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Abstract

Recent years have seen a burgeoning interest in em-
bedded wireless sensor networks with applications rang-
ing from habitat monitoring to medical applications. Wire-
less sensor networks have several important attributes that
require special attention to device design. These include
the need for inexpensive, long-lasting, highly reliable de-
vices coupled with very low performance requirements. Ul-
timately, the “holy grail” of this design space is a truly
untethered device that operates off of energy scavenged
from the ambient environment. In this paper, we describe an
application-driven approach to the architectural design and
implementation of a wireless sensor device that recognizes
the event-driven nature of many sensor-network workloads.
We have developed a full-system simulator for our sensor
node design to verify and explore our architecture. Our
simulation results suggest one to two orders of magnitude
reduction in power dissipation over existing commodity-
based systems for an important class of sensor network ap-
plications. We are currently in the implementation stage of
design, and plan to tape out the first version of our system
within the next year.

1. Introduction

Wireless sensor networks are poised to transform the
way society interacts with the physical world, driven by
an explosion of systems research in sensor networks. Sen-
sor networks have been proposed and deployed for a wide
variety of applications such as habitat monitoring [13, 23],
structural monitoring, and emergency medical response [7,
12]. While the application space seems limitless, it is actu-
ally limited by the operating lifetime of the battery-operated
wireless sensor nodes. Current deployments rely on com-
mercially available wireless sensor network devices (e.g.,
Mica2 [4]). Such devices typically consist of a basic mi-
crocontroller, a radio, and a variety of (often MEMS-based)
sensors. One of the main limitations of these platforms is

that they are built using commodity chips, which them-
selves are not specifically designed for wireless sensor net-
works. As a result, they suffer several inefficiencies that lead
to high power consumption and limited operational life-
times. To address this limitation, this paper presents the de-
sign and analysis of an ultra low power device specifically
for sensor network applications. In these systems, the CPU,
radio, and sensor devices are responsible for the majority
of the total system power and we show that the general-
purpose nature of commodity microcontrollers results in in-
efficient power usage, presenting an opportunity to signifi-
cantly reduce its power.

This paper outlines our design approach, which studies
all levels of the system design from the applications down
to the circuits and even the choice of process technology.
This holistic approach enables us to uncover architectural
and circuit-level design tradeoffs that guide design deci-
sions in order to meet our low power goals and long life-
time requirements. The power target of the system architec-
ture is 100µW for normal workloads. We chose this power
level with the ultimate objective of implementing a truly un-
tethered device that can operate indefinitely off of energy
scavenged from the environment.

The intermittent, event-driven nature of sensor network
application workloads motivates several architectural de-
sign features. We optimize the architecture for frequent,
repetitive behavior that is characteristic of sensor network
applications. These optimizations include hardware accel-
eration and offloading immediate event handling from the
general purpose computing component. Features such as
event-driven computation improve performance (thus per-
mitting a slower system clock) and reduce power consump-
tion by eliminating unnecessary operating system overhead.
In order to meet the long-lifetime demands of many wire-
less sensor network deployments, our architecture enables
fine-grain power management to minimize extraneous dy-
namic and static power consumption. Efforts to minimize
idle (or leakage) power has led us to investigate tradeoffs
between process technology generations. Given the rela-
tively low performance requirements of the sensor nodes,



Device/Mode Current Device/Mode Current

CPU Radio

Active 8.0mA Rx 7.0 mA

Idle 3.2mA Tx (-20 dBm) 3.7mA

ADC Acquire 1.0mA Tx (-8dBm) 6.5mA

Extended Standby 0.223mA Tx (0 dBm) 8.5mA

Standby 0.216mA Tx (10 dBm) 21.5mA

Power-save 0.110mA Sensors

Power-down 0.103mA Typical Board 0.7 mA

Table 1. Mica2 platform current draw measured with a
3V power supply.

we argue that the most advanced process technology is not
necessarily the lowest power solution.

The rest of the paper is organized as follows: Section 2
presents a brief background of wireless sensor network de-
vices and related work. Then, Section 3 presents our study
of wireless sensor network applications. Section 4 details
our system architecture and explains several architectural
optimizations made to reduce power consumption. Subse-
quently, our study of process technologies and circuit design
optimizations are presented in Section 5. Section 6 presents
system-level simulation results (supported by power data
extracted from key circuit-level simulations) that validate
our architecture.

2. Background and Related Work

We leverage active systems research in wireless sensor
networks to provide insights and details of power consump-
tion in currently available hardware platforms. We first set
out to determine whether efforts to reduce power in the
computational component of a sensor node is warranted,
dictated by Amdahl’s law. Power consumed for radio com-
munication is generally recognized to be significant and is
the focus of much research effort to reduce power consumed
by the circuitry itself and to minimize radio usage [16, 26].
While radio power is indeed significant, power required for
computation can also be appreciable. The PowerTOSSIM
project [21] studied the power consumption of the widely
used Mica2 mote available from Crossbow [4]. A summary
of power consumed by the CPU, sensors, and radio is pre-
sented in Table 1. The table shows that active CPU and radio
power numbers are comparable. Given the ability to oper-
ate the CPU in both active and idle (or lower power) modes,
these numbers do not present the complete picture. The
computational demands of the application determine the
CPU’s actual activity and radio usage. The PowerTOSSIM
paper provides a detailed breakdown of energy consumed
by different components for a variety of applications. In
these results, the CPU power ranges from 28% to 86% of
the total power consumed and roughly 50% on average. Fur-

thermore, data filtering and more efficient communication
protocols can shift activity from the radio to the CPU. Al-
though there may be ways to reduce CPU power in existing
hardware platforms, there is an innate inefficiency associ-
ated with using general purpose CPUs for sensor network
workloads. Simulation results in Section 6 reveal the poten-
tial for significantly reducing power consumption when the
computational unit uses an architecture designed to lever-
age the event-driven nature of sensor networks.

