
..

HELIX: MAKING THE EXTRACTION
OF THREAD-LEVEL

PARALLELISM MAINSTREAM
..

IMPROVING SYSTEM PERFORMANCE INCREASINGLY DEPENDS ON EXPLOITING MICRO-

PROCESSOR PARALLELISM, YET MAINSTREAM COMPILERS STILL DON’T PARALLELIZE CODE

AUTOMATICALLY. HELIX AUTOMATICALLY PARALLELIZES GENERAL-PURPOSE PROGRAMS

WITHOUT REQUIRING ANY SPECIAL HARDWARE; AVOIDS SLOWING DOWN COMPILED

PROGRAMS, MAKING IT A SUITABLE CANDIDATE FOR MAINSTREAM COMPILERS;

AND OUTPERFORMS THE MOST SIMILAR HISTORICAL TECHNIQUE THAT HAS BEEN

IMPLEMENTED IN PRODUCTION COMPILERS.

......Although chip multiprocessors
are commonplace, compilers rarely exploit
the cores they make available. There has
been exciting research on automatic paralleli-
zation of programs, but the results have not
found their way into mainstream compilers.
Developers need a mechanical way of trans-
forming sequentially designed source code
into multithreaded object code. What will
it take to enable compilers to extract
thread-level parallelism as routinely as they
now exploit instruction-level parallelism?

Our work on Helix suggests an answer.1

Helix is a prototype compiler that extracts
thread-level parallelism automatically from
sequential programs by transforming select
loops into parallel form.

To qualify for routine use in a general-
purpose compiler, an optimization technique
needs at least three properties. First, it must
be fully automatic, not dependent on pro-
grammer guidance or intervention. Second,

it must nearly always improve the quality
of the object code, and almost never make
it worse. Third, it must rely only on hard-
ware features that are widely available in
commercial processors. Helix has all three
of these properties. It is fully automatic,
not dependent on source code annotations
or modifications by the user. It never produ-
ces code that slows down execution, and it
speeds up regular and irregular workloads
significantly on a real multicore commodity
processor. For 13 C-language benchmarks
from the SPEC CPU2000 suite, it yielded
overall speedups averaging 2.25� on a six-
core CPU, with a maximum of 4.12�.

Historically, parallel-programming lan-
guages have allowed programmers to distrib-
ute loop iterations over processing elements,2

which Helix does automatically. We compare
Helix to this traditional implementation and
show that our automatic approach liberates
more parallelism and achieves better speedup.

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 8

Timothy M. Jones

University of Cambridge

Glenn Holloway

Gu-Yeon Wei

David Brooks

Harvard University

Simone Campanoni

Harvard University

..

8 Published by the IEEE Computer Society 0272-1732/12/$31.00 �c 2012 IEEE

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

In this article, we describe Helix and ex-
plain why the emergence of chip multi-
processors has made it practical. Through
measurements of our working system, we
show that even for a target architecture
with unfavorable characteristics, Helix avoids
slowing programs down, and we analyze the
sources of its speedups for a typical modern
target processor.

Motivation
Like a physician, a production compiler

should ‘‘first, do no harm.’’ If a code optimi-
zation algorithm risks slowing down the
compiled program, it must be accompanied
by an effective, efficient test for deciding
whether to apply the transformation.

Recently, several research projects have
succeeded in extracting threads from sequen-
tial code.3-8 Although such approaches are
promising, they lack the applicability test
that can guarantee attempted optimizations
will do no harm. The complexity of their so-
phisticated transformation algorithms makes
it hard to efficiently model their effects. On
the other hand, Helix includes a heuristic
that’s inexpensive to compute and effective
at predicting when its code transformations
will improve performance. By applying this
heuristic to profiles obtained from training
runs of the program being compiled, Helix
always avoids slowdowns and often produces
significant speedups.

Helix is based on a simple idea: to paral-
lelize a loop, distribute its iterations among
several hardware threads running on separate
cores of a single processor. Spreading loop
iterations over separate processing elements
is not new; it has been done since multi-
processing computers first appeared.2 This
approach is extremely sensitive to the cost
of communication between processing ele-
ments, because data consumed by one itera-
tion might be produced by an earlier
iteration. This sensitivity drives optimizer de-
sign toward solutions that minimize commu-
nication overhead, usually by giving up some
thread-level parallelism in the resulting com-
piled code.

