
Instruction-Driven Clock Scheduling with Glitch Mitigation
Gu-Yeon Wei, David Brooks, Ali Durlov Khan and Xiaoyao Liang

School of Engineering and Applied Sciences, Harvard University
33 Oxford St., Cambridge, MA 02138

{guyeon,dbrooks,adkhan,xliang}@eecs.harvard.edu

ABSTRACT
Instruction-driven clock scheduling is a mechanism that minimizes
clock power in deeply-pipelined datapaths. Analysis of realistic pro-
cessor workloads shows a preponderance of bubbles persist through
pipelines like the floating point unit. Clock scheduling ostensi-
bly adapts pipeline depth with respect to bubbles in the instruction
streamwithout performance loss. Unfortunately, shallower pipelines
(i.e. longer pipe stages) are prone to larger amounts of glitches prop-
agating through logic, increasing dynamic power. Experimentally
measured results from a 130nm FPU test chip with flexible clock-
ing capabilities show a super-linear increase in glitch-induced dy-
namic power for shallower pipelines. While higher glitch power can
severely diminish the power savings offered by clock scheduling,
judicious clocking of intermediate stages offers glitch mitigation to
recover power savings for worst-case scenarios. Detailed analysis
of clock scheduling applied to a FPU in a POWER4-like processor
running realistic workloads shows an average net power savings of
15% compared to an aggressively clock-gated design.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies

General Terms
Design

1. INTRODUCTION
Efficient energy utilization and management is critical in mod-

ern microprocessor designs, constrained by a maximum power bud-
get to keep cooling and power delivery costs in check. While the
pursuit of ever-higher clock frequencies has been tempered in re-
cent years with heavier reliance on parallelism for continued perfor-
mance gains, clocks still consume a sizeable fraction of the over-
all power budget in synchronous machines with deep pipelines [1].
Moreover, simple reliance on technology scaling to reduce power
and improve performance looks to offer diminishing returns in nano-
scale technologies. This motivates computer architects and circuit
designers to uncover inefficiencies in traditional synchronous de-
signs and squeeze out power savings wherever possible. To con-
tinue the power management effort, this paper investigates clock
scheduling, a clock-power reduction scheme for deeply-pipelined
datapaths, that ostensibly changes pipeline depth with respect to
cycle-level variability in the instruction stream and combats the rise
in glitch-induced dynamic power in the combinational logic to max-
imize overall power savings.
The high cost of clock power is well known and understood,

which has led to implementations of clock gating at various lev-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’08, August 11–13, 2008, Bangalore, India.
Copyright 2008 ACM 978-1-60558-109-5/08/08 ...$5.00.

els of granularity—from the block down to the stage level. Tradi-
tional clock gating is based on the recognition that utilization pat-
terns of functional units within a processor can vary widely with
respect to running workloads. Hence, gating the clock at the unit
level greatly reduces needless switching. Finer, stage-level clock
gating can further reduce power by accommodating fluctuations in
cycle-level activity patterns due to intermittent stalls resulting from
memory latencies, branch mispredictions, etc. The added complex-
ity of implementing fine-grained gating in the clock-distribution net-
work is more than justified by the power savings offered. In re-
cent years, researchers have proposed further extensions to stage-
level clock gating by leveraging the intermittent stalls or bubbles
flowing through deep datapath pipelines to avoid clocking of inter-
mediate latch stages [2], thereby aggregating multiple shorter pipe
stages into fewer longer stages, i.e. shallower pipeline depth. While
such an approach offers significant clock-power savings for long se-
quences of bubbles between valid data flowing through a pipeline,
the longer combinational logic blocks are much more susceptible
to glitch (i.e. spurious signal transitions) propagation that dimin-
ish overall power savings. Hence, the benefits of such transpar-
ent pipelining schemes must be evaluated in the context of realistic
workloads to assess the clock-power savings relative to increases in
glitch power.
This paper introduces instruction-driven clock scheduling applied