Several organizations are actively involved in design-
ing hardware for sensor network devices. The devices that
have been used widely for research and in some commer-
cial deployments, such as the Mica2 [4] and Telos [17]
motes, employ general-purpose microcontrollers that do not
efficiently handle interrupt processing. However, the pri-
mary task of a sensor network device is to handle timer
and external interrupts since their applications are inher-
ently event driven [9]. Therefore, these devices must run
an event-driven operating system (TinyOS [10]) to mask
the deficiencies of the hardware platforms that have not
been designed specifically for sensor networks. The first
custom device for sensor networks is the Spec architecture
[9], which includes hardware accelerators for tasks such as
message start-symbol detection. In fact, the newer genera-
tion radio chips incorporate some of these features [3]. In
our architecture, we intend to use accelerators not merely
to improve performance, but also as a power-saving mea-
sure. The SNAP architecture, which is an asynchronous de-
sign initiative described in [5], is the only example of an
event-driven architecture for sensor network devices that we
have come across in literature. However, the SNAP archi-
tecture does not exploit the powerful event-driven paradigm
apart from getting rid of the TinyOS overhead. In other
words, its primary computing engine is still a general pur-
pose microcontroller that must remain powered on all the
time, even when events occur rarely, thereby incurring leak-
age power. The Smart Dust project out of UC Berkeley de-
veloped a general-purpose microcontroller with low-power
design techniques for use in a sensor network device [25].
All of the existing architectures for wireless sensor network
devices fail to optimize common-case behavior of appli-
cations, because they all suffer from the overly general-
purpose nature of the primary computing engines. Our
design approach seeks to fully leverage the event-driven
nature of applications as we pursue the design of next-
generation low-power sensor network nodes.

Scavenging energy from the environment and using this
energy to power the sensor network device would greatly in-
crease the effective lifetime of a wireless sensor node. There
are many sources of energy available in the environment
such as solar, vibration, and electro-magnetic radiation, and
researchers have developed techniques to harness this en-
ergy [20]. For example, vibrational energy can be trans-



lated into electrical energy through piezoelectric materials
that induce an open circuit voltage when placed under me-
chanical stress. While using vibration as an energy source is
promising, the power output is limited to the order of a hun-
dredµW (for mote-size devices). The PicoRadio project out
of UC Berkeley built a proof-of-concept transmitter that op-
erates at very low duty cycles while powered off of solar and
vibrational energy [19]. Based on these demonstrations and
the belief that energy-harvesting technology will improve,
we have set the design target of our device at 100µW.

3. Sensor Network Applications

During the initial phase of our design process, we stud-
ied the wireless sensor network application space to un-
derstand the computational needs of sensor network work-
loads. Hardware requirements vary widely depending on the
projected lifetime, computational complexity, and commu-
nication needs of the deployment. We found that the mon-
itoring class of applications, characterized by low duty cy-
cles, long deployment lifetimes, and regularity of operation
provide well-defined and interesting constraints for sensor
node design.

Typical monitoring applications can be broken down into
a clear set of regular tasks. Nodes typically complete sev-
eral data generation tasks that include taking sensor sam-
ples, preparing messages containing data, and sending radio
messages. Nodes also complete ad-hoc routing tasks such
as receiving messages, looking up routing information, and
sending radio messages.

The interval of sensor readings depends on the phe-
nomenon being measured and these rates are typically very
low. UC Berkeley’s Great Duck Island (GDI) application
measured all sensors every 70 seconds, then transmitted a
packet [13, 23]. Harvard’s deployment of sensor nodes to
measure infrasound on the Tungurahua volcano measured
samples at 100 Hz and sent 4 radio messages a second with
25 samples per packet [8]. While both of these applications
transmitted to a base station that was one hop from the sen-
sor nodes, other deployments may require nodes to also
serve as communication relays due to large physical sep-
aration between nodes.

The ultimate goal of a monitoring deployment is to pro-
vide continuous sensing for years to decades without be-
ing touched. Past deployments of sensor networks for en-
vironmental monitoring had limited lifetimes (a few weeks
or months) due to the relatively high power consumption
of commodity hardware. Therefore, an ultra low power sys-
tem is required to achieve these deployment goals. The next
section describes the goals and implementation of our ar-
chitecture, which is designed specifically for this applica-
tion class.

4. System Design and Architecture

4.1. Motivation and Goals

Our architecture replaces most of the functionality of a
general purpose microcontroller with an event-driven sys-
tem specifically optimized for monitoring applications. A
summary of our design goals for the system architecture are
presented below and detailed discussions of goals and how
the architecture meets these goals follows in the next sub-
section.

1. Event-Driven Computation: Eliminate unneces-
sary event-processing overhead with an event-driven
hardware platform.

2. Hardware Acceleration to Improve Performance and
Power: Build a system composed of several compo-
nents that are optimized for specific tasks.

3. Exploiting Regularity of Operations within an Appli-
cation:Optimize the common-case behavior within an
application.

4. Optimization for a Particular Class of Applications:
Optimize the common-case behavior of monitoring
applications to reduce power, while still providing
general-purpose processing capability to enable broad
functionality.

5. Modularity: Provide an easily extensible system archi-
tecture that allows different sets of hardware compo-
nents to be combined into a larger system targeting a
particular application.

