
Modeling and Analyzing CPU Power
and Performance: Metrics, Methods,

and Abstractions

Margaret Martonosi
David Brooks
Pradip Bose

D E I
M V S B N I N V I G E T

E V

VET
TES
EN

NOV
TAM
TVM

Moore’s Law & Power Dissipation...

Moore’s Law:
❚ The Good News: 2X

Transistor counts
every 18 months

❚ The Bad News: To
get the performance
improvements we’re
accustomed to, CPU
Power consumption
will increase
exponentially too...

(Graphs courtesy of Fred Pollack, Intel)

Why worry about power dissipation?

Environment

���

���

���

��

��

��

��

��

��

��

����
����

����
����

����
�����

�����
�����

�����
�����

��
��

��
��

��
�����

�����
�����

�����
�����

���
���

���
���

�����������

�����������

�����������

�����������

�����������

�����������

Thermal issues: affect
cooling, packaging,
reliability, timing

Battery
life

Hitting the wall…
❚ Battery technology

❙ Linear improvements, nowhere
near the exponential power
increases we’ve seen

❚ Cooling techniques
❙ Air-cooled is reaching limits
❙ Fans often undesirable (noise,

weight, expense)
❙ $1 per chip per Watt when

operating in the >40W realm
❙ Water-cooled ?!?

❚ Environment
❙ US EPA: 10% of current electricity

usage in US is directly due to
desktop computers

❙ Increasing fast. And doesn’t count
embedded systems, Printers, UPS
backup?

❚ Past:
❙ Power important for

laptops, cell phones
❚ Present:

❙ Power a Critical, Universal
design constraint even for
very high-end chips

❚ Circuits and process scaling
can no longer solve all power
problems.
❙ SYSTEMS must also be

power-aware
❙ Architecture, OS, compilers

Power: The Basics

❚ Dynamic power vs. Static power vs. short-circuit power
❙ “switching” power
❙ “leakage” power
❙ Dynamic power dominates, but static power increasing in

importance
❙ Trends in each

❚ Static power: steady, per-cycle energy cost
❚ Dynamic power: power dissipation due to capacitance charging at

transitions from 0->1 and 1->0
❚ Short-circuit power: power due to brief short-circuit current during

transitions.
❚ Mostly focus on dynamic, but recent work on others

Dynamic CMOS Power dissipation

Power ~ ½ CV2Af

Capacitance:
Function of wire
length, transistor size

Supply Voltage:
Has been dropping
with successive fab
generations

Clock frequency:
Increasing…Activity factor:

How often, on average,
do wires switch?

Short-Circuit Power Dissipation

❚ Short-Circuit Current caused by finite-slope input signals
❚ Direct Current Path between VDD and GND when both

NMOS and PMOS transistors are conducting

VOUT

CL

ISC

VIN

Leakage Power

❚ Subthreshold currents grow exponentially with increases
in temperature, decreases in threshold voltage

VOUT

CL ISub

VIN Tka
Vq

DSub a

T

ekI ⋅⋅
⋅−

⋅=

Metrics Overview(a microarchitect’s view)

❚ Performance metrics:
❙ delay (execution time) per instruction; MIPS

* CPI (cycles per instr): abstracts out the MHz
* SPEC (int or fp); TPM: factors in b’mark, MHz

❚ energy and power metrics:
❙ joules (J) and watts (W)

❚ joint metric possibilities (perf and power)
❙ watts (W): for ultra LP processors; also, thermal issues
❙ MIPS/W or SPEC/W ~ energy per instruction

❘ CPI * W: equivalent inverse metric

❙ MIPS2/W or SPEC2/W ~ energy*delay (EDP)
❙ MIPS3/W or SPEC3/W ~ energy*(delay)2 (ED2P)

Energy vs. Power

❚ Energy metrics (like SPEC/W):
❙ compare battery life expectations; given workload
❙ compare energy efficiencies: processors that use constant

voltage, frequency or capacitance scaling to reduce power
❚ Power metrics (like W):

❙ max power => package design, cost, reliability
❙ average power => avg electric bill, battery life

❚ ED2P metrics (like SPEC3/W or CPI3 * W):
❙ compare pwr-perf efficiencies: processors that use voltage

scaling as the primary method of power reduction/control

E vs. EDP vs. ED2P

❚ Power ~ C.V2.f ~ f (fixed voltage, design)