to deep pipelines like the floating point unit (FPU) in modern mi-
croprocessors to reduce clock power. For example, clocks con-
sume ∼60% of the power in IBM POWER4’s FPU [3]. While
conceptually similar to transparent pipelining in [2], we consider
clock scheduling for flip-flop (FF) based pipelines and propose the
circuit-level modifications to FF clocking that are required. In ad-
dition to glitch reductions that result from constraints imposed by
the modified FF clocking, we also propose a simple and yet effec-
tive glitch mitigation scheme that judiciously inserts clock edges to
block glitch propagation. We rely on experimentally measured re-
sults from a 130nm 6-stage FPU test chip to show that glitch power
grows with pipe stage depth, potentially compromising the power-
saving promises of clock scheduling. Through detailed analysis of
realistic workloads running on FPUs, we show that clock scheduling
offers net power savings and glitch mitigation can improve savings.
The contributions of this work are summarized as follows:
1. Detailed analysis of realistic workloads (e.g., SPECfp) veri-
fies the potential for clock-power savings in the FPU of mi-
croprocessors like IBM’s POWER4.

2. We propose clock scheduling, applied to flip-flop based de-
signs with modifications made to the clocks, and demonstrate
the extent of clock-power savings possible with respect to
bubbles in the instruction stream.

3. Experimentally measured results from a 130nm FPU test chip
demonstrate a super-linear relationship between increases in
dynamic power due to glitches and pipeline depth.

4. We evaluate clock scheduling and glitch mitigation in the con-
text of realistic workloads and demonstrate average net power
savings of 15% can be achieved compared to an aggressively
clock-gated design.

357

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:44:14 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6

FF0 FF1 FF2 FF3 FF4 FF5 FF6

FPU pipeline #2

(a) Block diagram

FF0 Stg1 FF1 Stg2 FF2 Stg3 FF3 Stg4 FF4 Stg5 FF5 Stg6 FF6
0

5

10

15

20

P
ow

er
 (%

 o
f t

ot
al

)

(b) Power breakdown

Figure 1: FPU pipeline characteristics assumed in the case study.

The rest of the paper is organized as follows. Before describing
and evaluating the potential benefits of clock scheduling, Section 2
presents a case study to show the preponderance of bubbles that
persist through the FPU in a processor like IBM’s POWER4 run-
ning SPECfp benchmarks. Driven by the high clock power seen and
the apparent potential for power savings, Section 3 presents the de-
tails of clock scheduling. However, we must temper our enthusiasm
by understanding the impact of glitches as described in Section 4.
Luckily, evaluation of clock scheduling with glitch mitigation in
Section 5 shows net power savings are still possible for FPUs. Sec-
tion 6 provides an overview of related work before closing the paper
with concluding thoughts in Section 7.

2. CASE STUDY: 6-STAGE FPU
Clock scheduling is proposed on the premise that typical work-

loads exhibit a high degree of cycle-level variations in activity due
to intermittent bubbles that persist in the instruction streams. In or-
der to verify this premise, this section presents a brief case study
of the characteristics of workloads found in the SPECfp benchmark
suite running on a FPU like that found in IBM’s POWER4.
We assume a FPU that consists of two parallel pipelines with each

consisting of 6 pipeline stages divided by FFs, as shown in Fig. 1(a).
Data enters the pipelines through FF0. Detailed power analysis of
the RTL shows that ∼60% of the total power consumed in the FPU
can be attributed to the clocks with logic switching factor of ∼16%
for random data. A fully-active power consumption breakdown of
the FPU per FF and logic stage is shown in Fig. 1(b). The top heavy
distribution of power consumption can be attributed to highly paral-
lel structures (e.g., Wallace Tree) towards the front of the block. We
will see later that such attributes are desirable for clock scheduling
and glitch mitigation.
To augment the FPU power dissipation breakdowns, we collect

architectural utilization to determine potential benefits from clock
scheduling. We use the Turandot [4] processor simulator to model
a POWER4-like processor with two parallel 6-stage FPU pipelines.
We simulate 100M-instruction traces of the SPECfp benchmark suite.
Fig. 2 presents a stacked bar graph showing the distribution of con-
tiguous bubbles observed. The figure shows 50% of consecutive
fp instructions have one or more bubbles between them. Clock
scheduling can utilize these bubbles to reduce clock power.