6. Fine-grain Power Management Based on Computa-
tional Requirements:Provide explicit programmer-
accessible commands for fine-grain resource and
power control.

4.2. Architecture Description

To fulfill our design goals, we seek to replace the ba-
sic functionality of a general-purpose microcontroller with
a modularized, event-driven system described in this sec-
tion. The system architecture is illustrated in Figure 1. There
are two distinct divisions within the system in terms of the
positions of the components with respect to the system bus.
We refer to the components to the right of the bus asslave
components and those to the left asmastercomponents (ex-
cept the memory, which is a slave). The system bus has three
divisions – data, interrupt, and power control. The slaves
compete for the interrupt bus using centralized arbitration if
more than one slave has an interrupt to signal. The slaves
also respond to read or write requests from the master side
on the data bus, thus allowing the masters to read their in-
formation content and control their execution. Power con-
trol lines are explained later.
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Figure 1. Block Diagram of System Architecture

The features of the architecture are best understood in
the context of design goals listed in the previous subsec-
tion.

4.2.1. Event-Driven SystemWe propose an event-driven
system in which all of the master components are involved
with event handling, and the slaves assist the master com-
ponents in their tasks and signal the occurrence of events to
trigger the master components. All external events, such as
the beginning of radio packet reception, are expressed as in-
terrupts by an appropriate slave component. The slave com-
ponents also raise interrupts for their internal events, such as
completion of an assigned task. To the master components,
there is no distinction between external and internal events.
Also, since the occurrence of all events is signaled by inter-
rupts, we will use the termseventandinterrupt interchange-
ably. The system idles until one of the slaves signals the
presence of an event, and when all outstanding events have
been processed, the system returns to its idle mode. Since
all the system does is respond to events, there is no soft-
ware overhead for interrupt handling.

4.2.2. Hardware Acceleration to Improve Performance
and Power There is a general-purpose microcontroller in
our system. However, unlike other sensor network device
architectures, the intent of our design is for the microcon-
troller to be the last resort for any computation, i.e. the mi-
crocontroller should be called upon to perform a task only
if the rest of the system does not have the requisite func-

tionality. Specific tasks that are considered common to a
wide variety of application are offloaded to hardware accel-
erators, which can be more power and cycle efficient than
the general-purpose microcontroller. Hence, the microcon-
troller can usually be powered down by gating the supply
voltage. This not only reduces active power but also leak-
age, which can be a very significant source of power con-
sumption for low duty cycle operation. Some questions that
arise are: How are the hardware accelerators configured for
their tasks? How are interrupts handled while the micro-
controller is asleep? The answers to these questions are de-
ferred to the discussion of how the architecture exploits reg-
ularity of operations.

All of the hardware accelerators in the system are slave
components. There is a timer block that sets alarm events,
which may be used to sample data from the sensors, in a
Time-Division Multiple Access (TDMA) radio scheme, or
for any tasks to be performed at regular intervals. In the ab-
sence of a hardware timer, a software timer would have to
be implemented in the microcontroller, requiring the micro-
controller to always be active. There is a generic filter slave
for basic data processing. In our architecture, this block is
a simple threshold filter with a programmable threshold.
We also implement a message processor block to offload
packet processing and avoid waking up the microcontroller
for common events such as packet forwarding and transmit-
ting packets of collected samples. The slave components
also include essential sensor network device components
such as the radio, and a block of sensors and Analog-to-
Digital Converters (ADCs).

4.2.3. Exploiting Regularity of Operations within an
Application All immediate interrupt handling is offloaded
to the event processorblock while the microcontroller is
powered down. The event processor is a simple state ma-
chine that can be programmed to handle an interrupt by
transferring data blocks between the slave devices and set-
ting up control information for these devices to complete
their tasks.

The event processor can also be programmed to wake
up the microcontroller if the requisite functionality for pro-
cessing the interrupt is not otherwise available. To some ex-
tent, the event processor can be perceived as an intelligent
DMA controller. Thus, there are two levels of interrupt ser-
vice routines (ISRs) to handle an interrupt: at the event pro-
cessor level and at the microcontroller level. ISRs for both
the event processor and the microcontroller are stored in the
main memory, which is a unified instruction and data mem-
ory connected to the bus.

We now elaborate further on the notion ofregular and
irregular events. A regular event is one that can be pro-
cessed wholly by the event processor and the slave com-
ponents. An irregular event is one that requires the micro-
controller. One of the tasks involved in mapping an applica-



tion to our system is to determine the partitioning of events
into regular and irregular events. The regularity of an event
is determined by the functionality present in the slaves and
the event processor. For a typical application, events such
as sampling, transmitting samples, and forwarding packets
would ideally be regular while application or network re-
configurations would often be classified as irregular.

4.2.4. Optimization for Monitoring Applications The
system does not seek to satisfy any real-time requirements
and only one outstanding interrupt is possible. As a result,
slave devices may continue to write their interrupts to the in-
terrupt bus. However, if the system begins to be overloaded,
events will simply be dropped. Outstanding events cannot
preempt either the microcontroller or the event processor.
The system bus, the microcontroller, and the event proces-
sor are all non-pipelined. All of these simplifications give
rise to a light-weight system that is well suited to handle
monitoring applications while consuming very little power.

4.2.5. Modularity All of the slave devices are attached to
the system bus and are memory-mapped. Both control and
data are communicated to and from the slaves by simply
reading from and writing to appropriate addresses in the
memory. Thus, the event processor is not aware that data
is being transferred between separate slaves, or that control
information is being written to the slaves. This memory-
mapped interface allows the system design to be extremely
modular and new components (and hence new functional-
ity) can be added on to the system bus without modification
of the event processor or the microcontroller.

