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Moore’s Law & Power Dissipation...

Moore’s Law:
❚ The Good News: 2X 

Transistor counts 
every 18 months 

❚ The Bad News: To 
get the performance 
improvements we’re 
accustomed to, CPU 
Power consumption 
will increase 
exponentially too...

(Graphs courtesy of Fred Pollack, Intel)



Why worry about power dissipation?

Environment
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Thermal issues: affect 
cooling, packaging, 
reliability, timing

Battery
life



Hitting the wall…
❚ Battery technology

❙ Linear improvements, nowhere 
near the exponential power 
increases we’ve seen

❚ Cooling techniques
❙ Air-cooled is reaching limits
❙ Fans often undesirable (noise, 

weight, expense)
❙ $1 per chip per Watt when 

operating in the >40W realm
❙ Water-cooled ?!?

❚ Environment
❙ US EPA: 10% of current electricity 

usage in US is directly due to 
desktop computers

❙ Increasing fast.  And doesn’t count 
embedded systems, Printers, UPS 
backup?

❚ Past: 
❙ Power important for 

laptops, cell phones
❚ Present: 

❙ Power a Critical, Universal 
design constraint even for 
very high-end chips 

❚ Circuits and process scaling 
can no longer solve all power 
problems.
❙ SYSTEMS must also be 

power-aware
❙ Architecture, OS, compilers



Power: The Basics

❚ Dynamic power vs. Static power vs. short-circuit power
❙ “switching” power
❙ “leakage” power
❙ Dynamic power dominates, but static power increasing in 

importance
❙ Trends in each

❚ Static power: steady, per-cycle energy cost
❚ Dynamic power: power dissipation due to capacitance charging at 

transitions from 0->1 and 1->0
❚ Short-circuit power: power due to brief short-circuit current during 

transitions.
❚ Mostly focus on dynamic, but recent work on others



Dynamic CMOS Power dissipation

Power ~ ½ CV2Af

Capacitance:
Function of wire 
length, transistor size

Supply Voltage:
Has been dropping 
with successive fab
generations

Clock frequency:
Increasing…Activity factor:

How often, on average, 
do wires switch?



Short-Circuit Power Dissipation

❚ Short-Circuit Current caused by finite-slope input signals
❚ Direct Current Path between VDD and GND when both 

NMOS and PMOS transistors are conducting
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Leakage Power

❚ Subthreshold currents grow exponentially with increases 
in temperature, decreases in threshold voltage
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Metrics Overview(a microarchitect’s view)

❚ Performance metrics:
❙ delay (execution time) per instruction; MIPS

* CPI (cycles per instr): abstracts out the MHz
* SPEC (int or fp); TPM: factors in b’mark, MHz

❚ energy and power metrics:
❙ joules (J) and watts (W)

❚ joint metric possibilities (perf and power)
❙ watts (W): for ultra LP processors; also, thermal issues
❙ MIPS/W or SPEC/W ~ energy per instruction

❘ CPI * W: equivalent inverse metric

❙ MIPS2/W or SPEC2/W  ~ energy*delay (EDP)
❙ MIPS3/W or SPEC3/W  ~ energy*(delay)2 (ED2P)



Energy vs. Power

❚ Energy metrics (like SPEC/W):
❙ compare battery life expectations; given workload
❙ compare energy efficiencies: processors that use constant 

voltage, frequency or capacitance scaling to reduce power
❚ Power metrics (like W): 

❙ max power => package design, cost, reliability
❙ average power => avg electric bill, battery life

❚ ED2P metrics (like SPEC3/W or CPI3 * W):
❙ compare pwr-perf efficiencies: processors that use voltage 

scaling as the primary method of power reduction/control



E vs. EDP vs. ED2P

❚ Power ~ C.V2.f  ~ f  (fixed voltage, design)

 ~ C (fixed voltage, freq) 

❚ Perf ~  f (fixed voltage and design) 

 ~  IPC (fixed voltage, freq)    