0

25

50

75

100

D
is

tri
bu

tio
n

of
 B

ub
bl

es
 (%

)

0
1
2
3
4
5
6+

of
contiguous

bubbles

am
mp

ap
plu ap
si art

eq
ua

ke
fac

ere
c

luc
as

mes
a

mgri
d

six
tra

ck
sw

im
wup

wise
av
era
ge

Figure 2: Distribution of contiguous bubbles found in two parallel
6-stage FPU pipelines found in a POWER4-like processor.

stage-level clock gating

FF0

FF1

FF2

FF3

FF4

FF5

FF6

stage1

stage2

stage3

stage4

stage5

stage6

out

CLK

gate

CLK

clock-gating controller

1 2 3 4 5 6

FF0 FF1 FF2 FF3 FF4 FF5 FF6

Figure 3: Block and timing diagrams of conventional clock gating.

3. CLOCK SCHEDULING
Clock scheduling extends the power-savings opportunities offered

by simple stage-level clock gating by ostensibly reconfiguring the
pipeline depth of a datapath. This approach is similar to the transpar-
ent pipelining scheme proposed by Jacobson [2], but we extend the
approach with circuit modifications required for flip-flop based de-
signs. Moreover, one of the major drawbacks of increasing pipeline
stage delay (i.e. shallower pipelines) is increased susceptibility to
glitch propagation and associated power consumption that can po-
tentially wipe out all of the clock power savings. Consequently,
clock scheduling keeps track of bubbles in the instruction stream
to maximize clock power savings while judiciously inserting clock
edges to block glitch propagation in order to maximize power sav-
ings. This section first provides an overview of clock scheduling
applied to a 6-stage FPU pipeline datapath to highlight the potential
to save clock power as a function of bubbles that separate valid data
flowing through.
To establish a comparison point, Fig. 3 illustrates the basic cir-

cuitry and timing diagrams for conventional stage-level clock-gating
in a 6-stage, positive edge-triggered FF-based pipeline. The clock
gating control circuit is straightforward—shifting a gate signal along
the pipeline corresponding to bubbles in the instruction stream. The
FFs in the controller must trigger off of the negative clock edge in
order to properly set up the gating signal prior to each clock pulse.
The timing diagram shows how the clock for each FF only fires to
sequence valid data through the pipeline and gated during bubbles.

358

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:44:14 UTC from IEEE Xplore. Restrictions apply.

FF

L L

1 2

capture hold

flow-through

late flow

extend block

early blocknormal
capture & hold

extend hold

1

2

Figure 4: Modified FF clocking to enable clock scheduling.

FF0

FF1

FF2

FF3

FF4

FF5

FF6

stage1

stage2

stage3

stage4

stage5

stage6

out

CLK

1 2 3 4 5 6 7 8 9 10 11 12cycle

Figure 5: Timing diagrams of instruction-driven clock scheduling.

The hexagonal boxes correspond to data out of each combinational
logic stage. While this stage-level clock gating can significantly
reduce clock power consumption, there are additional clock power
savings that can be gained by modifying the clock signals and FFs
to allow data flow through.
Flip-flops typically impose hard barriers that only allow data to

cross the boundary on a clock edge. Hence, in order to enable a
flow-through mode, one can either add a bypass path with the aid of
a MUX or modify the clock signals that drive the FF. We consider
the second alternative. FFs are typically composed of two back-
to-back latches clocked off of complementary clock signals. The
first latch (often called the master) captures incoming data and the
subsequent latch (often called the slave) holds the captured data.
By breaking up the complementary clocks into two independently
controlled clock phases, Φ1 and Φ2, we can enable a number of dif-
ferent operating modes for the original FF as shown in Fig. 4. To
facilitate understanding of subsequent timing diagrams in this pa-
per, it is important to understand these different modes. The normal
capture and hold mode occurs on the rising edge of the clock. The
flow-through mode, corresponding to a mid-level horizontal line for
Φ, has both latches in transparent mode and data can flow through.
To prevent premature propagation of data through the modified FF
when entering and exiting flow-through, Φ1 and Φ2 must be care-
fully controlled via late flow and early block modes. The extend
hold and extend block modes also prevent data race-through condi-
tions. It is worth noting that these modes slightly modify the timing.
For instance, the transition from late flow to flow-through transfers
data off of Φ1 as opposed to Φ2, which can introduce an additional
data-to-Q delay through the second latch.
With modified-FF clocking in place, we now investigate how it