4.2.6. Fine-grain Power Management Based on Com-
putational Requirements Since the master components
are triggered by interrupts, the ISRs for each interrupt can
configure the system according to its computational require-
ments for handling the interrupt. To sufficiently curb leak-
age power, special instructions within the event processor
are used to gate the supply voltages of system components.
Note that the system does not infer the resource usage for
an event; rather, the ISR programmer selects the compo-
nents to turn on depending on the needs of the application.
Individual power enable lines are required for each compo-
nent under direct control. Vdd-gating and power down im-
plementations will vary depending on the circuit-level de-
sign of the individual slave components. Such power con-
trol may not only be exercised over the slave components,
but also over segments within the main memory that contain
temporary data, such as application scratch space. We be-
lieve that event-driven programmable resource usage is one
of our most significant innovations. It allows configuration
of system power consumption with very little logic over-
head, as opposed to a technique that attempts to infer re-
source usage. Also, it allows the addition of several specific

components to the system as slaves that can be used in vary-
ing combinations to provide the functionality required by an
application. Any component unused in an application can be
turned off (i.e., supply voltage gated) and is nearly invisible
during the entire lifetime of the application. Therefore, the
system can satisfy the general-purpose requirements of ap-
plications by providing a broad range of slave components,
enabling an on-demand functionality that imposes negligi-
ble overhead when a component is not required.

4.3. System Components

We now discuss some of the more interesting system
components in greater detail.

4.3.1. System BusAs discussed earlier, the system bus
comprises the data bus, the interrupt bus, and power con-
trol lines. The data bus has address, data, and control sig-
nals indicating read and write operations. In our current im-
plementation the address bus has 16 lines, the data bus has 8
lines, and there is one control signal each for read and write
operations. The address space for our memory-mapped ar-
chitecture is therefore 64K. The address and control lines
can be driven only by the event processor and the micro-
controller in mutual exclusion as determined by the bus ar-
biter, which is currently just a mux. The data lines are driven
by the slave that determines that the current request lies in
its address range, and are demultiplexed to the originator of
the request, i.e., the event processor or the microcontroller.

The interrupt bus has 6 address lines and control signals
for arbitrating the writing of interrupts by slaves. The sys-
tem is therefore capable of handling 64 interrupts in the cur-
rent model. The event processor has control signals in the
interrupt bus to indicate when it has read the current inter-
rupt address.

The power control lines are handshake pairs for each
slave or memory segment controlled. The handshake is rel-
evant only when a component is turned on, to determine
the time when the component can be used. The system cur-
rently makes no assumptions about the time taken to wake
up for the components over which explicit power control is
exercised.

4.3.2. Microcontroller The microcontroller is used to
handle irregular events, as discussed in previous sec-
tions, such as system initialization and reprogramming.
The microcontroller is a simple non-pipelined microcon-
troller. It implements an 8-bit Instruction Set Architecture
(ISA). We plan to leverage currently available computa-
tional cores with necessary modifications for our low-power
features.

4.3.3. Event ProcessorThe event processor is essentially
a programmable state machine designed to perform the
repetitive task of interrupt handling. Figure 2 illustrates a
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simplified version of the actual state machine within the
event processor. Because the event processor is an impor-
tant component of our architecture we now explain its func-
tionality in detail. The event processor idles in the READY
state until there is an interrupt to process. When an interrupt
is signaled, the event processor transitions to the LOOKUP
state if the data bus is available, i.e., the microcontroller
is not awake. If not, the event processor transitions to the
WAIT BUS state and waits until the microcontroller relin-
quishes the data bus. In the LOOKUP state, the event pro-
cessor looks up the ISR address corresponding to the inter-
rupt. The lookup table is stored in memory, and the starting
location of the table, offset by an amount proportional to the
interrupt address, contains the address of the event proces-
sor ISR. When the lookup is complete, the event processor
transitions to the FETCH state, in which the first instruc-
tion at the ISR address discovered in the LOOKUP state is
fetched. The event processor stays in the FETCH state un-
til all the words of the current instruction have been fetched,
and then it transitions to the EXECUTE state.

The instructions within an event processor ISR can
be one of the following – SWITCHON, SWITCHOFF,
READ, WRITE, WRITEI, TRANSFER, TERMINATE,
or WAKEUP. Table 2 provides a summary of the opera-
tions corresponding to the instructions. The event processor
has one register used to store temporary data. The op-
codes are each 3 bits and the instructions vary in the num-
ber of words they span.

The EXECUTE state holds until the instruction has been
completely executed, e.g., the complete transfer has been
completed for a TRANSFER instruction. A component is
completely powered on for the SWITCHON instruction. If
the instruction is not a WAKEUP or TERMINATE instruc-
tion, the event processor returns to the FETCH state and
fetches the next instruction in the ISR for execution. For
WAKEUP or TERMINATE instructions, the event proces-
sor returns to the READY state and waits for the next inter-
rupt.

4.3.4. Timer SubsystemThe timer subsystem consists of
a set of four 16-bit timers in our current implementation.
Each timer is essentially a counter that counts down to zero
from a pre-configured value, and then generates an alarm
event. The timers can be chained to allow alarm events to
be generated for larger intervals of time. Each timer can be
paused, disabled, and reconfigured.