 ~ C (fixed voltage, freq)

❚ Perf ~ f (fixed voltage and design)

 ~ IPC (fixed voltage, freq)

 So, across processors that use either frequency scaling or capacitance
scaling, e.g. via clock gating or adaptive microarch techniques, multiple
clocks, etc., MIPS/W or SPEC/W is the right metric to compare energy
efficiencies. (Also, CPI * W)

E vs. EDP vs. ED2P

❚ Power ~ CV2.f ~ V3 (fixed microarch/design)

❚ Performance ~ f ~ V (fixed microarch/design)
 (For the 1-3 volt range, f varies approx. linearly with V)

 So, across processors that use voltage scaling as the primary
method of power control (e.g. Transmeta), (perf)3 / power, or
MIPS3 / W or SPEC3 /W is a fair metric to compare energy
efficiencies.

 This is an ED2 P metric. We could also use: (CPI)3 * W for a given
application

E vs. EDP vs. ED2P

❚ EDP metrics like MIPS2/W or SPEC2/W cannot be applied
across an arbitrary set of processors to yield fair
comparisons of efficiency; although, EDP could still be a
meaningful optimization vehicle for a given processor or
family of processors.

❚ Our view: use either E or ED2P type metrics, depending
on the class of processors being compared (i.e. fixed
voltage, variable cap/freq - E metrics; and, variable
voltage/freq designs - ED2P metrics)
❙ caveat: leakage power control techniques in future processors, that

use lots of low-Vt transistors may require some rethinking of metrics

Metrics Comparison

0

5

10

15

20

25

30

35

40

45

50

Relative to
worst

performer

In
te

l
P

II
I

A
M

D
 A

th
lo

n

H
P

-P
A

8
6

0
0

IB
M

 P
W

R
3

C
o

m
p

a
q

 2
1

2
6

4

M
o

to
 P

P
C

7
4

0

In
te

l
C

e
le

ro
n

M
IP

S
 R

1
2

K

S
u

n
 U

S
II

H
a
l
S

p
a
rc

 6
4

II
I

SpecInt/W
SpecInt**2/W
SpecInt**3/W

0

5

10

15

20

25

30

Relative to
worst

performer

In
te

l
P

II
I

A
M

D
 A

th
lo

n

H
P

-P
A

8
6

0
0

IB
M

 P
W

R
3

C
o

m
p

a
q

 2
1

2
6

4

M
o

to
 P

P
C

7
4

0

In
te

l
C

e
le

ro
n

M
IP

S
 R

1
2

K

S
u

n
 U

S
II

H
a
l
S

p
a
rc

 6
4

II
I

SpecFP/W
SpecFp**2/W
SpecFp**3/W

(Brooks et al., IEEE Micro, Nov/Dec 2000)

• Note:
> at the low end, E metrics like SpecInt/W appear to be fair
> at the highest end, ED2P metrics like (SpecInt)3/W seem to do the job
> perhaps at the midrange, EDP metrics like (SpecInt)2/W are appropriate?

Part II: Abstractions

Application

What can architects & systems people
do to help?

❚ Micro-Architecture & Architecture
❙ Shrink structures
❙ Shorten wires
❙ Reduce activity factors
❙ Improve instruction-level control

❚ Compilers
❙ Reduce wasted work: “standard” operations
❙ More aggressive register allocation and cache

optimization
❙ Trade off parallelism against clock frequency

❚ Operating Systems
❙ Natural, since OS is traditional resource

manager
❙ Equal energy scheduling
❙ Battery-aware or thermally-aware adaptation

microarchitecture

architecture

circuits
and

below…

OS compilers

Application

What do architects & systems people
need to have, in order to help?

❚ Better observability and control of power
characteristics
❙ Ability to see current power, thermal

status
❘ Temperature sensors on-chip
❘ Battery meters

❙ Ability to control power dissipation
❘ Turn units on/off
❘ Techniques to impact leakage

❙ Abstractions for efficient
modeling/estimation of power
consumption

microarchitecture

architecture

circuits
and

below…

OS compilers

Power/Performance abstractions at
different levels of this hierarchy…

❚ Low-level:
❙ Hspice
❙ PowerMill

❚ Medium-Level:
❙ RTL Models

❚ Architecture-level:
❙ PennState SimplePower
❙ Intel Tempest
❙ Princeton Wattch
❙ IBM PowerTimer