 So, across processors that use either frequency scaling or capacitance 
scaling, e.g. via clock gating or adaptive microarch techniques, multiple 
clocks, etc., MIPS/W or SPEC/W is the right metric to compare energy 
efficiencies. ( Also, CPI * W )



E vs. EDP vs. ED2P

❚ Power ~ CV2.f  ~ V3 (fixed microarch/design)

❚ Performance ~ f  ~  V (fixed microarch/design)
 (For the 1-3 volt range, f varies approx. linearly with V)

 So, across processors that use voltage scaling as the primary 
method of power control (e.g. Transmeta), (perf)3 / power, or 
MIPS3 / W  or  SPEC3 /W is a fair metric to compare energy 
efficiencies.

 This is an ED2 P metric. We could also use: (CPI)3 * W for a given 
application



E vs. EDP vs. ED2P

❚ EDP metrics like MIPS2/W or SPEC2/W cannot be applied 
across an arbitrary set of processors to yield fair 
comparisons of efficiency;  although, EDP could still be a 
meaningful optimization vehicle for a given processor or 
family of processors.

❚ Our view: use either E or ED2P type metrics, depending 
on the class of processors being compared (i.e. fixed 
voltage, variable cap/freq - E metrics; and, variable 
voltage/freq designs - ED2P metrics)
❙ caveat: leakage power control techniques in future processors, that 

use lots of low-Vt transistors may require some rethinking of metrics



Metrics Comparison
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(Brooks et al., IEEE Micro, Nov/Dec 2000)

• Note:
> at the low end, E metrics like SpecInt/W appear to be fair
> at the highest end, ED2P metrics like (SpecInt)3/W seem to do the job
> perhaps at the midrange, EDP metrics like (SpecInt)2/W are appropriate?



Part II: Abstractions



Application

What can architects & systems people 
do to help?

❚ Micro-Architecture & Architecture
❙ Shrink structures
❙ Shorten wires
❙ Reduce activity factors
❙ Improve instruction-level control

❚ Compilers
❙ Reduce wasted work: “standard” operations
❙ More aggressive register allocation and cache 

optimization
❙ Trade off parallelism against clock frequency

❚ Operating Systems
❙ Natural, since OS is traditional resource 

manager
❙ Equal energy scheduling
❙ Battery-aware or thermally-aware adaptation

microarchitecture

architecture

circuits
and

below…

OS compilers



Application

What do architects & systems people 
need to have, in order to help?

❚ Better observability and control of power 
characteristics
❙ Ability to see current power, thermal 

status
❘ Temperature sensors on-chip
❘ Battery meters

❙ Ability to control power dissipation
❘ Turn units on/off
❘ Techniques to impact leakage

❙ Abstractions for efficient 
modeling/estimation of power 
consumption

microarchitecture

architecture

circuits
and

below…

OS compilers



Power/Performance abstractions at 
different levels of this hierarchy…

❚ Low-level:
❙ Hspice
❙ PowerMill

❚ Medium-Level: 
❙ RTL Models

❚ Architecture-level:
❙ PennState SimplePower
❙ Intel Tempest
❙ Princeton Wattch
❙ IBM PowerTimer



Low-level models: Hspice

❚ Extracted netlists from circuit/layout descriptions
❙ Diffusion, gate, and wiring capacitance is modeled

❚ Analog simulation performed
❙ Detailed device models used
❙ Large systems of equations are solved
❙ Can estimate dynamic and leakage power dissipation 

within a few percent
❙ Slow, only practical for 10-100K transistors

❚ PowerMill (Synopsys) is similar but about 10x faster



Medium-level models: RTL

❚ Logic simulation obtains switching events for every signal
❚ Structural VHDL or verilog with zero or unit-delay timing 

models
❚ Capacitance estimates performed

❙ Device Capacitance
❘ Gate sizing estimates performed, similar to synthesis

❙ Wiring Capacitance
❘ Wire load estimates performed, similar to placement 

and routing
❚ Switching event and capacitance estimates provide 

dynamic power estimates



Architecture level models

❚ Examples: 
❙ SimplePower, Tempest, Wattch, PowerTimer…

❚ Components of a “good” Arch. Level power model
❙ Capacitance model
❙ Circuit design styles
❙ Clock gating styles & Unit usage statistics
❙ Signal transition statistics