4.3.5. Message ProcessorOur architecture enables hard-
ware accelerators designed for specific tasks. For example,
our architecture uses a message processor block to handle
regular message processing tasks, including message prepa-
ration and routing. Simple tasks such as table lookup and
check-sum calculations can be sped up using hardware im-
plementations (with low power overhead).

Currently, the message processor interface has two mem-
ory blocks for each message as well as memory-mapped
control words. Data is transfered to the message processor
from sensor devices and once the message has been pre-
pared the message processor fires an interrupt and the mes-
sage is sent to the radio. All incoming messages are trans-
fered from the radio to the message processor. If the mes-
sage is a regular message, the message processor looks up
whether the message should be forwarded. If the message is
an irregular message, then an interrupt is fired and the event
processor wakes up the microcontroller. Our message pro-
cessor model handles standard 802.15.4 packets [28].

4.3.6. Radio Like the new Telos mote, our architecture in-
terfaces with the low-power CC2420 802.15.4 radio from
ChipCon [3]. This radio provides hardware support for tasks
such as start-symbol detection, error detection, etc., and we
plan to take advantage of these features as they are con-
sistent with our system design approach. A simple radio
model enables us to fully test our system architecture con-
cepts without having to explicitly build a transceiver.

5. Process Technology and Circuit Techniques

In addition to architectural innovations, circuit tech-
niques and the choice of process technology can signifi-
cantly impact the power consumed by the sensor nodes.
This section presents the results of a process technol-
ogy simulation study and the architecture and circuit design
of a low-power SRAM. Traditionally, the choice of pro-
cess technology has been straight forward. To push the
envelope of performance, the most advanced technol-
ogy with the smallest feature size and smallest parasitic
capacitance should be used. However, subthreshold leak-
age current is becoming a significant fraction of the total
power in designs that use advanced deep-submicron pro-
cess technologies [1]. When choosing a process technology
for sensor network hardware one must choose the technol-



Instruction Size Description
SWITCHON One word Turn on a component and wait for acknowledgment that the component is ready to proceed.
SWITCHOFF One word Turn off a component
READ Three words Read a location in the address space and store to the register
WRITE Three words Write a location in the address space from the register
WRITEI Three words Write an immediate value to a location in the address space
TRANSFER Five words Transfer a block of data within the address space
TERMINATE One words Terminate the ISR without waking up the microcontroller
WAKEUP Two words Terminate the ISR and wake up the microcontroller at a microcontroller ISR address

Table 2. Event Processor Instruction Set

Figure 3. Analysis of process technology for low-duty cy-
cle sensor node applications

ogy that considers both active and leakage power in the
context of low duty cycle operation.

5.1. Simulation Study

To study the power and performance tradeoffs of differ-
ent technologies, we ran a comprehensive set of HSPICE
simulations for several eleven-stage ring oscillators com-
prised of various static CMOS gates. Simulations were run
across a wide range of temperatures, supply voltages, and
process technologies. Transient simulation results of the os-
cillators generated active power data. Leakage power was
simulated by disabling the feedback in the ring.

Given the characteristically low workload requirements
of sensor network applications, leakage power is a ma-
jor concern. Several researchers have studied and modeled
leakage power, but they do not compare different process
technologies [2, 6, 14, 18]. Our simulation results show that
even with aggressive voltage scaling, deep sub-micron tech-
nologies incur higher leakage current penalties, which dis-
courage their use for sensor network applications.

Older technologies with higher threshold voltages ex-
hibit lower leakage current than newer, faster technolo-
gies that utilize lower threshold voltages to enable aggres-
sive voltage scaling. However, advanced deep sub-micron

technologies consume less active power. We assume a syn-
chronous design that operates off of a globally distributed
clock.1 To account for both sources of power, we used Equa-
tion 1 to model the active and leakage power tradeoff,

Ptotal = α(T/Ttarget)Pactive+(1−α(T/Ttarget))Pleakage

(1)
whereα is the activity factor andTtarget is the maximum
expected cycle time required to accommodate all applica-
tions. We chose30µs, which is the time a typical 802.15.4
radio takes to transmit one byte of data [28]. T,Pactive,
and Pleakage are the measured period of oscillations, ac-
tive power, and leakage power, respectively, for each tech-
nology node, temperature, device, and voltage simulated.
Figure 3 presents a 3D illustration of Equation 1, which
compare total power across Vdd and activity for different
technology nodes. Supply voltage was scaled to the lowest
value that was still less thanTtarget. Notice that more ad-
vanced deep sub-micron technologies consume much less
power for high activity factors compared to older technolo-
gies. However, for low activity factors, expected for sensor
network applications, leakage power dominates. Hence, the
most advanced technologies are less desirable due to their
higher leakage characteristics. The process decision should
balance active energy and leakage power for the activity fac-
tor ranges of the applications detailed in Section 3.

5.2. Low Power Memory Design

In order to optimize the power consumed by our architec-
ture, we designed a 2-kilobyte custom on-chip SRAM. The
architecture’s overarching paradigm of switching off un-
needed circuit elements is present in the memory. For exam-
ple, the SRAM is divided into banks of 256 bytes to allow
unused portions of memory to be Vdd-gated. The SRAM
architecture is illustrated in Figure 4. Both leakage power
and active power can be reduced through this banked archi-
tecture. By partitioning the memory, the voltage supply to

1 While an asynchronous implementation may benefit from the event-
driven nature of sensor network applications, we do not feel the poten-
tial to reduce active power is justified in light of higher design com-
plexity and circuit overhead required for asynchronous operation. Fur-
thermore, asynchronous designs do not reduce leakage power.
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Figure 4. Power usage characteristics of a 1KB SRAM
block.