Every data dependence that crosses a loop
iteration boundary gives rise to some code
that must be executed in loop-iteration
order, even when the iterations are running

in separate hardware threads. We call this
code a sequential segment because, for a
given data dependence, the sequential seg-
ment can’t be run in parallel. Its execution
by separate threads must be synchronized
to maintain the correct evaluation order. Se-
quential segments arising from different data
dependences can in principle be executed in
parallel. But treating a loop’s sequential seg-
ments as independent in this way requires
more synchronization between threads. His-
torically, when loop iterations were run in
parallel, their sequential segments were
clumped together to minimize communica-
tion overhead. That constraint reduces paral-
lelism, both because sequential segments
never run concurrently and because intra-
iteration dependences trap some code within
the sequential clump that could otherwise re-
main unsynchronized, outside all sequential
segments.

With the emergence of multicore micro-
processors, interprocessor communication
costs have dropped dramatically, because in-
dependent processing elements on a single
chip can communicate through a shared
memory cache. With current commodity
processors, Helix can greatly reduce commu-
nication overhead by exploiting both the
memory consistency model and simultane-
ous multithreading (SMT). Because Helix
is less sensitive to communication overhead,
it doesn’t have to compromise thread-level
parallelism, so more code from a parallelized
loop can be run in parallel.

Code generation
Helix chooses the most profitable loops to

parallelize by relying on a profile obtained
using a representative input (for example, a
SPEC benchmark training input). Parallel-
ized loops run one at a time. The iterations
of each parallelized loop run in round-
robin order on a single processor’s cores.
Helix applies code transformations to mini-
mize the inefficiencies of sequential seg-
ments, data transfer, synchronization, and
thread management. Our paper describing
Helix contains more details.1

Helix inserts code to ensure that data
dependences across loop boundaries are
implemented correctly. That creates the
sequential segments. Data produced by

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 9

..

JULY/AUGUST 2012 9

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

iteration i and consumed by iteration i + 1 is
forwarded through memory from the thread
for i to that for i + 1. If the distance between
the producer and consumer is greater than
one iteration, data passes through successive
threads to its destination.

Although the sequential segments of a
given dependence must run in loop-iteration
order, those of different dependences can run
in parallel, as in Figure 1, where sequential
segments 1 and 3 overlap.

Transferring data between threads could
be a significant source of overhead. However,
we’ve shown that carefully selecting which
loops to parallelize keeps the amount of
data forwarded between threads small, com-
pared with the amount consumed within
each iteration.1

Threads synchronize by sending signals.
When a sequential segment ends, for exam-
ple, a signal to the successor thread notifies
it that the corresponding sequential segment
can start. Helix minimizes the number of sig-
nals sent by exploiting redundancy among
them. We have shown that only 10 percent
of signals remain.1 Moreover, Helix reduces
the perceived signal latency by exploiting
the underlying platform’s SMT technology.
It couples each thread running an iteration

with a helper thread that runs on the same
core and ensures that intercore transmission
of each signal begins as soon as it is sent.
(Exploiting SMT to help critical threads
was introduced by Chappell et al.,9 and it
was later adapted to different domains.10,11)

Choosing loops to parallelize
Helix devotes all processor cores to one

parallelized loop at a time, so multiple inde-
pendent loops can’t run concurrently, and
loops nested within a parallel loop can’t be
selected for parallelization. Therefore, select-
ing the most profitable loops to transform
(loops that, if parallelized, best speed up
the program) is critical for achieving signifi-
cant speedups.

Speedup model. Our heuristic chooses loops
by using a simple model based on Amdahl’s
law, which describes the effect of applying N
cores in parallel to a program that executes
sequentially in unit time. However, paralleli-
zation of a loop can add significant overhead.
Therefore, in choosing loops, we incorporate
overhead into Amdahl’s law to produce the
following model for the speedup of a paral-
lelized program:

Torig

Tseq þ
P

N
þ O

Here, Torig is the time consumed by the
unparallelized program, Tseq is the time
spent running sequential code in the paral-
lelized program, and P ¼

PLoops
i¼1 Pi , where

Loops is the number of parallelized loops,
and Pi is the time spent running the code
of loop i outside its sequential segments.
Overhead O ¼