Modeling Capacitance

❚ Requires modeling wire length and estimating transistor 
sizes

❚ Related to RC Delay analysis for speed along critical path
❙ But capacitance estimates require summing up all wire 

lengths, rather than only an accurate estimate of the 
longest one.



Register File: Example of Capacitance Analysis
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Register File Model: Validation

❚ Validated against a register file schematic used in Intel’s 
Merced design

❚ Compared capacitance values with estimates from a 
layout-level Intel tool

❚ Interconnect capacitance had largest errors
❙ Model currently neglects poly connections
❙ Differences in wire lengths -- difficult to tell wire 

distances of schematic nodes

E rror R ates G ate D iff In terC onn. Tota l
W ordline(r) 1 .11 0.79 15 .06 8.02
W ordline(w ) -6 .37 0.79 -10 .68 -7 .99
B itline(r) 2 .82 -10 .58 -19 .59 -10 .91
B itline(w ) -10 .96 -10 .60 7.98 -5 .96

(Numbers in Percent)



Accounting for Different Circuit Design 
Styles

❚ RTL and Architectural level power estimation requires 
the tool/user to perform circuit design style assumptions
❙ Static vs. Dynamic logic
❙ Single vs. Double-ended bitlines in register 

files/caches
❙ Sense Amp designs
❙ Transistor and buffer sizings

❚ Generic solutions are difficult because many styles are 
popular

❚ Within individual companies, circuit design styles may be 
fixed 



Clock Gating: What, why, when?

❚ Dynamic Power is dissipated on clock transitions
❚ Gating off clock lines when they are unneeded  reduces 

activity factor
❚ But putting extra gate delays into clock lines increases 

clock skew
❚ End results:

❙ Clock gating complicates design analysis but saves 
power.  Used in cases where power is crucial.

Clock
Gate

Gated Clock



Signal Transition Statistics

❚ Dynamic power is proportional to switching
❚ How to collect signal transition statistics in architectural-level 

simulation?
❙ Many signals are available, but do we want to use all of them?
❙ One solution (register file):

❘ Collect statistics on the important ones (bitlines)
❘ Infer where possible (wordlines)
❘ Assign probabilities for less important ones (decoders)

❙ Use Controllability and Observability notions from testing 
community?



Power Modeling at Architecture Level
❚ Previous academic research has either:

❙ Calculated power within individual units: ie cache
❙ Calculated abstract metrics instead of power 

❘ eg “needless speculative work saved per pipe stage”
❚ What is needed now?

❙ A single common power metric for comparing different 
techniques

❙ Reasonable accuracy 
❙ Flexible/modular enough to explore a design space
❙ Fast enough to simulate real benchmarks
❙ Facilitate early experiments: before HDL or circuits...



SimplePower

❚ Vijaykrishnan, et al. ISCA 2000

❚ Models datapath energy in 5-stage pipelined RISC 
datapath

❚ Table-lookup based power models for memory and 
functional units

❚ Transition sensitive: table lookups are done based on 
input bits and output bits for unit being considered

❚ Change size of units => supply a new lookup table



TEM2P2EST

❚ Thermal Enabled Multi-Model Power/Performance 
Estimator: Dhodapkar, Lim, Cai, and Daasch

❚ Empirical Mode
❙ Used for synthesizable logic blocks
❙ Used for Clock distribution/interconnection

❚ Analytical Mode
❙ Used for regular structures
❙ Allows time-delay model extensions

❚ Temperature Model
❙ Simple model links power to temperature



Wattch: An Overview

Overview of Features
❚ Parameterized models for different CPU units

❙ Can vary size or design style as needed
❚ Abstract signal transition models for speed