Low-level models: Hspice

❚ Extracted netlists from circuit/layout descriptions
❙ Diffusion, gate, and wiring capacitance is modeled

❚ Analog simulation performed
❙ Detailed device models used
❙ Large systems of equations are solved
❙ Can estimate dynamic and leakage power dissipation

within a few percent
❙ Slow, only practical for 10-100K transistors

❚ PowerMill (Synopsys) is similar but about 10x faster

Medium-level models: RTL

❚ Logic simulation obtains switching events for every signal
❚ Structural VHDL or verilog with zero or unit-delay timing

models
❚ Capacitance estimates performed

❙ Device Capacitance
❘ Gate sizing estimates performed, similar to synthesis

❙ Wiring Capacitance
❘ Wire load estimates performed, similar to placement

and routing
❚ Switching event and capacitance estimates provide

dynamic power estimates

Architecture level models

❚ Examples:
❙ SimplePower, Tempest, Wattch, PowerTimer…

❚ Components of a “good” Arch. Level power model
❙ Capacitance model
❙ Circuit design styles
❙ Clock gating styles & Unit usage statistics
❙ Signal transition statistics

Modeling Capacitance

❚ Requires modeling wire length and estimating transistor
sizes

❚ Related to RC Delay analysis for speed along critical path
❙ But capacitance estimates require summing up all wire

lengths, rather than only an accurate estimate of the
longest one.

Register File: Example of Capacitance Analysis

Pre-Charge

D
ec

od
er

s

Bitlines
(Data Width of Entries)

Wordlines
(Number of

Entries)

Sense Amps

Cell

Bit

metal

gatecapNrdlineDrivediffcapWorwordline

CngthWordlinele
CinesNumberBitlCC

*
* 1 ++=

metal

diffcapNgdiffcapPchbitline

CgthBitlinelen
ClinesNumberWordCC

*
* 1

+
+=

Cell Access
Transistors (N1)

Number of
Ports

Number of
Ports

Bit

Register File Model: Validation

❚ Validated against a register file schematic used in Intel’s
Merced design

❚ Compared capacitance values with estimates from a
layout-level Intel tool

❚ Interconnect capacitance had largest errors
❙ Model currently neglects poly connections
❙ Differences in wire lengths -- difficult to tell wire

distances of schematic nodes

E rror R ates G ate D iff In terC onn. Tota l
W ordline(r) 1 .11 0.79 15 .06 8.02
W ordline(w) -6 .37 0.79 -10 .68 -7 .99
B itline(r) 2 .82 -10 .58 -19 .59 -10 .91
B itline(w) -10 .96 -10 .60 7.98 -5 .96

(Numbers in Percent)

Accounting for Different Circuit Design
Styles

❚ RTL and Architectural level power estimation requires
the tool/user to perform circuit design style assumptions
❙ Static vs. Dynamic logic
❙ Single vs. Double-ended bitlines in register

files/caches
❙ Sense Amp designs
❙ Transistor and buffer sizings

❚ Generic solutions are difficult because many styles are
popular

❚ Within individual companies, circuit design styles may be
fixed

Clock Gating: What, why, when?

❚ Dynamic Power is dissipated on clock transitions
❚ Gating off clock lines when they are unneeded reduces

activity factor
❚ But putting extra gate delays into clock lines increases

clock skew
❚ End results:

❙ Clock gating complicates design analysis but saves
power. Used in cases where power is crucial.

Clock
Gate

Gated Clock

Signal Transition Statistics

❚ Dynamic power is proportional to switching
❚ How to collect signal transition statistics in architectural-level

simulation?
❙ Many signals are available, but do we want to use all of them?
❙ One solution (register file):

❘ Collect statistics on the important ones (bitlines)
❘ Infer where possible (wordlines)
❘ Assign probabilities for less important ones (decoders)

❙ Use Controllability and Observability notions from testing
community?

Power Modeling at Architecture Level
❚ Previous academic research has either:

❙ Calculated power within individual units: ie cache
❙ Calculated abstract metrics instead of power

❘ eg “needless speculative work saved per pipe stage”
❚ What is needed now?

❙ A single common power metric for comparing different
techniques

❙ Reasonable accuracy
❙ Flexible/modular enough to explore a design space
❙ Fast enough to simulate real benchmarks
❙ Facilitate early experiments: before HDL or circuits...