PLoops
i¼1 Oi , where Oi, the

added overhead for loop i, is given by

Oi ¼ Confi þ Sigi � S þWordsi �M ð1Þ

Here, Confi is the time spent configuring
loop i, Sigi is the overall number of signals
sent during loop i (computable from the
static number of sequential segments and
the iteration and invocation counts of i),
and S is the time spent per signal, which
is assumed to be constant. Finally, Wordsi
is the number of CPU words transferred be-
tween loop iterations, and M is the time

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 10

for (...){
1: a = update(a);
2: work1(a);
3: b = update(b);
4: work2();

}

2

1 3

4

Core 0 Core 1

Time

1

2

3

4

1

2

3

4

1

2

Intra-iteration data
dependences

Loop-carried data
dependences

Sequential
segments

Parallel
code

Figure 1. Execution of code produced by

Helix for a dual-core processor. Code

blocks 1 and 3 must each be executed

sequentially, but because they’re indepen-

dent, Helix overlaps them in time.

..

10 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

required to transfer a CPU word between
cores.

Our target platform determines the fixed
model parameters S and M. To obtain
parameters for loop i (Pi, Confi, Sigi, and
Wordsi), Helix parallelizes and profiles each
loop individually.

Loop selection is the only facet of Helix
that uses profiles. Although some elements
of the speedup model might be accurately
predictable through static analysis alone, it
would be difficult to estimate Wordsi, the
data traffic between threads, without profiling.
This is lightweight, embarrassingly parallel
profiling, which measures only loop invoca-
tion and trip counts, data traffic, and the
time spent in sequential segments. Interproce-
dural static analysis typically takes much lon-
ger than parallelizing and profiling loops.

Loop selection. The Helix loop selection al-
gorithm builds a nesting graph for the
whole program, in which each loop is repre-
sented by a node, and directed edges connect
each node to those for the immediately
enclosing loops. The algorithm labels each
node with two values, T and maxT, each rep-
resenting time savings due to parallelization.
A loop’s T value is the total amount of time
(over all loop invocations) that would be
saved by parallelizing that loop. The maxT
value is either the same as T or else the
total time saved by parallelizing a set of sub-
loops, if that total is greater than T. Initially,
using profiles obtained by parallelizing each
loop individually, Helix sets both T and
maxT for each node to the time saved by exe-
cuting the corresponding loop in parallel
form. Then, leaving T unchanged, it propa-
gates new maxT values through the graph by
replacing each maxT with the sum of the
maxT values of immediate subnodes when-
ever that sum exceeds the current maxT
value. Propagation continues until a fixed
point is reached.

Helix then collects the set of loops to par-
allelize by scanning the labeled nesting graph,
starting from the outermost loops. Whenever
maxT exceeds T, it searches more deeply,
because parallelizing a collection of more
deeply nested loops saves more time than
parallelizing the current loop. The loops cho-
sen are those for which T ¼ maxT > 0.

Algorithm for parallelizing one loop
Our algorithm for parallelizing a given

loop transforms it into the form shown in
Figure 2, where the prologue is the smallest
subgraph of a loop’s control flow graph
that is needed to determine whether the
next iteration’s prologue will be executed,
and the body is the rest of the loop.

Iterations execute without speculation,
each starting in a parallel thread once the
preceding iteration’s prologue has com-
pleted. As the body of iteration i begins,
the prologue of iteration i þ 1 is triggered.
In the steady state, the bodies of multiple
loops execute in parallel.

We call the set of data dependences that
cross loop boundaries DData. By applying
interprocedural pointer analysis to the whole
program,12 Helix identifies the dependences
in DData, and it associates a sequential seg-
ment with each.

Sequential segments. For every data depen-
dence d ¼ (a, b) in DData, Helix inserts
Wait and Signal operations to ensure that
occurrences of a and b in separate loop iter-
ations execute in the correct order. The oper-
ation Wait(d) blocks a thread’s execution
until the predecessor thread sends a data sig-
nal by executing Signal(d). As a result, the

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 11

Body

Sequential
segments

Loop-carried
data dependence
d = (a, b)

...

...

...

Wait (d)
Signal (d)

...

Wait (d)
(a) x = ...
Signal (d)

Wait (d)
(b) ... = x
Signal (d)

Prologue

Sequential
cut

Figure 2. Insertion of Wait(d) and Signal(d) due to a RAW data dependence

d = (a, b). Sequential segments that contain only Wait and Signal operations

handle dependences that span multiple iterations.

..