Active Power Idle Power Gated Power

1.93µW 409 pW 342 pW

Table 3. Power for a Single 256B Bank and All Associ-
ated Control Circuitry (Vsupply = 1.2V)

unused banks can be shut off through Vdd-gating, result-
ing in over a 98% reduction in power drawn by the mem-
ory bank – when not Vdd-gated the bank draws 66.5 pW
of power, compared to less than 1 pW when gated. It takes
950ns (or less than one clock cycle) to power up a bank af-
ter it has been gated.

The SRAM was layed out in a 0.25µm technology and
the extracted netlist (with parasitics) was simulated using
Nanosim[22]. The power characteristics for a single bank
of memory with all associated control circuitry are summa-
rized in Table 3. The 2-kilobyte SRAM design consumes
2.07µW while operating at 100kHz and 1.2V.

Future revisions of the memory will also include an in-
telligent precharging scheme. Precharging each bitline con-
sumes the most power when a bank is active, so we envision
reducing this power by only precharging the bitlines of the
cells that will be accessed. In order to do this we will have to
include additional decoder and precharge control circuitry.
However, we believe this cost will be offset by a 35% reduc-
tion in total active power when this scheme is implemented.

6. Proof of Concept Results

6.1. Performance Methodology and Estimates

While the performance requirements of wireless sensor
nodes are very low, the performance of our architecture rel-
ative to general-purpose microcontrollers is an important
issue, because it determines the minimum required clock
rate of our system. In this section, we present our perfor-

mance modeling methodology and cycle-level comparisons
between our architecture and the Atmel Atmega128 micro-
controller used in the Mica2 sensor node.

6.1.1. Performance Modeling - SystemC SimulatorWe
used a cycle-accurate simulator written in SystemC to char-
acterize the cycle-level behavior of our architecture. Sys-
temC is a set of C/C++ libraries that is used to model high-
level architectural behavior [15]. Currently, the simulator
has 8000 lines of code (excluding SystemC library code).
We implemented a modular design to which models of slave
components can be easily attached. The SystemC model al-
lowed us to explore several design choices rapidly until we
arrived at the current version of our architecture. We also
utilized this model to provide component utilization statis-
tics that allowed us to perform power analysis for various
workloads.

The simulator can currently take in assembly code for
both the microcontroller and the event processor, as well as
other simulation data required such as received data pack-
ets and data sampled by the sensor block. Thus, it is pos-
sible to specify complete applications. A few applications
were mapped to the simulator by hand (we are considering
compilation from higher-level languages). The same appli-
cations were also ported to a simulator for the MICA plat-
form, and the cycle counts for both platforms were collected
and compared.

6.1.2. Test Application In order to evaluate our architec-
ture, we began with the simplest application that is repre-
sentative of existing real-world applications such as habi-
tat monitoring [23]. We then added complexity to this ap-
plication in stages and the final application is fairly com-
plex, including standard sensing and transmission of data,
multi-hop routing, and remote application reconfiguration.

We describe the four application versions according to
the complexity added in each stage:

1. Periodically collect samples and transmit packets con-
taining the samples.

2. Periodically collect samples and transmit packets con-
taining the samples if it is above a certain threshold.

3. Receive and forward incoming messages from other
sensor nodes.

4. Receive and handle incoming reconfiguration mes-
sages. (These messages include changes to the sam-
pling period and the sensor threshold value.)

The base application collects samples and transmits the
packets. For our architecture, the processing of a sample is
initiated by the timer firing an interrupt. The event processor
responds to this interrupt by sampling the ADC and trans-
ferring the value to the message processor. The message
processor prepares the message and signals an event that
causes the event processor to transfer the packet to the radio



<timer intaddr>:
SWITCHON <sensor>
READ <sensor:mem>
SWITCHOFF <sensor>
SWITCHONN <message proc>
WRITE <message proc>
WRITEI <ctrl_wrd> <message proc>
TERMINATE;

<message proc mesg. ready intaddr>:
SWITCHON <radio>
TRANSFER <msg size> <message proc> <radio>
SWITCHOFF <message proc>
WRITEI <ctrl_wrd> <radio>
TERMINATE;

<radio, message sent intaddr>
SWITCHOFF <radio>
TERMINATE;

Timer Interrupt

Collect Sensor Data

Prepare Message

Send Radio Message

Figure 5. Diagram and Code of Monitoring Application.
The code displayed are the ISR routines for the event pro-
cessor. Actual address values have been omitted to make the
code easy to read.

block and setup the radio for transmission. The pseudo-code
for the program that runs on the event processor for this ap-
plication is shown in Figure 5. Similarly, the second version
of the application includes a very simple threshold filtering
operation.

In a multi-hop routing environment, message forwarding
is expected to be a fairly frequent activity and we, therefore,
map it as a regular event in our architecture. When a mes-
sage arrives, an interrupt is fired by the radio block to indi-
cate that a packet has been received. The event processor re-
sponds by transferring the packet to the message processor,
which signals whether the message has been previously re-
ceived (this is performed by searching for the packet ID in
the routing table). If the message has been previously re-
ceived, the packet is dropped, otherwise the event processor
sets up the radio to forward the packet.

The last version of the test application contains two ir-
regular events that require intervention from our general-
purpose microcontroller. In this case, message handling is
the same as in the preceding case until the message proces-
sor receives the packet. If the message processor determines
that the message is not a simple forwarding request, then it
signals an interrupt indicating that intervention by the mi-
crocontroller is required. The event processor wakes up the
microcontroller in response to an irregular event signaled
by the message processor. The microcontroller decodes the
message to determine whether the timer needs to be recon-
figured or whether the filter threshold needs to be modified.