SimplePower

❚ Vijaykrishnan, et al. ISCA 2000

❚ Models datapath energy in 5-stage pipelined RISC
datapath

❚ Table-lookup based power models for memory and
functional units

❚ Transition sensitive: table lookups are done based on
input bits and output bits for unit being considered

❚ Change size of units => supply a new lookup table

TEM2P2EST

❚ Thermal Enabled Multi-Model Power/Performance
Estimator: Dhodapkar, Lim, Cai, and Daasch

❚ Empirical Mode
❙ Used for synthesizable logic blocks
❙ Used for Clock distribution/interconnection

❚ Analytical Mode
❙ Used for regular structures
❙ Allows time-delay model extensions

❚ Temperature Model
❙ Simple model links power to temperature

Wattch: An Overview

Overview of Features
❚ Parameterized models for different CPU units

❙ Can vary size or design style as needed
❚ Abstract signal transition models for speed

❙ Can select different conditional clocking and input
transition models as needed

❚ Based on SimpleScalar
❚ Modular: Can add new models for new units studied

Wattch’s Design Goals
❚ Flexibility
❚ Planning-stage info
❚ Speed
❚ Modularity
❚ Reasonable accuracy

Modeling Units at Architectural Level

Modeling Capacitance
❚ Models depend on structure,

bitwidth, design style, etc.
❚ E.g., may model capacitance of a

register file with bitwidth &
number of ports as input
parameters

Modeling Activity Factor
❚ Use cycle-level simulator to

determine number and type of
accesses
❙ reads, writes, how many ports

❚ Abstract model of bitline activity

Parameterized
Register File

Power
Model

Power
Estimate

Number of entries

Data width of entries

Read Ports

Write Ports

Bitline Activity
Number of Active Ports

Fetch Dispatch Issue/Execute Writeback/
Commit

Power
(Units
Accessed)

• I-cache
• Bpred

• Rename
Table

• Inst. Window
• Reg. File

• Inst. Window
• Reg File
• ALU
• D-Cache
• Load/St Q

• Result Bus
• Reg File
• Bpred

Performance • Cache Hit?
• Bpred

Lookup?

• Inst. Window
Full?

• Dependencies
Satisfied?

• Resources?

• Commit
Bandwidth?

One Cycle in Wattch

❚ On each cycle:
❙ determine which units are accessed
❙ model execution time issues
❙ model per-unit energy/power based on which units used and

how many ports.

Units Modeled by Wattch

❚ Array Structures
❙ I & D caches and tags;

register files; register
alias table; branch
predictors; large
portions of instruction
window; ld/st queue

❚ Clocking network
❙ Clock buffers, wires,

and capacitive loads.

❚ Content-Associative
Memories (CAMs)
❙ TLBS; reorder buffer

wakeup logic

❚ Complex combinational
blocks
❙ Functional units; instruction

window select logic;
dependence check logic;
result buses.

Wattch accuracy

Hardware Structure Intel Data Wattch

Instruction Fetch 22% 21%
Register Alias Table 6% 5%
Reservation Stations 8% 9%
Reorder Buffer 11% 12%
Integer Exec. Unit 15% 15%
Data Cache Unit 11% 11%
M emory Order Buffer 6% 5%
Floating Point Exec. Unit 8% 8%
Global Clock 8% 10%
Branch Target Buffer 5% 4%

0
10
20
30
40
50
60
70
80
90

100

Pentium
Pro

MIPS
R10K

Alpha
21264

W
at

ts

Model
Reported

Relative Wattch estimates track well
even in cases where absolute accuracy
falls short.

Typically 10-15% relative
accuracy as compared to
low-level industry data.

Wattch Simulation Speed

❚ Roughly 80K instructions per second (PII-450 host)
❚ ~30% overhead compared to performance simulation

alone
❙ Could be decreased if power estimates are not

computed every cycle

❚ Many orders of magnitude faster than lower-level
approaches
❙ For example, PowerMill takes ~1hour to simulate 100

test vectors on a 64-bit adder

Wattch: Summary

❚ A preliminary but useful step towards providing
modular, flexible architecture-level models with
reasonable accuracy

❚ Future Work:
❙ User selectable circuit styles (high-performance, low-

power, etc)
❙ Update models as technologies change

PowerTimer

Circuit Power
Data (Macros)

Tech Parms

uArch Parms

Program
Executable
or Trace

SubUnit Power =
f(SF, uArch, Tech)

