Unlike other studies, our characterization tool is not

intended to build specialized cores, but to provide an ISA­

independent workload characterization that designers can use

to more easily design accelerators. This is analogous to the

role that machine-dependent workload characterization plays

in helping designers develop microarchitectural extensions for

general-purpose machines.

VI. CONCLUSION

This paper presents a new workload characterization ap­

proach targeting specialized architectures. Existing character­

ization approaches do not differentiate intrinsic workload char­

acteristics from microarchitecture- and ISA-influenced program

behavior. Specialized architectures can be radically different

from traditional designs, including fixed function accelerators

without ISAs. These designs have very different compute and

memory behavior, and conventional workload characterization

includes artifacts that can mislead designers of specialized ar­

chitectures. In our study, we use the ISA-independent property

8

6
� 5
g c: w 4
.c: u c: '"
a; 3

o
,

').

H HHHH HI� �:61
.......

I

....

fl
i- . ;J. z,'i-e �� W z,<'- 0.'> (I' �1J -l� �<, �o. <z,\'Cl �z,� <:-e �\�

..,.1�· ..,.'O,f' ..,.'O'O�
..,.'O�. ..,.1":>

' ..,.1
,,:>:-1 ..,.'O""'\'O'O'C ').":>�.,, ').,,:>,,:>:-10 ').,,:>'0'9

Fig. 12: Branch entropy per workload. Lower values imply better

branch predictability.

of a compiler IR to profile ISA-independent characteristics

of workloads. We compare both ISA-dependent and ISA­

independent approaches for several analyses that are likely

to be highly relevant for developing specialized architectures,

including computation, memory behavior, and control flow. We

discover that ISA-dependent characterization is misleading in

identifying the intrinsic characteristics of the workloads. In

particular, we discover that stack overhead due to the ISA can

significantly bias the memory behavior which is crucial for

workload characterization. We also perform workload charac­

terization using the ISA-independent characteristics and show

that this characterization can be helpful to guide accelera­

tor designers towards opportunity for hardware specialization.

Overall, ISA-independent optimization can identify the intrinsic

characteristics of workloads and discover opportunities for

hardware acceleration.

ACKNOWLEDGMENTS

We thank Simone Campanoni, Glenn Holloway, Svilen

Kanev, Gu-Yeon Wei and the anonymous reviewers for their

useful feedback and insights related to this work. This work was

supported in part by C-FAR, one of six centers supported by the

STARnet phase of the Focus Center Research Program (FCRP),

a Semiconductor Research Corporation program sponsored by

MARCO and DARPA. This work was also partially supported

by the National Science Foundation (NSF) Expeditions in

Computing Award #: CCF-0926148. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of the National Science Foundation.

254

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

1 8 6 . c rafty 1 8 1 . mcf

1 7 S . v p r

1 8 8 . a m m p 1 7 9 . a rt

1 8 3 . eq u a ke

2 S 6 . bz i p 2

2 S S .vortex

1.0 B ra n c h
Entro py

Opcode

M e m o ry
E ntropy

D- M E M

l - M E M

Fig. 1 3: Comparison of five ISA-independent metrics across SPEC benchmarks, ordered by the area of the polygon. The lower

right kiviat plot provides the legend, and smaller values indicate more regularity in the metric.

REFERENCES

[1]GCC4CLI. http://gcc.gnu.org/projects/cli.html.
[2]GNU compiler collection (GCC) internals, GIMPLE documentation.

http://gcc.gnu.orglonlinedocs/gcc-4 .3 .0/gccintlindex.html.
[3]LLVM assembly language reference manual, bitcode documentation.

http://llvm.org/docs/LangRef.html.
[4]S. Bird, A. Phansalkar, L. K. John, A. Mercas, and R. Idukuru. Performance

characterization of SPEC CPU benchmarks on Intel's Core microarchitec­
ture based processor. In SPEC Benchmark Workshop, 2007 .

[S]S. Campanoni, G. Agosta, S. Crespi-Reghizzi, and A. D. Biagio. A highly
flexible, parallel virtual machine: Design and experience of lLDllT. Softw.

Pract. Exper. , 20 10 .
[6]L. Eeckhout, J. Sampson, and B . Calder. Exploiting program microar­

chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation. In International Symposium on Workload

Characterization, 2005 .
[7]L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Quantifying the

impact of input data sets on program behavior and its applications . Journal

of Instruction-Level Parallelism, 2003 .
[8]K. Ganesan, L. John, V. Salapura, and J. Sexton. A performance counter

based workload characterization on Blue Gene/P. In International Confer­

ence on Parallel Processing, 2008.
[9]V. Govindaraju, e.-H. Ho, and K. Sankaralingam. Dynamically specialized

datapaths for energy efficient computing. In International Symposium on
High Petformance Computer Architecture, 201 1 .

[l O]R. Hameed, W. Qadeer, M . Wachs, O . Azizi, A . Solomatnikov, B . e . Lee,
S. Richardson, e. Kozyrakis, and M. Horowitz. Understanding sources
of inefficiency in general-purpose chips. In International Symposium on
Computer Architecture, 20 10 .

[1 l]K. Hoste and L. Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics . In International Symposium

on Workload Characterization, 2006.
[1 2]H.-H. S. Lee, M. Smelyanskiy, e. J. Newburn, and G. S. Tyson. Stack value

file: custom microarchitecture for the stack. In International Symposium

on High Petformance Computer Architecture, 200 1 .

[1 3]e .-K. Luk, R . Cohn, R . Muth, H . Pati!, A . Klauser, G . Lowney, S . Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In ACM SIGPLAN International

Conference on Programming Language Design and Implementation, 2005.
[14]T. K. Prakash and L. Pengo Performance characterization of SPEC

CPU2006 benchmarks on Intel Core 2 Duo processor. In International

Conference on Parallel Processing, 2008.
[I S]e . Shannon. A mathematical theory of communication. Bell System

Technical Journal, 1 948.
[l 6]T. Sherwood, E. Perelman, G. Hamerly, and B . Calder. Automatically

characterizing large scale program behavior. In International Conference on
Architectural Support for Programming Languages and Operating Systems,
2002.

[17]G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo­
Martinez, S. Swanson, and M. B. Taylor. Conservation cores: reducing
the energy of mature computations . In International Conference on
Architectural Support for Programming Languages and Operating Systems,

2010.
[l 8]L. Yen, S. e. Draper, and M. D. Hill. Notary: Hardware techniques to

enhance signatures. In International Symposium on Microarchitecture,
2008.

[l 9]T. Yokota, K. Ootsu, and T. Baba. Introducing entropies for representing
program behavior and branch predictor performance. In Workshop on
Experimental Computer Science, 2007 .

255

Authorized licensed use limited to: Harvard Library. Downloaded on April 26,2022 at 17:45:24 UTC from IEEE Xplore. Restrictions apply.