JULY/AUGUST 2012 11

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

code between Wait (d) and Signal(d) executes
in loop iteration order, satisfying the data de-
pendence d. For example, in Figure 1, blocks
1 and 3 run in loop iteration order, whereas
blocks 2 and 4 execute in parallel.

Helix ensures that every path through the
loop body reaches a sequential segment of
each dependence once, making the number
of data signals sent during one invocation of
a parallelized loop equal to the number of iter-
ations times the number of dependences.

Minimizing signal count. Helix avoids
inserting redundant Wait and Signal opera-
tions. Where possible, it uses a single signal
to synchronize multiple data dependences.

The Wait and Signal operations are
implemented with simple loads and stores,
using a dedicated per-thread memory area.
Depending on the memory consistency
model of the underlying platform, memory
barriers might need to be added before the
loads and after the stores. However, because
this memory has only one reader (the current
thread) and one writer (the predecessor
thread), this is not required on our Intel-
based evaluation system. Dependences that
span more than one iteration are synchron-
ized by signals sent through the intervening
iterations.

Helper threads. When core ci sends a signal
to core cj, it writes a value to a designated
memory location, which puts it in the first
private cache of ci. The value is not for-
warded to the private cache of cj until the lat-
ter issues the corresponding Wait operation
(that is, a load instruction). It then takes sev-
eral clock cycles for cj to receive the value
(110 cycles in our testbed). The caches act
as a pull system. However, when cores have
SMT capabilities, Helix adds a helper thread
to each core to pull signals from the destina-
tion side. By issuing a sequence of Wait
operations, one per dependence, the helper
thread on cj prefetches signals from ci as
soon as they are produced. (No synchroni-
zation is needed between a helper thread
and its associated iteration thread. Each re-
mains in lock step with signals from the pre-
decessor core.)

Prefetching works best when signals occur
at regular intervals, so Helix schedules code

to space sequential segments evenly within
a loop’s body. Consider Figure 3, which
shows the runtime execution of a parallelized
loop with three sequential segments, SS 1, SS 2,
and SS 3. The first case, ‘‘No prefetching,’’
represents the execution of the code pro-
duced without using helper threads. In this
case, every signal takes L clock cycles to
pass between cores, because signal forward-
ing starts only when the receiver tries to
enter the corresponding sequential segment.
The second case, ‘‘Unbalanced prefetching,’’
shows execution when helper threads are
used without the scheduling algorithm. In
this case, only the code labeled C, between
SS 3 and SS 1, is long enough to cover the
signal latency, so only signals coming from
SS 1 are fully prefetched; the others are
only slightly prefetched. In the last case,
‘‘Balanced prefetching,’’ Helix has moved
code from segment C into segments A and
B so that the longest paths in each are closer
in length. This code balancing further
reduces the time wasted waiting for signals
to pass between cores.

Evaluation
To demonstrate that our approach is suit-

able for production compilers, we applied
Helix to benchmarks from the SPEC
CPU2000 suite, and we evaluated the result-
ing code on a real processor. Helix never
slowed programs down, and it compared fa-
vorably to DOACROSS, the most similar
historical approach to loop parallelization.

Experimental setting
Helix extends the Intermediate Language

Distributed Just-In-Time (ILDJIT) compila-
tion framework,13 which generates native
machine code from Common Intermediate
Language (CIL) bytecode, so we used
GCC4CLI (http://gcc.gnu.org/projects/cli.
html) to translate benchmarks written in C
to CIL.

Benchmarks. To evaluate our scheme, we
used 13 out of the 15 C-language bench-
marks from the SPEC CPU2000 suite,
because GCC4CLI only supports C. The
data dependence analysis that we rely on
requires too much memory to handle either
176.gcc or 253.perlbmk.12 Using reference

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 12

..

12 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

inputs, we computed speedups resulting
from parallelization by running entire bench-
marks to completion on a real system.

Hardware platform. Our experiments used
an Intel Core i7-980X with six cores, operat-
ing at 3.33 GHz, with Turbo Boost disabled.
The processor has three cache levels. The first
two are private to each core and are 32
Kbytes and 256 Kbytes in size. All cores
share the last-level 12-Mbyte cache, which
is used to forward data values between
cores of the same processor through the
MESIF cache coherence protocol.

Achievable speedups
Figure 4 shows the measured speedups of

entire application runs with reference input
data on real hardware after compilation by
Helix. Baseline runs are fully optimized for
single-threaded execution. The geometric
mean of the resulting speedups on our six-
core CPU was 2.25�, with a maximum of
4.12�.