Compute
Sub-Unit

Power

Architectural
Performance

Simulator

Power

CPI

PowerTimer

AF/SF Data

PowerTimer: Energy Models

❚ Energy models for uArch structures formed by
summation of circuit-level macro data

Power=C1*SF+HoldPower
Power=C2*SF+HoldPower

Power=Cn*SF+HoldPower

Macro1
Macro2

MacroN

Sub-Units (uArch-level Structures)
Energy Models

SF
Data

Power
Estimate

PowerTimer: Power models f(SF)

0

200
400

600
800

1000

1200
1400

0 10 20 30 40 50
SF

m
W

fpq
fxq
fpr-map
gpr-map
gct

Power linearly dependent on Switching Factor

At 0% SF, Power = Clock Power (significant without clock gating)

Comparing Arch. Level power models:
Flexibility

❚ Flexibility necessary for certain studies
❙ Resource tradeoff analysis
❙ Modeling different architectures

❚ Wattch provides fully-parameterizable power models
❙ Within this methodology, circuit design styles could

also be studied
❚ PowerTimer scales power models in a user-defined

manner for individual sub-units
❙ Constrained to structures and circuit-styles currently

in the library
❚ SimplePower provides parameterizable cache structures

Comparing Arch. Level power models:
Speed

❚ Performance simulation is slow enough!
❚ Wattch’s per-cycle power estimates: roughly 30%

overhead
❙ Post-processing (per-program power estimates)

would be much faster (minimal overhead)
❚ PowerTimer has no overhead (currently all post-

processed based on already existing stats)
❚ SimplePower has significant performance overhead

because of table-lookups, etc.

Comparing Arch. Level power models:
Accuracy

❚ Wattch provides excellent relative accuracy
❙ Underestimates full chip power (some units not

modeled, etc)
❚ PowerTimer models based on circuit-level power analysis

❙ Inaccuracy is introduced in SF/AF and scaling
assumptions

❚ SimplePower should provide high accuracy
❙ Static core (only caches are parameterized)
❙ Detailed table lookups ensure accuracy

Demo #1: 15-20 minutes

❚ Demonstration of IBM PowerTimer with web interface

Break #1: 5-10 minutes

Measuring power (vs. modeling it)

❚ First part of talk discussed power modeling.
❚ What about power measurement?

❚ Challenges:
❙ Difficult to get enough motherboard information to

measure the power you want to.
❙ Even harder (ie impossible) to break down on-chip

power into a pie chart of different contributers
❙ Difficult to ascribe power peaks and valleys to

particular software behavior or program constructs.

A few typical meter-based setups #1:
Voltage-drops with transceivers …

❚ Power = Vsupply * Vsense/Rsense
❚ Itsy Study:

❙ 0.02Ω Rsense
❙ 5000 Samples/sec
❙ Estimated Error: ±0.005Watts (~1W measured)

+
-Vsupply Vsense

Rsense

Computing
System

Typical setups #2: Ammeter on
incoming power supply lines

❚ Power = Vsupply * Iammeter
❚ Our equipment:

❙ HP 34401 Multimeter
❙ GPIB card in linux PC to do sampling…

+
-Vsupply Computing

System

Ammeter

Iammeter

Limitations to meter-based Approaches

❚ Can only measure what actually exists
❚ Difficult to ascribe power to particular parts of the code
❚ Difficult to get very fine-grained readings due to power-

supply capacitors etc.
❚ Difficult to “pie chart” power into which units are

dissipating it

Monitoring power on existing CPUs:
Counter-Based

❚ Say you wish to measure power
consumption for a program
running on an existing CPU?
❙ Surprisingly difficult to do
❙ Ammeter on power cord is

difficult to synchronize with
application runtimes

❚ Say you want to produce a pie
chart of measured power
dissipation per-unit for this
program running an existing
CPU?
❙ Nearly impossible to do

directly

?
??