can be used to reduce clock power for data flowing through a 6-
stage pipeline with interspersed bubbles. Fig. 5 illustrates a tim-
ing diagram with clock scheduling. The clock transitions required
for stage-level clock gating are shown in grey for each FF. When-
ever a mid-level horizontal line crosses through a grey clock pulse,

0 2 4 6 8 10 12

0

20

40

60

80

100

Number of Contiguous Bubbles

C
lo

ck
 P

ow
er

 S
av

in
gs

 (%
)

2
4
6
8
10
12
inf

pipeline
depth

6-stage pipeline

Figure 6: Clock power savings vs. number of contiguous bubbles
and pipeline depth.

clock power is saved. In addition to the modified clock signals
for each pipe stage, the output of each combinational logic stage
(hexagonal boxes) is further annotated to illustrate different operat-
ing modes. Hexagons with solid black border edges correspond to
logic stages that follow a FF operating in normal capture and hold
mode. Hexagons with dotted border edges follow partially clocked
FFs that transition from late flow to flow-through mode. This late
flow mode prevents upstream data from racing through and corrupt-
ing downstream data. For example, at cycle 2, the late flow pre-
vents new data entering stage 1 from clobbering data in stage 2.
Hexagons with hash marks correspond to stages that suffer glitches.
At cycle 4, FF1 is in flow-through mode and data that enters stage 1
can propagate straight through to stage 2. Consequently, the com-
binational logic in stage 2 can start transitioning (or glitching) and
consume dynamic power (glitch power). Hexagons without border
edges drawn correspond to normal logic propagation in a particu-
lar stage that follows a FF in flow-through mode. Notice that such
hexagons are preceded by hashes and, hence, can also suffer from
glitches prior to settling to a final value, denoted by the dotted hor-
izontal lines. An example of why we implement the early block
mode can be seen at cycle 7 of FF2. If FF2 were to transition from
flow-through mode to normal capture and hold mode in the middle
of cycle 7, data can race ahead to stage 3. While such a condition
would not compromise proper functionality, it would introduce ad-
ditional glitches. The extend block mode connects the early block
to the next normal capture and hold mode. Lastly, an example of
extend hold can be seen across cycles 6 and 7 of FF4. While FF4
could have entered flow-through mode at cycle 7, extend hold pre-
vents unnecessary glitches in stage 5. A similar observation can
be made for FF3 across cycles 8 and 9. These modifications made
to the clock signals for a FF not only enable flow-through mode,
but also ensure race-free data sequencing and prevent unnecessary
glitch propagation. Unfortunately, we will see later that glitches can
still be a problem.
The control circuitry required to implement these different modes

is more complex than the simple shift register required for stage-
level clock gating. The mode of each clock depends on all of the
data and bubbles in flight through the datapath. Hence, the simple
AND gate for the clock gating signal must be augmented with in-
puts corresponding to bubbles flowing through each of the pipeline
stages. The proposed modifications to the clocking for the FF-based
design can be translated to also work for latch-based pipelines with
complementary clocks.
Before delving more deeply into the detrimental effects of glitches,

Fig. 6 plots the clock power savings offered by clock scheduling,
relative to stage-level clock gating, vs. the number of contiguous
bubbles between valid data and pipeline depth. The plot shows that

359

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:44:14 UTC from IEEE Xplore. Restrictions apply.