In the speedup model, Equation 1 is the
basis for selecting loops to parallelize, where
signal latency S is assumed to be four cycles
(the cost of a fully prefetched signal), and
the memory transfer delay M is 110 cycles

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 13

Signal

L: Signal latency

 without prefetching

No
prefetching

Unbalanced
prefetching

Balanced
prefetching

Additional improvement

from code balancing

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

Time

L

SS 2

SS 3

SS 1

A

B

C

SS 2

SS 3

SS 1

A

B

C

SS 2

SS 3

SS 1

A

B

C
SS 2

SS 3

SS 1

A

B

C

L
SS 2

SS 3

SS 1

A

B

C

SS 2

SS 3

SS 1

A

B

C

C

L

C

L

L

L

C

L

L

L

Improvement

from signal

prefetching

Figure 3. Importance of balanced prefetching. Without helper threads or balanced code scheduling, a parallelized loop with

three sequential segments, running on a dual-core processor, might behave as shown on the left. With helper threads but

no code balancing, signal prefetching reduces delay, as shown in the middle. Adding balanced code scheduling further

reduces delay, as shown on the right.

..

JULY/AUGUST 2012 13

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

(experimentally measured using micro-
benchmarks). (Although the level of speedup
achievable by the Helix method is sensitive to
the latency of intercore signals, we haven’t
found the quality of loop selection to be par-
ticularly sensitive to the value of S in the
speedup model.) We used the training inputs
of the benchmarks when collecting profiles
for loop selection. For all evaluations, we
used the reference inputs.

Although the speedup model uses a target
number of cores, N, the resulting code runs
well without alteration when more or fewer
cores are available.

Avoiding slowdown
To confirm that Helix never makes per-

formance worse, we performed two sets of
experiments. The first shows that every
loop chosen for parallelization contributes
positively to the speedups given in Figure 4.
The second shows that Helix tolerates varia-
tion in communication overhead well. For
the latter experiment, we artificially varied
communication overhead by selectively dis-
abling Helix’s algorithms for minimizing it.

Helix doesn’t parallelize loops that could
slow down execution, because the speedup
model we described earlier conservatively
overestimates the runtime overhead of a par-
allelized loop. In fact, because different se-
quential segments run in parallel (as Figure 1
shows), only a subset of data signals slows
down execution, since data signals also exe-
cute in parallel.

This overestimation has two consequen-
ces for selecting loops to parallelize: every
parallelized loop speeds up program

execution, but some loops that could speed
up the execution if parallelized are neverthe-
less not chosen. We evaluated loops of the
second kind for every benchmark we consid-
ered. All together, they covered a negligible
fraction (less than 1 percent) of the original
program’s total execution time.

Chosen loops. Figure 5 shows the cumulative
contributions of successive loops to the
speedups given in Figure 4. Loops are sorted
in descending order according to the number
of clock cycles saved by running them in par-
allel mode.

The speedup fraction increases monotoni-
cally with the number of parallelized loops
(parallelizing each successive loop always
speeds up the program), and the speedup
fraction quickly approaches 100 percent
(that is, a few loops yield most of the achiev-
able speedup), though the rate of conver-
gence depends on the benchmark.

Handling overhead. To show Helix’s effec-
tiveness at tolerating different levels of com-
munication overhead, we configured it to
produce code with different runtime inter-
core communication overheads. We selec-
tively turned off helper threads, or signal
count minimization, or both. Those are the
components of Helix that have the greatest
impact on both communication overhead
and program execution time. For each con-
figuration, we obtained profiles for loop se-
lection by instrumenting code produced for
that configuration.

Figure 6 shows speedups for six cores.
The first bar for each benchmark depicts its

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 14

0

1

2

3

4

gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf geoMean

M
ea

su
re

d
 s

p
ee

d
up

(s
eq

ue
nt

ia
l e

xe
cu

tio
n

=
1)

2 cores 4 cores 6 cores

Figure 4. Whole-program speedups of benchmarks from SPEC CPU2000 achieved by Helix, using two, four, or six cores

on a real six-core processor.

..

14 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

speedup with every optimization that targets
communication overhead disabled. Helix
avoids slowing down execution in this case
by not selecting the same loops as in the
experiments for Figure 4. Even if the latter
are very hot loops, the unoptimized commu-
nication overhead outweighs the benefit of
parallelizing them.