Memory

Fetch FP
Int
ALU

CASTLE: Measuring Power Data from
Event Counts

Basic idea:
❚ Most (all?) high-end CPUs have a bank of hardware

performance counters
❚ Performance counters track a variety of program events

❙ Cache misses
❙ Branch mispredicts…

❚ If these events are also the main power dissipators, then
we can hope these counters can also help power
measurement

❚ Estimate power by weighting and superimposing event
counts appropriately

CASTLE: Details & Methodology

❚ Gather M counts for N training applications
❚ Compute weights using least-squares error
❚ Use these weights (W1-WM) to estimate power on other apps
❚ Consider accuracy of power estimates compared to other

power measurements

Ap
pl

s

Counter Values
C11

CNM

C1M

C1N

…

…

… …

W1

WM

…

P1

PM

…=

Example & Results

❚ For each of M benchmarks in
suite:
❙ use counters from M-1 other

benchmarks
❙ determine weights using

least-squares estimation
❙ Then apply weights to this

benchmark
❙ Compare calculated power to

that given by a Wattch
simulation

❙ A benchmark is never used in
the calculation of its own
weights

Estimation Error
(%)Benchmark

-6.36vortex

-7.94perl

4.03ijpeg

1.04li

4.49compress

1.49gcc

-2.31m88ksim

2.36go

CASTLE: Further work & issues
❚ Accuracy/Methodology

❙ How many “training” applications?
❙ Different training methods for different application domains

❘ If so, which weights to choose?
❚ Portability issues

❙ Different CPUs have different event counters
❘ >200 on IBM Power architecture
❘ ~50 on Intel Pentium
❘ Few on Alpha
❘ Varies from implementation to implementation
❘ Still working on seeing which counts are key ones, which counts

are extraneous
❙ Also different models for time required to read counters

❘ Polling vs. interrupt…
❘ Overhead…

Other Measurement Techniques

❚ Thermal sensors
❙ [Sanchez et al. 1995]
❙ PowerPC includes thermal sensor and allows for real-

time responses to thermal emergencies.
❘ Eg. Reduce instruction fetch rate

Break #2 (5 minutes)

Comparing different
measurement/modeling techniques

❚ Choice of technique depends on experiment to be done
❚ Measuring different software on unchanging platform

❙ Real platform probably better
❚ Measuring impact of hardware design changes

❙ Need simulations, since real hardware doesn’t exist…

Validation

MODEL
Input Output

Need to ensure integrity at all 3 stages

Input Validation: making sure that the input, e.g. trace,
is representative of the workloads of interest

Model Validation: ensuring that the model itself is accurate
Output Validation: interpreting the results correctly

Model Validation

• Main challenge: defining a specification reference

MODEL
UNDER TEST

GOLDEN
REFERENCE

compare
outputs

An Input Testcase

Flag Error (if outputs differ)

• Secondary problems:
– generate apt test cases
– test case coverage
– choice of o/p signatures

Comparing Apples to Apples

❚ Like technologies
❚ Similar architectures
❚ Circuit styles
❚ Clocking styles
❚ Industry details

Technology Trends: Overview

❚ Lots of upcoming trends will have impact on models:
❙ Leakage / dual Vt
❙ Clock rate increases
❙ Chip area increases
❙ Embedded DRAM
❙ Localized thermal modeling

Bounding Perf and Power

• Lower and upper bounds on expected model outputs can
serve as a viable “spec”, in lieu of an exact reference

• Even a single set of bounds (upper or lower) is useful

Performance Bounds Utilization/Power BoundsTest Case
Number
TC.1

TC.2

TC.n

Cpi (ub) Cpi (lb) T (ub) T(lb) Upper bound Lower bound

.

.

Performance Bounds

• Static Bounds:

Bounds Model

Loop test case (source/assembly code)

Steady-state loop cpi
bounds

Uarch
parms file

 * IBM Research, Bose et al. 1995 - 2000: applied to perf validation for high-end PPC
 * U of Michigan, Davidson et al. 1991 - 1998

• Dynamic Bounds:
– analyze a trace; build a graph; assign node/edge costs;
 process graph to compute net cost (time)
(e.g. Wellman96, Iyengar et al., HPCA-96)

Static Bounds - Example

fadd fp3, fp1, fp0
lfdu fp5, 8(r1)
lfdu fp4, 8(r3)
fadd fp4, fp5, fp4
fadd fp1, fp4, fp3
stfdu fp1, 8(r2)
bc loop_top

Consider an in-order-issue
super scalar machine:

• disp_bw = iss_bw = compl_bw = 4
• fetch_bw = 8
• l_ports = ls_units = 2
• s_ports = 1
• fp_units = 2

N = number of instructions/iteration = 7

• Steady-state loop cpi performance is determined by the
narrowest (smallest bandwidth) pipe
– above example: CPIter = 2; cpi = 2/7 = 0.286