FF0

FF1

FF2

FF3

FF4

FF5

FF6

stage1

stage2

stage3

stage4

stage5

stage6

out

min delay

max delay

glitching

Figure 7: Timing diagram illustrating glitch propagation.

clock power savings saturates once the number of contiguous bub-
bles exceeds the pipeline depth. Furthermore, clock power savings
improves when clock scheduling is applied across more pipeline
stages. While the plot may even suggest that deeper pipelining for a
particular function also offers more savings, it is important to keep
in mind that the total number of FFs would also grow and overall
clock power may increase. Hence, it is important to consider a wide
variety of factors when choosing the optimal pipeline depth as de-
scribed in [5], where clock scheduling is one aspect.

4. MITIGATING GLITCHES
While clock scheduling can offer up to 70% savings in clock

power for a 6-stage pipeline, glitch propagation unfortunately grows
with the number of contiguous bubbles in the pipeline, possibly wip-
ing out most if not all of the clock power savings achieved. This
motivates a simple glitch mitigation strategy that can significantly
reduce glitch propagation for the worst offenders.
To illustrate this glitch problem, Fig. 7 presents a timing diagram

of valid data flowing through a 6-stage pipeline separated by long
strings of contiguous bubbles. Assuming a long string of bubbles
preceding the first valid data shown in the plot, clock scheduling
dictates FF1 through FF5 ought to be in flow-through mode, consti-
tuting a long piece of combinational logic. As the length of the com-
binational logic grows, the gap between the minimum andmaximum
delay paths grows. In this example, stage 6 can start to glitch well
before it settles out to a final value. Moreover, glitches get progres-
sively worse towards the end of the pipeline. Unless wavepipelining
can be efficiently employed, increasing glitch power must be care-
fully modeled and addressed.
In order to better understand how glitches can lead to high power

overheads, we rely on experimentally measured data from a 6-stage
FPU test chip implemented in a UMC 130nm CMOS process [6].
While this FPU employs latch-based clocking with complementary
clocks, the clock to each of the latches has flexible control such that
the FPU can be configured to operate with different pipeline depths.
Each stage of logic was designed using a standard synthesis, place
and route CAD flow with optimizations focusing on performance
and balancing the delay between stages. Static timing analysis for
each of the six stages shows that >95% of all delay paths through
the combinational logic have delays between 50% and 100% of the
maximum delay path. In other words, the difference between the
minimum and maximum delay paths is approximately one half of
the clock period for a vast majority of the paths. By measuring the
power of each stage in the FPU while changing the number of pre-
ceding flow-through stages, we can assess the impact of logic depth
on glitch power. Fig. 8 plots the multiplicative increase in logic

0 1 2 3 4 5

1

2

3

4

5

Number of preceding flow-through stages

Lo
gi

c
P

ow
er

 M
ul

tip
lic

at
io

n
(d

ue
 to

 g
lit

ch
es

)

trend line:
y = 0.08x2 + 0.5x + 1

Figure 8: Measured glitch power in 130nm 6-stage FPU test chip.

power vs. the number of preceding flow-through stages, and shows
a super-linear relationship. For example, stage 6 of the pipeline
suffers a >5× increase in dynamic power (for that stage) due to
glitches if all six stages of the FPU operate as a single pipeline stage
as opposed to being clocked separately.
It is important to note that glitches in combinational logic are in-

trinsically tied to the underlying logic structure and, hence, varies
from one design to another. Specifically, the propagation of glitches
depends on the difference between the minimum and maximum de-
lay paths in the logic, the distribution of delay paths, divergence and
convergence of paths, etc. The experimental results presented above
merely show that relatively complex designs, implemented via stan-
dard CAD flows, can exhibit considerable increases in glitch-induced
power as logic depth grows. With that caveat in mind, we rely on
the observed power vs. logic depth trend to later evaluate the merits
of clock scheduling.
Interestingly, glitch propagation in a pipeline with clock schedul-