❙ Can select different conditional clocking and input 
transition models as needed

❚ Based on SimpleScalar 
❚ Modular: Can add new models for new units studied

Wattch’s Design Goals
❚ Flexibility
❚ Planning-stage info
❚ Speed
❚ Modularity
❚ Reasonable accuracy



Modeling Units at Architectural Level

Modeling Capacitance
❚ Models depend on structure,

bitwidth, design style, etc.
❚ E.g., may model capacitance of a 

register file with bitwidth & 
number of ports as input 
parameters

Modeling Activity Factor
❚ Use cycle-level simulator to 

determine number and type of 
accesses
❙ reads, writes, how many ports

❚ Abstract model of bitline activity

Parameterized
Register File

Power
Model

Power
Estimate

Number of entries

Data width of entries

# Read Ports

# Write Ports

Bitline Activity
Number of Active Ports



Fetch Dispatch Issue/Execute Writeback/
Commit

Power
(Units
Accessed)

• I-cache
• Bpred

• Rename
Table

• Inst. Window
• Reg. File

• Inst. Window
• Reg File
• ALU
• D-Cache
• Load/St Q

• Result Bus
• Reg File
• Bpred

Performance • Cache Hit?
• Bpred

Lookup?

• Inst. Window
Full?

• Dependencies
Satisfied?

• Resources?

• Commit
Bandwidth?

One Cycle in Wattch

❚ On each cycle:
❙ determine which units are accessed
❙ model execution time issues
❙ model per-unit energy/power based on which units used and 

how many ports.



Units Modeled by Wattch

❚ Array Structures
❙ I & D caches and tags; 

register files; register 
alias table; branch 
predictors; large 
portions of instruction 
window; ld/st queue

❚ Clocking network
❙ Clock buffers, wires, 

and capacitive loads.

❚ Content-Associative 
Memories (CAMs)
❙ TLBS; reorder buffer 

wakeup logic

❚ Complex combinational 
blocks
❙ Functional units; instruction 

window select logic; 
dependence check logic; 
result buses.



Wattch accuracy

Hardware Structure Intel Data Wattch

Instruction Fetch 22% 21%
Register Alias Table 6% 5%
Reservation Stations 8% 9%
Reorder Buffer 11% 12%
Integer Exec. Unit 15% 15%
Data Cache Unit 11% 11%
M emory Order Buffer 6% 5%
Floating Point Exec. Unit 8% 8%
Global Clock 8% 10%
Branch Target Buffer 5% 4%

0
10
20
30
40
50
60
70
80
90

100

Pentium
Pro

MIPS
R10K

Alpha
21264

W
at

ts

Model
Reported

Relative Wattch estimates track well
even in cases where absolute accuracy
falls short.

Typically 10-15% relative
accuracy as compared to 
low-level industry data.



Wattch Simulation Speed

❚ Roughly 80K instructions per second (PII-450 host)
❚ ~30% overhead compared to performance simulation 

alone
❙ Could be decreased if power estimates are not 

computed every cycle

❚ Many orders of magnitude faster than lower-level 
approaches
❙ For example, PowerMill takes ~1hour to simulate 100 

test vectors on a 64-bit adder



Wattch: Summary

❚ A preliminary but useful step towards providing 
modular, flexible architecture-level models with 
reasonable accuracy

❚ Future Work:
❙ User selectable circuit styles (high-performance, low-

power, etc)
❙ Update models as technologies change



PowerTimer

Circuit Power
Data (Macros)

Tech Parms

uArch Parms

Program 
Executable 
or Trace

SubUnit Power = 
f(SF, uArch, Tech)

Compute
Sub-Unit

Power

Architectural 
Performance

Simulator

Power

CPI

PowerTimer

AF/SF Data



PowerTimer: Energy Models

❚ Energy models for uArch structures formed by 
summation of circuit-level macro data