Comparison with historical approaches
As we mentioned earlier, sequential seg-

ments were historically confined to a single
code region per loop because of high com-
munication overhead between processors. A
single sequential segment requires just one
synchronization per iteration. Reducing
thread synchronization overhead lets Helix

break sequential code into multiple segments
and optimize it, liberating code that would
otherwise be constrained by intra-iteration
data dependences. As a result, the sequential
segments for different data dependences can
execute concurrently.

Minimizing synchronization. To evaluate
the importance of reducing thread synchro-
nization overhead, we measured speedups
with either signal count minimization or sig-
nal prefetching disabled. Figure 6 shows the
speedups achieved for six cores when these
optimizations from the Helix transformation
were turned off.

The second and third bars in Figure 6
show what happens when signal prefetching

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 15

0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
p

e
e
d

u
p

 f
ra

c
ti
o
n

Loop count

175.vpr

177.mesa

179.art

181.mcf

183.equake

188.ammp

Figure 5. Percentage of speedups given in Figure 4 achievable using a subset of the loops selected for parallelization. The

monotonic increase in speedup fraction shows that no loop slowed down because Helix parallelized it. Sorting the loops in

decreasing order of cycles saved gives some curves a snakelike shape because of the inverse relationship between cycles

saved and speedup.

0

1

2

3

4

5

gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf geoMean

M
e
a
s
u
re

d
 s

p
e
e
d

u
p

(s
e
q

u
e
n
ti
a
l
e
x
e
c
u
ti
o
n
 =

 1
)

Helix, unbalanced prefetching, no helper threads,
no signal count minimization

Helix, unbalanced prefetching, no helper threads

Helix, unbalanced prefetching,
no signal count minimization

Helix, unbalanced prefetching

Helix

Figure 6. Speedups achieved when signal count minimization and helper threads were disabled, either separately

or together. Balanced prefetching was disabled for these measurements.

..

JULY/AUGUST 2012 15

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

or signal count minimization is disabled, re-
spectively. Only a small speedup is achievable
in either case. When signal prefetching is dis-
abled, fewer signals are sent, but each one
stalls execution for too many cycles (110
on our platform). When signal count mini-
mization is disabled, even if signal prefetch-
ing reduces the overhead per signal, too
many signals are sent overall.

The fourth bar in Figure 6 shows the ef-
fect of using both signal optimizations, but
without the benefit of code balancing for sig-
nal prefetching. The difference between this
fourth bar and the second and third bars
shows that only when both signal optimiza-
tions are used together can significant speed-
ups be obtained. Finally, the difference
between the fourth and fifth bars shows
that spacing sequential segments to help the
signal-prefetching mechanism improves speed-
ups significantly.

Exploiting parallelism among sequential
segments. DOACROSS loop parallelization
groups sequential segments together to re-
duce communication overhead, so we com-
pared Helix with DOACROSS—that is,
with the case in which sequential segments
are clumped in a single code region.2 Because
the original DOACROSS technique does
not include an approach for loop selection,
we used the Helix algorithm, tuned for this
special case, to select the most profitable
loops for DOACROSS. Moreover, we
implemented the DOACROSS technique
using the Helix approach to synchronizing
threads and forwarding data.

Even though the DOACROSS technique
does not include helper-thread support, we
measured its speedups with helper threads en-
abled and disabled (the first and third bars of
Figure 7, respectively). Note that, even when
signaling overhead was minimized, the
speedup achieved for DOACROSS (third
bar) was lower than that obtained by Helix
(fourth bar). This difference was due only
to the additional parallelism liberated by
Helix, which executes sequential segments
in parallel whenever possible.

Figure 7 also illustrates sensitivity to the
signaling-overhead reduction performed by
helper threads. The difference between the
second and fourth bars shows that Helix pro-
duces code that’s very sensitive to prefetch-
ing. On the other hand, code produced by
DOACROSS is almost insensitive to this ef-
fect (compare the first and third bars). The
reason is that DOACROSS is designed
to compromise thread-level parallelism in
order to minimize communication between
threads, leaving almost nothing for helper
threads to optimize. Helix tries to extract as
much parallelism as possible, leaving a big
gap for helper threads to close.

To better understand why the difference
between DOACROSS with helper threads
and Helix is smaller for some benchmarks,
we analyzed the loops parallelized by Helix.
Figure 8 groups these loops into three cate-
gories: no sequential segments, only one
sequential segment, and more than one se-
quential segment. The bar shows the execu-
tion time spent by the original program in
loops of these categories.