ing depends on the number of bubbles that not only precede, but also
follow valid data through the pipeline. By applying the trend line ob-
served in Fig. 8, Fig. 9(a) presents a 3D plot of glitch power increase
vs. the number of bubbles that precede and follow valid data. Back-
to-back instructions do not suffer additional glitch power penalties
(0% power increase), but also cannot benefit from clock scheduling.
The worst-case condition is for isolated valid data flanked by six or
more bubbles. Recognizing that the delay difference between min-
imum and maximum delay paths grows as the combinational logic
gets longer, we propose a simple glitch mitigation scheme that ju-
diciously clocks an intermediate FF in the pipeline for instructions
preceded by five or more bubbles as shown in Fig. 10. The glitches
in the last two stages (stage 5 and 6) are significantly reduced at the
expense of lower clock power savings. Fig. 9(b) shows this sim-
ple glitch mitigation scheme can cut down glitch power for these
worst-case conditions. While FF3 works best for the FPU in this
paper, the choice of the FF for glitch mitigation depends on clock
and logic power distribution across the pipeline. Later, we shall see
that certain benchmarks with a preponderance of six or more bub-
bles greatly benefit from this glitch mitigation scheme.

5. RESULTS AND ANALYSIS
Based on our understanding of clock scheduling and the impact

of glitches, we now turn back to the FPU case study in Section 2
in order to investigate the potential merits of clock scheduling. We
can evaluate clock scheduling applied to the FPU in a processor like
the POWER4 by combining architectural simulation results sum-
marized by the per-benchmark bubble distribution plot in Fig. 2
with the clock-power savings trend in Fig. 6. Power savings is de-
termined by appropriately scaling each FF’s clock power, broken
down for the FPU in Fig. 1(b). Furthermore, we combine the glitch

360

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:44:14 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6

6
5

4
3

2
1

0

0

50

100

150

200

250

Num. of bubbles afterNum. of bubbles before

G
lit

ch
 P

ow
er

 In
cr

ea
se

 (%
)

(a) Without glitch mitigation

0 1 2 3 4 5 6

6
5

4
3

2
1

0

0
50

100
150
200
250

Num. of bubbles afterNum. of bubbles before

G
lit

ch
 P

ow
er

 In
cr

ea
se

 (%
)

(b) With glitch mitigation

Figure 9: Logic power increase due to glitch propagation vs. number
of bubbles before and after valid data.

power vs. bubble relationship in Fig. 9 with the simulated bubble
distributions to determine the resulting glitch-induced power penal-
ties, which again assumes the glitch power vs. logic (or pipeline)
depth trends measured from an experimental test chip.1 The first
and last FFs, FF0 and FF6, are assumed to always clock in and out
valid data, but gated during bubbles. Since fine-grained, stage-level
clock gating is commonplace, we assume its corresponding clock
and logic power to be the baseline for our study. In other words, all
of the results in this section demonstrate the power savings in a FPU
achieved over conventional stage-level clock gating.
To first determine the clock power savings offered by clock sched-

uling, Fig. 11 plots the percentage of clock power savings across
several different workloads from the SPECfp benchmark suite with
and without glitch mitigation. By enabling the flow-throughmode in
the FFs, clock power savings ranges from 27% to 63%. At the high
end, workloads such as art have∼50% of the instructions separated
by five or more contiguous bubbles, leading to large clock power
savings. Unfortunately, this high clock power savings also comes
with high glitch-induced power penalties as shown in the same plot,
a 45% increase in logic power for art. Recognizing that longer logic
depth leads to more glitches, simple glitch mitigation can greatly re-
duce the logic power increase for a modest reduction in clock power
savings. The clock power savings, averaged across all benchmarks,
reduces from 43% to 40% with glitch mitigation turned on. In con-
trast, the average logic power overhead due to glitches reduces from
17% to 11%.
By combining the cost and benefit results above, Fig. 12 plots the

overall power savings for the FPU with and without glitch mitiga-
tion turned on. The plot shows overall savings as high as 36% may

1While the experimental test chip and the FPU in this analysis are
both 6-stage pipelines, they are not the same design.