Power=C1*SF+HoldPower
Power=C2*SF+HoldPower

Power=Cn*SF+HoldPower

Macro1
Macro2

MacroN

Sub-Units (uArch-level Structures)
Energy Models

SF 
Data

Power 
Estimate



PowerTimer: Power models f(SF)

0

200
400

600
800

1000

1200
1400

0 10 20 30 40 50
SF

m
W

fpq
fxq
fpr-map
gpr-map
gct

Power linearly dependent on Switching Factor

At 0% SF, Power = Clock Power (significant without clock gating)



Comparing Arch. Level power models: 
Flexibility

❚ Flexibility necessary for certain studies
❙ Resource tradeoff analysis
❙ Modeling different architectures

❚ Wattch provides fully-parameterizable power models
❙ Within this methodology, circuit design styles could 

also be studied
❚ PowerTimer scales power models in a user-defined 

manner for individual sub-units
❙ Constrained to structures and circuit-styles currently 

in the library
❚ SimplePower provides parameterizable cache structures



Comparing Arch. Level power models: 
Speed

❚ Performance simulation is slow enough!
❚ Wattch’s per-cycle power estimates: roughly 30% 

overhead
❙ Post-processing (per-program power estimates) 

would be much faster (minimal overhead)
❚ PowerTimer has no overhead (currently all post-

processed based on already existing stats)
❚ SimplePower has significant performance overhead 

because of table-lookups, etc.



Comparing Arch. Level power models: 
Accuracy

❚ Wattch provides excellent relative accuracy
❙ Underestimates full chip power (some units not 

modeled, etc)
❚ PowerTimer models based on circuit-level power analysis

❙ Inaccuracy is introduced in SF/AF and scaling 
assumptions

❚ SimplePower should provide high accuracy
❙ Static core (only caches are parameterized)
❙ Detailed table lookups ensure accuracy



Demo #1: 15-20 minutes

❚ Demonstration of IBM PowerTimer with web interface



Break #1: 5-10 minutes



Measuring power (vs. modeling it)

❚ First part of talk discussed power modeling.
❚ What about power measurement?

❚ Challenges:
❙ Difficult to get enough motherboard information to 

measure the power you want to.
❙ Even harder (ie impossible) to break down on-chip 

power into a pie chart of different contributers
❙ Difficult to ascribe power peaks and valleys to 

particular software behavior or program constructs.



A few typical meter-based setups #1: 
Voltage-drops with transceivers …

❚ Power = Vsupply * Vsense/Rsense
❚ Itsy Study: 

❙ 0.02Ω Rsense
❙ 5000 Samples/sec
❙ Estimated Error: ±0.005Watts (~1W measured)

+
-Vsupply Vsense

Rsense

Computing
System



Typical setups #2: Ammeter on 
incoming power supply lines

❚ Power = Vsupply * Iammeter
❚ Our equipment:

❙ HP 34401 Multimeter
❙ GPIB card in linux PC to do sampling…

+
-Vsupply Computing

System

Ammeter

Iammeter



Limitations to meter-based Approaches

❚ Can only measure what actually exists
❚ Difficult to ascribe power to particular parts of the code
❚ Difficult to get very fine-grained readings due to power-

supply capacitors etc.
❚ Difficult to “pie chart” power into which units are 

dissipating it



Monitoring power on existing CPUs: 
Counter-Based

❚ Say you wish to measure power 
consumption for a program 
running on an existing CPU?
❙ Surprisingly difficult to do
❙ Ammeter on power cord is 

difficult to synchronize with 
application runtimes

❚ Say you want to produce a pie 
chart of measured power 
dissipation per-unit for this 
program running an existing 
CPU? 
❙ Nearly impossible to do 

directly

?
??