6.1.3. Cycle Performance EstimatesCycle count results
using our SystemC simulator and the Mica2 cycle simula-
tor, Atemu [11], for each application task are shown in Ta-
ble 4. Each row represents the measurement of a particular
segment of code. The first two rows provide measurements
of the send path of our application as described in the pre-

Our
Measurement Mica2 System Speedup

Total send path w/out filter 1522 102 14.9
Total send path w/ filter 1532 127 12.1
Process regular message 429 165 2.6
Process irregular message
Timer change 234 136 1.7
Threshold change 11 114 0.096

Units Cycles Cycles ×

Table 4. Comparison of cycle count for the test applica-
tion written on our architecture and on TinyOS for the
Mica Platform.

vious section. The next two rows display cycle comparisons
of the receive path for both regular and irregular messages.
As explained in Section 4.3.6, our architecture assumes the
use of 802.15.4 compatible radios like the CC2420 from
ChipCon [3], which implements the radio stack in hard-
ware. Therefore, to ensure an accurate comparison we did
not count the cycles for the instructions in the TinyOS ra-
dio stack run on the Mica2.

For the Mica2 platform, processing a sample includes
the software-equivalent implementation of our test appli-
cations, in addition to the overhead of TinyOS, required
for context switching and task scheduling. Our architecture
handles task scheduling natively in the design and, there-
fore, we see a large difference in cycle counts. Because our
architecture is optimized for regular events, it does not show
improvements for irregular tasks that require the general-
purpose microcontroller.

It is clear that the emphasis of our proposed architecture,
for typical events seen within a sensor node, has significant
cycle-count advantages over commodity systems. These ad-
vantages enable our architecture to operate at significantly
lower clock rates while maintaining sufficient performance
to keep up with the 802.15.4 radio standard and process sen-
sor data requests at a level required by typical applications.

For the Mica2 platform, the applications were written us-
ing the TinyOS component library. Because the test appli-
cations can be created using typical TinyOS components,
programming these applications is straight forward. How-
ever, the code size of the final application incorporating all
components was 11558 bytes for instructions when ported
to the Mica2 platform. This is significant compared to the
180 byte memory footprint required for our system.

Ideally, one would like to compare our results with other
designs specifically tailored for sensor networks such as the
SNAP architecture [5]. Unfortunately, this is complicated
by the fact that the SNAP paper and results assume the older
radio chip and software stack, and we do not have access
to their simulation environment. Hence, we can only com-
pare two relatively simple applications that were reported
in the paper:blink, which sets a timer to periodically inter-



rupt the processor to blink an LED; andsense, which peri-
odically samples data from the ADC and computes a run-
ning average. From the published results, SNAP takes 41
cycles and 261 cycles respectively, while our architecture
can complete these operations within 12 cycles and 24 cy-
cles. For comparison, the Mica2 requires 523 cycles to run
blink and 1118 cycles forsense.

As can be seen from Table 4, the number of cycles
taken to process one timer event for the sample, filter, and
transmit application takes 127 cycles. The cycle count at
100 KHz gives us a maximum sample rate of roughly 800
samples/second. This maximum rate seems very reason-
able considering the fact that most documented sensor net-
work applications have sample rates less than a 100 sam-
ples/second. It should also be noted that the clock rate was
chosen to accommodate the radio communication data rate
of the 802.15.4 standard, 250 Kbits/second [28].

6.2. Power Estimation Methodology and Results

6.2.1. MethodologySince the power consumption of our
system can be accurately characterized only after a fabri-
cated chip has been measured, we restrict ourselves to ob-
taining a conservative estimate based on the active power
consumption of the system for its most frequent activities,
i.e. the processing of regular events. Again, since we ex-
pect to use commodity radio and sensor components, we do
not consider these components in our estimates. Because we
have not completed the floorplan for our system, we also do
not currently include power estimates for global routing sig-
nals, buses, and clocks, although we do consider local clock
driver circuitry.

The event processor is the largest power consumer in the
system since this is a component that must always be pow-
ered. Moreover, this block has the most complex micro-
architecture of all of the components involved with regu-
lar event processing. Hence, for this block, we have ob-
tained conservative estimates by going through the com-
plete process of synthesizing a VHDL model, performing
placement, routing, and simulating the final netlist. For the
other components, we have broken them down into common
substructures such as incrementers, comparators, buffers,
etc., and estimated the power consumption numbers for all
of these components by simulating netlists synthesized for
these sub-structures and combining the results. For all of the
memories used (including the main memory block), we use
the estimates described in Section 5.2.

6.2.2. Power EstimatesThe power estimates for the main
components of the system are presented in Table 5. The
power numbers are shown for active and idle modes (gated
clock) of each component at a supply voltage of 1.2V and
a clock frequency of 100KHz. In the subsection on work-
load analysis (Section 6.3), the power estimates are corre-

Idle/Active Vdd 1.2(V)

Event Processor
Active 14.25µW

Idle 0.018µW

Timer
Active 5.68µW

Idle 0.024µW
Message
Processor

Active 2.57µW
Idle 0.025µW

Threshold Filter
Active 0.42µW

Idle ∼0.0µW

Memory
Active 2.07µW

Idle 0.003µW

System
Active 24.99µW

Idle 0.070µW

Table 5. Power Estimates for Regular Event Processing
in the System

lated with duty cycle values for sample application work-
loads to provide a better understanding of the actual power
consumption of the system operating under practical situa-
tions.