Power-Performance Bounds

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9

Superscalar width W

St
ea

dy
-s

ta
te

 lo
op

 C
PI

0

50

100

150

200

250

1 3 5 7 9

Superscalar width W

M
IP

S/
ps

eu
do

w
at

ts

Inflexion points
of interest

PW = W**0.5 + ls_units + fp_units + l_ports + s_ports

Simple, analytical energy model

(see: Brooks, Bose et al. IEEE Micro, Nov/Dec 2000)

Resource Utilization Profile

CYCLE CBUF LSQ LSU0 LSU1 FPQ FPU0 FPU1 C0 C1 C3 PSQ

N

N+1

N+2

N+3

N+4

0.53

0.53

0.53

0.53

0.53

0

0

0

0

0

1

1

1

1

1

0.5

0.5

0.5

0.5

0.5

0

0

0

0

0

1

1

1

1

1

0.6

0.4

0.6

0.4

0.6

1

0

1

0

1

1

0

1

0

1

0

1

0

1

0

0.13

0.13

0.13

0.13

0.13

(W = 4 super scalar machine)

(Analytical predictions of average, steady-state utilizations: validated via simulation)

Utilization profile can be used to predict unit-wise energy usage bounds/estimates

Absolute vs. Relative Accuracy

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 1
Superscalar width W

M
IP

S
/p

se
ud

ow
at

ts

Idealized bound

Real sim output (illustrative example)

“true” h/w
measurement (say)

• Poor “absolute”
 accuracy of
 simulator

• But, good
“relative”
accuracy

In real-life, early-stage design tradeoff studies, relative
accuracy is more important than absolute accuracy

Abstraction via Separable Components

The issue of absolute vs. relative accuracy is raised in any
modeling scenario: be it “performance-only”, “power” or
“power-performance.”

Consider a commonly used performance modeling abstraction:

Slope = miss penalty (MP)

FINITE CACHE PENALTY (FCE)

CPIinfcache

Increasing core concurrency
and overlap (e.g. outstanding miss support)

C
yc

le
s

pe
r

in
st

r
(C

P
I)

Cache miss rate, MR (misses/instr)

CPI =
CPIinfcache

+
MR * MP

Experimental Setup
Program executable or trace

Detailed, full
model cycle
simulator

Baseline,
“infprf”
simulator

Standalone
cache sim

Delta-CPI
(cache)

Standalone
BP sim

Delta-CPI
(BP)

Add all components

CPIactual
CPIinfprf

CPI approx(sc)

COMPARE Error Report

Experimental Results (example)

SPECint Experiment

0
0.2
0.4
0.6
0.8

1
1.2
1.4

48 64 80 96 11
2

Rename registers

CP
I

SC-CPI

True-
CPI

INF-
PRF-CPI

SPECfp Experiment

0

0.5

1

1.5

2

48 64 80 96 11
2

Rename registers

C
P
I

SC-CPI

True-CPI

INF-PRF-
CPI

TRUE-CPI curve: generated using PowerPC research, high-end simulator
at IBM (Turandot simulator: see IEEE Micro, vol. 19, pp. 9-14, May/June 1999)

Accuracy Conclusions

• Separable components model (for performance, and
probably for related power-performance estimates):
> good for relative accuracy in most scenarios
> absolute accuracy depends on workload characteristics

• Detailed experiments and analysis in:

 Brooks, Martonosi and Bose (2001):
 “Abstraction via separable components: an empirical study of absolute and relative accuracy
 in processor performance modeling,” IBM Research Report, Jan, 2001 (submitted for
 external publication)

• Power-performance model validation and accuracy analysis:
> work in progress

Leakage Power: Models and Trends

❚ Currently: leakage power is roughly 2-5% of CPU chip’s
power dissipation

❚ Future: without further action, leakage power expected
to increase exponentially in future chip generations

❚ The reason?
❙ Supply Voltage ↓ to save power =>
❙ => Threshold voltages ↓ to maintain performance
❙ => Leakage current ↑

Other technology trends and needs

❚ Need:
❙ Good models for leakage current
❙ Ways of handling chips with more than one Vt
❙ Models that link power and thermal characteristics

Other resources

❚ Tutorial webpage
❙ Access to slides:

❘ http://www.ee.princeton.edu/~mrm/tutorial
❘ Also, semi-comprehensive Power Bibliography…