Memory

Fetch FP
Int
ALU



CASTLE: Measuring Power Data from 
Event Counts

Basic idea: 
❚ Most (all?) high-end CPUs have a bank of hardware 

performance counters 
❚ Performance counters track a variety of program events

❙ Cache misses
❙ Branch mispredicts…

❚ If these events are also the main power dissipators, then 
we can hope these counters can also help power 
measurement 

❚ Estimate power by weighting and superimposing event 
counts appropriately



CASTLE: Details & Methodology

❚ Gather M counts for N training applications
❚ Compute weights using least-squares error
❚ Use these weights (W1-WM) to estimate power on other apps
❚ Consider accuracy of power estimates compared to other 

power measurements

Ap
pl

s

Counter Values
C11

CNM

C1M

C1N

…

…

… …

W1

WM

…

P1

PM

…=



Example & Results

❚ For each of M benchmarks in 
suite:
❙ use counters from M-1 other 

benchmarks
❙ determine weights using 

least-squares estimation
❙ Then apply weights to this 

benchmark
❙ Compare calculated power to 

that given by a Wattch
simulation

❙ A benchmark is never used in 
the calculation of its own 
weights

Estimation Error 
(%)Benchmark

-6.36vortex

-7.94perl

4.03ijpeg

1.04li

4.49compress

1.49gcc

-2.31m88ksim

2.36go



CASTLE: Further work & issues
❚ Accuracy/Methodology

❙ How many “training” applications?
❙ Different training methods for different application domains

❘ If so, which weights to choose?
❚ Portability issues

❙ Different CPUs have different event counters 
❘ >200 on IBM Power architecture
❘ ~50 on Intel Pentium
❘ Few on Alpha
❘ Varies from implementation to implementation
❘ Still working on seeing which counts are key ones, which counts 

are extraneous
❙ Also different models for time required to read counters

❘ Polling vs. interrupt…
❘ Overhead…



Other Measurement Techniques

❚ Thermal sensors 
❙ [Sanchez et al. 1995]
❙ PowerPC includes thermal sensor and allows for real-

time responses to thermal emergencies.
❘ Eg. Reduce instruction fetch rate



Break #2 (5 minutes)



Comparing different 
measurement/modeling techniques

❚ Choice of technique depends on experiment to be done
❚ Measuring different software on unchanging platform

❙ Real platform probably better
❚ Measuring impact of hardware design changes

❙ Need simulations, since real hardware doesn’t exist…



Validation

MODEL
Input Output

Need to ensure integrity at all 3 stages

Input Validation: making sure that the input, e.g. trace,
is representative of the workloads of interest

Model Validation: ensuring that the model itself is accurate
Output Validation: interpreting the results correctly



Model Validation

• Main challenge: defining a specification reference

MODEL 
UNDER TEST

GOLDEN
REFERENCE

compare
outputs

An Input Testcase

Flag Error (if outputs differ)

• Secondary problems:
– generate apt test cases
– test case coverage
– choice of o/p  signatures



Comparing Apples to Apples

❚ Like technologies
❚ Similar architectures
❚ Circuit styles
❚ Clocking styles
❚ Industry details



Technology Trends: Overview

❚ Lots of upcoming trends will have impact on models:
❙ Leakage / dual Vt
❙ Clock rate increases
❙ Chip area increases 
❙ Embedded DRAM
❙ Localized thermal modeling



Bounding Perf and Power

• Lower and upper bounds on expected model outputs can 
serve as a viable “spec”, in lieu of an exact reference

• Even a single set of bounds (upper or lower) is useful

Performance Bounds Utilization/Power BoundsTest Case
Number
TC.1

TC.2

TC.n

Cpi (ub) Cpi (lb) T (ub) T(lb) Upper bound Lower bound

.

.