The active power consumption corresponds to a situation
in which the event processor always has an outstanding in-
terrupt to handle. Therefore, the event processor is always
switching in this mode because it begins to process a new
interrupt the moment it gets done with the current one. The
idle power corresponds to a duration in which the event pro-
cessor is not provided an interrupt to handle. Both of these
situations are extreme cases that we do not expect in nor-
mal situations.

Implementation details of each block were required to
provide accurate power estimates. The message processor
block is comprised of a CAM (Content Addressable Mem-
ory) structure for the routing table, a counter for keeping
track of the packets transmitted, and two 32-byte buffers to
allow packet processing and transfer to/from the message
processor to take place in parallel. The timer block con-
sists of four decrementers with registers to store the cur-
rent count, zero-detect logic to fire interrupts, and a small
buffer to store current timer configuration. The threshold fil-
ter consists mainly of a comparator and a register to store
the threshold value. Active power estimates are obtained
for cases in which the relevant sub-structures within a slave
component are always switching, and idle power estimates
are obtained for settings in which none of the sub-structures
are switching. Finally, the system active and idle power es-
timates were obtained by summing up the active and idle
powers for the components. It is important to note that the
idle power numbers do not reflect Vdd-gating as this fea-
ture has not been fully characterized for these components.
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Figure 6. Estimated power varying node duty cycle sam-
ple application A duty cycle of 1.0 is roughly 800 tasks per
second.

6.3. Workload Analysis

The active power estimates presented in the previous sec-
tion are conservative for practical applications since compo-
nent activity patterns due to application workload were not
taken into account. We now correlate the performance and
power estimates obtained in Sections 6.1.3 and 6.2.2 for a
real application to obtain power numbers that take into ac-
count the utilization of each component of the system. The
application we consider for this analysis is the second appli-
cation described in Section 6.1.2, i.e. a sample is collected
periodically, filtered, and a packet is transmitted contain-
ing the sample if it passes filtering. For the sake of sim-
plicity, we assume that the sample is always transmitted,
i.e. the sample passes the threshold check. This case is the
more conservative one, because it is when the system has to
do more work and all components are active sometime dur-
ing the processing of one sample.

An upper bound on the sample rate is obtained by as-
signing a utilization ratio of 1 to the event processor, i.e.
the event processor is always active. At this utilization ratio
for the event processor, the system is processing the max-
imum rate of 800 samples per second as described in Sec-
tion 6.1.3. The power consumption of each component (and
the system) is calculated considering the utilization of the
component within the system for several event processor
utilization ratios, beginning from the limiting ratio of 1. As
a point of reference, the volcano [8] deployment has a duty
cycle of 0.12 and the GDI experiment [23] has a duty cy-
cle of approximately 0.0001.

The resulting curves for each component and the sys-
tem total are shown in Figure 6. For this application, one of
the 4 timers in the timer subsystem is always on while the
rest are idle. Also, the threshold filter is used for 3 cycles
out of the total system 127 cycles per sample, and the mes-

sage processor is used for 70 cycles per sample. The system
power consumption drops to below 2µW for even reason-
ably high sample rates.

For the purpose of comparison, the power consumption
of the Atmel microcontroller is also estimated for the sam-
ple rates corresponding to the utilization points of the event
processor. The idea is to compare the power numbers for the
same work done for both systems, with the utilization of the
Atmel microcontroller normalized to those of the event pro-
cessor in our system. Again, we use the cycle counts pre-
sented in Table 4 for the sample-filter-transmit application.
For the active and idle power estimates, we use the mea-
sured current values for the Atmel microcontroller in Ta-
ble 1. We found that the trends are similar to Figure 6 but
with a power consumption of a little over two orders of mag-
nitude higher than our architecture.

With the advent of the TI-MSP430 next-generation
general-purpose microcontroller used in the Telos mote, the
energy consumption difference will likely shrink [17, 24].
For example, the TI-MSP430 reports an active mode power
dissipation of between 616µW and 693µW at 1MHz and
2.2V. It has been reported for other sensor network applica-
tions that the 32KHz idle mode, which dissipates power be-
tween 44µW and 123µW, is the most practical low-power
mode for the TI-MSP430 because of the ability to man-
age peripherals and service interrupts in this mode [27].
If we assume equal cycle-level performance with the At-
mel processor, with a sampling rate corresponding to the
0.1 utilization point for our system, the MSP430 will con-
sume between 113µW and 192µW. At this time we are
unable to compare power results with the SNAP proces-
sor because the published results do not include enough
data for us to make an accurate comparison.

7. Conclusion and Future Directions

This work describes a holistic approach to the design of a
wireless sensor network device. Employing an application-
driven design philosophy, this work describes the selec-
tion of process technology, circuit design considerations,
and a novel system architecture for sensor devices. In order
to provide efficient operation and enable fine-grain power
control, our architecture provides explicit support for the
event-driven nature of sensor network applications and pro-
vides key functionality in separate hardware blocks. Our es-
timates for the key components of the system include a to-
tal active power of∼25µW and idle power is∼70nW. With
a duty cycle of 0.1 or less, the average power drops to less
than 2µW. These results represent a substantial savings over
existing systems.

This project is currently in the circuit-level implementa-
tion phase of the architecture described in this paper, and we
expect to tape out a chip implementing key components of



our architecture to validate design decisions within the next
year. We plan to utilize the lessons learned from this im-
plementation work to guide the development of future op-
timizations to our base architecture, and we plan to con-
sider additional slave devices to expand the space of well-
optimized applications.
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