FF0

FF1

FF2

FF3

FF4

FF5

FF6

stage1

stage2

stage3

stage4

stage5

stage6

out

blocks glitch
propagation

blocks glitch
propagation

Figure 10: Timing diagram of proposed glitch-mitigation scheme.

-40

-20

0

20

40

60

-40

-20

0

20

40

60

clock scheduling + glitch mitigation

am
mp

ap
plu ap

si art

eq
ua

ke

fac
ere

c
luc

as
mes

a
mgri

d

six
tra

ck
sw

im

wup
wise

clock scheduling only

clock power

clock power

logic power

logic power

sa
vi

ng
s

(%
)

sa
vi

ng
s

(%
)

Figure 11: Evaluation of clock power savings and logic glitch power
overhead penalty for two parallel FPU pipelines across SPECfp
workloads.

be possible for one of the pipelines running art if glitch penalties are
ignored. Unfortunately, the net savings can be considerably smaller
with glitch penalties—reduced by a half for art. Again, glitch miti-
gation can recoup glitch penalties to improve the net power savings.
It is important to note that glitch mitigation is most effective for
benchmarks that suffer high glitch penalties such as art, equake, and
mesa. For other benchmarks like swim, there is a small reduction in
power savings due to a slight increase in clock power. Overall, glitch
mitigation improves A more sophisticated glitch mitigation scheme
may be able to yield slightly more savings.
Clock scheduling is especially effective in reducing clock power

for pipelines with top-heavy power breakdowns similar to the FPU
evaluated here. First of all, most of the power savings come from
having at least one or two consecutive bubbles between valid data
flowing through the pipeline (see Fig. 6). Moreover, with at least
two consecutive bubbles, FF1 and FF2 can both operate in flow-
through mode and they exhibit the highest clock power. Second,
glitch-induced power penalties get worse towards later stages of the
pipeline. Since FF0 is always clocked in our example, the first stage
of logic suffers the least from glitches, but is the logic stage with
the highest power. To clearly elucidate these points, Fig. 13 plots
the resulting power savings if power distribution across the FFs and
logic stages are equal (i.e. even breakdown of power in Fig. 1(b)).
Not only are power savings due to clock power reductions reduced
compared to those seen in Fig. 12, there can be a net loss in power
savings for some workloads without glitch mitigation. For such dat-
apaths where power is evenly distributed across the stages, simple
glitch mitigation is not only effective, but critical.

361

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:44:14 UTC from IEEE Xplore. Restrictions apply.

5

15

25

35
P

ow
er

 S
av

in
gs

 (%
)

5

15

25

35

P
ow

er
 S

av
in

gs
 (%

)
am

mp
ap

plu ap
si art

eq
ua

ke
fac

ere
c

luc
as

mes
a

mgri
d

six
tra

ck
sw

im
wup

wise
av
era
ge

clock scheduling only

clock scheduling + glitch mitigation

w
/ c

lo
ck

 s
av

in
gs

 o
nl

y
no

 g
lit

ch
 p

en
al

ty
ne

t s
av

in
gs

glitch
penalty

Figure 12: Evaluation of overall power savings without glitch penal-
ties and net power savings with glitch penalties for two parallel FPU
pipelines across SPECfp workloads.

6. RELATEDWORK
Clock scheduling described in this paper and transparent latching

described by Jacobson in [2] are kindred techniques. They both seek
to reduce unnecessary clock transitions by enabling a way to let data
flow through latches or FFs unhindered when separated by bubbles.
Jacobson shows that transparent pipelining offers clock power sav-
ings in range of 40-60% and data glitch power can be less than 10%
of the clock power savings. This relatively-low glitch penalty is not
necessarily a general result of transparent pipelining given the sus-
ceptibility to large glitch penalties depending on implementation. In
contrast to transparent pipelining with latches, clock scheduling is
applied to FF-based pipelines, which requires modifications to en-
able the flow-through mode. We also present a detailed study of
how clock scheduling can offer clock-power savings based on an
analysis of realistic workloads running on FPUs found in proces-
sors like IBM’s POWER4, an understanding of FPU structure and
power breakdown, and a model of data glitch power based on ex-
perimental measurements. While both clock scheduling and trans-
parent pipeline promise significant savings in clock power, we show
that data glitch power penalties can be severe and must be carefully
accounted for. Lastly, we introduce and evaluate the merits of a
simple glitch mitigation technique to trade off limited amounts of
clock-power savings for larger reductions in glitch power.
Jacobson et al. extend the original transparent latching paper by