Performance Bounds

• Static Bounds:

Bounds Model

Loop test case (source/assembly code)

Steady-state loop cpi
bounds

Uarch
parms file

 * IBM Research, Bose et al. 1995 - 2000: applied to perf validation for high-end PPC
 *  U of Michigan, Davidson et al. 1991 - 1998

• Dynamic Bounds:
– analyze a trace; build a graph; assign node/edge costs;
 process graph to compute net cost (time)
(e.g. Wellman96, Iyengar et al., HPCA-96)



Static Bounds - Example

fadd   fp3,   fp1,   fp0
lfdu     fp5,  8(r1)
lfdu    fp4,   8(r3)
fadd   fp4,   fp5,   fp4
fadd   fp1,   fp4,   fp3
stfdu fp1,   8(r2)
bc      loop_top

Consider an in-order-issue
super scalar machine:

• disp_bw = iss_bw = compl_bw = 4
• fetch_bw = 8
• l_ports = ls_units = 2
• s_ports = 1
• fp_units = 2

N = number of instructions/iteration = 7

• Steady-state loop cpi performance is determined by the
narrowest (smallest bandwidth) pipe
– above example: CPIter = 2;  cpi = 2/7 = 0.286



Power-Performance Bounds

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9

Superscalar width W

St
ea

dy
-s

ta
te

 lo
op

 C
PI

0

50

100

150

200

250

1 3 5 7 9

Superscalar width W

M
IP

S/
ps

eu
do

w
at

ts

Inflexion points
of interest

PW = W**0.5 + ls_units + fp_units + l_ports + s_ports

Simple, analytical energy model

(see: Brooks, Bose et al. IEEE Micro, Nov/Dec 2000)



Resource Utilization Profile
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(Analytical predictions of average, steady-state utilizations: validated via simulation)

Utilization profile can be used to predict unit-wise energy usage bounds/estimates



Absolute vs. Relative Accuracy
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 simulator
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In real-life, early-stage design tradeoff studies, relative
accuracy is more important than absolute accuracy



Abstraction via Separable Components

The issue of absolute vs. relative accuracy is raised in any
modeling scenario: be it “performance-only”, “power” or 
“power-performance.” 

Consider a commonly used performance modeling abstraction:

Slope = miss penalty (MP)

FINITE CACHE PENALTY (FCE)

CPIinfcache

Increasing core concurrency
and overlap (e.g. outstanding miss support)

C
yc

le
s 

pe
r 

in
st

r 
(C

P
I)

Cache miss rate, MR (misses/instr)

CPI = 
CPIinfcache

+ 
MR * MP



Experimental Setup
Program executable or trace

Detailed, full
model cycle
simulator

Baseline,
“infprf”
simulator

Standalone
cache sim

Delta-CPI
(cache)

Standalone
BP sim

Delta-CPI
(BP)

Add all components

CPIactual
CPIinfprf

CPI approx(sc)

COMPARE Error Report



Experimental Results (example)

SPECint Experiment
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TRUE-CPI curve: generated using PowerPC research, high-end simulator
at IBM (Turandot simulator:  see IEEE Micro, vol. 19, pp. 9-14, May/June 1999)



Accuracy Conclusions

• Separable components model (for performance, and 
probably for related power-performance estimates):
> good for relative accuracy in most scenarios
> absolute accuracy depends on workload characteristics

• Detailed experiments and analysis in:

 Brooks, Martonosi and Bose (2001):
 “Abstraction via separable components: an empirical study of absolute and relative accuracy 
 in processor performance modeling,” IBM Research Report, Jan, 2001 (submitted for 
 external publication)

• Power-performance model validation and accuracy analysis:
> work in progress



Leakage Power: Models and Trends

❚ Currently: leakage power is roughly 2-5% of CPU chip’s 
power dissipation

❚ Future: without further action, leakage power expected 
to increase exponentially in future chip generations

❚ The reason?
❙ Supply Voltage ↓ to save power => 
❙ => Threshold voltages ↓ to maintain performance
❙ => Leakage current ↑



Other technology trends and needs

❚ Need:
❙ Good models for leakage current
❙ Ways of handling chips with more than one Vt
❙ Models that link power and thermal characteristics



Other resources

❚ Tutorial webpage
❙ Access to slides:

❘ http://www.ee.princeton.edu/~mrm/tutorial
❘ Also, semi-comprehensive Power Bibliography…