providing a more comprehensive discussion of clock gating in [7]. A
brief discussion of clock power savings for commercial workloads
summarizes the clock power savings that can be achieved, but they
do not present any details on the caveats related to glitch power. Hill
and Lipasti build upon Jacobson’s work by investigating ways to re-
distribute stalls at the microarchitecture level via slack prediction
and maximize the benefits of transparent pipelining [8]. As a study
at the microarchitecture level, this paper also ignores glitch penal-
ties. Other work related to collapsing pipelines for power reduction
are thoroughly discussed in the aforementioned papers.

7. CONCLUSION
Based on the plethora of bubbles observed to flow through the

FPU for realistic SPECfp workloads, this paper presents the po-
tential benefits and costs associated with clock scheduling. Clock

-10

0

10

20

30

P
ow

er
 S

av
in

gs
 (%

)

0

10

20

30

P
ow

er
 S

av
in

gs
 (%

)

clock scheduling only

clock scheduling + glitch mitigation

net loss

am
mp

ap
plu ap
si art

eq
ua

ke
fac

ere
c

luc
as

mes
a

mgri
d

six
tra

ck
sw

im
wup

wise
av
era
ge

Figure 13: Evaluation of overall power savings assuming a 6-stage
FPU pipeline implemented with an even distribution of power across
all FFs and logic stages.

scheduling is a technique that effectively adapts pipeline depth on
the fly in response to bubbles that flow through deeply-pipelined dat-
apaths. While we show significant clock-power savings are possi-
ble for a variety of workloads, glitch power penalties are highest for
workloads that achieve the highest clock-power savings. We present
a simple model of how glitch power increases with logic depth based
on experimental measurements of a FPU test chip implemented in
130nm. Recognizing that glitch power gets worse for later stages
in the pipeline, simple glitch mitigation schemes can be used to im-
prove overall power savings. Lastly, our evaluations show that top-
heavy blocks like a FPU can greatly benefit from clock scheduling,
but pipelines with work (and power) evenly distributed across the
stages may not see any power savings and designers must be espe-
cially vigilant to keep glitch penalties low.
This work is supported by National Science Foundation grants

CCF-0429782 and CSR-0720566.

8. REFERENCES
[1] S. Borkar, “Thousand core chips—A technology perspective,”

in Proc. DAC, June 2007.
[2] H. M. Jacobson, “Improved clock-gating through transparent

pipelining,” in Proc. ISLPED, Aug. 2004.
[3] D. Brooks, et al., “New methodology for early-stage,

microarchitecture-level power-performance analysis of
microprocessors,” IBM Journal of R&D, Nov. 2003.

[4] M. Moudgill, J.-D. Wellman, and J. Moreno, “Environment for
PowerPC microarchitecture exploration,” in IEEE Micro, June
1999.

[5] D. M. Brooks, et al., “Power-aware microarchitecture: design
and modeling challenges for next-generation microprocessors,”
in IEEE Micro, Nov/Dec 2000.

[6] X. Liang, D. Brooks, and G.-Y. Wei, “A process variation
tolerant floating-point unit with voltage interpolation and
variable latency,” in Proc. IEEE International Solid-State
Circuits Conference, Feb. 2008.

[7] H. M. Jacobson, et al., “Stretching the limits of clock-gating
efficiency in server-class processors,” in Proc. HPCA-11,
Dec. 2005.

[8] E. L. Hill and M. H. Lipasti, “Stall cycle redistribution in a
transparent fetch pipeline,” in Proc. ISLPED, Aug 2006.

362

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:44:14 UTC from IEEE Xplore. Restrictions apply.