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 16

0

1

2

3

4

gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf geoMean

M
e
a
s
u
re

d
 s

p
e
e
d

u
p

(s
e
q

u
e
n
ti
a
l
e
x
e
c
u
ti
o
n
 =

 1
)

Helix, no helper threads, constrained segments

Helix, no helper threads

Helix, constrained segments

Helix

Figure 7. Comparison between grouping sequential segments together and leaving them independent. The first and second

bars compare DOACROSS with Helix, without helper threads for either. The third and fourth bars compare them again,

with helper threads for both. Combining prefetching with concurrency of sequential segments improves performance

significantly.

..

16 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

Because there’s no parallelism that Helix
can exploit beyond that of DOACROSS
when a loop belongs to either the first or sec-
ond categories, the difference between Helix
and DOACROSS is more marked for
benchmarks that spend more time in loops
belonging to the last group. Consider bench-
marks ammp, parser, gap, and twolf. In these
cases, the original program spent between 70
and 90 percent of its time in loops with sev-
eral sequential segments. By exploiting paral-
lelism among those segments, Helix achieved
speedups where DOACROSS could not.

H elix avoids slowing down programs,
parallelizes code automatically, and

doesn’t rely on special hardware, so its
approach is suitable for inclusion in main-
stream compilers. Although a related manual
technique has appeared in production compi-
lers, Helix liberates more parallelism, achiev-
ing better speedup, and does so automatically.

The dominant technique for automatic
loop parallelization in sequential programs
is called decoupled software pipelining
(DSWP).4,6 DSWP transforms a loop to ex-
ploit multiple hardware threads (the number
of which depends on the loop’s original
structure) while tolerating communication
latency among them. In contrast, Helix
applies a simpler transformation, so the
effects of parallelization are easier to predict
with accuracy, and the resulting code adapts
well to varying numbers of available cores. If
the trend toward faster intercore communi-
cation in microprocessors continues, the ben-
efits of Helix’s direct approach should be
increasingly attractive. MICR O

Acknowledgments
This work was sponsored by Microsoft

Research, the European Network of Excel-
lence on High Performance and Embedded
Architecture and Compilation (HiPEAC),
the Royal Academy of Engineering, the
Engineering and Physical Sciences Research
Council, and the National Science Founda-
tion (award number IIS-0926148). Any
opinions, findings, conclusions, or recom-
mendations expressed in this article are
those of the authors and do not necessarily
reflect the views of our sponsors. We thank
the anonymous reviewers for many sugges-
tions that helped improve this article.

..
References

1. S. Campanoni et al., ‘‘HELIX: Automatic

Parallelization of Irregular Programs for

Chip Multiprocessing,’’ Proc. 10th Ann.

IEEE/ACM Int’l Symp. Code Generation

and Optimization (CGO 12), ACM, 2012,

pp. 84-93.

2. R. Cytron, ‘‘DOACROSS: Beyond Vectoriza-

tion for Multiprocessors,’’ Proc. Int’l Conf.

Parallel Processing (ICPP 86), IEEE CS,

1986, pp. 836-844.

3. B. Hertzberg and K. Olukotun, ‘‘Runtime

Automatic Speculative Parallelization,’’

Proc. 9th Ann. IEEE/ACM Int’l Symp. Code

Generation and Optimization (CGO 11),

IEEE CS, 2011, pp. 64-73.

4. J. Huang et al., ‘‘Decoupled Software Pipe-

lining Creates Parallelization Opportunities,’’

Proc. 8th Ann. IEEE/ACM Int’l Symp. Code

Generation and Optimization (CGO 10),

ACM, 2010, pp. 121-130.

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 17

0

20

40

60

80

100

gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf

T
im

e
 (

%
)

1 sequential segment >1 sequential segment0 sequential segments

Figure 8. Breakdown of time spent in the parallelized loops used to achieve the speedups shown in Figure 4 based

on their numbers of sequential segments. The difference in runtime behavior between DOACROSS and Helix increases

with the number of loops having multiple sequential segments.

..

JULY/AUGUST 2012 17

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

5. A. Kotha et al., ‘‘Automatic Parallelization in

a Binary Rewriter,’’ Proc. 43rd Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

IEEE CS, 2010, pp. 547-557.

6. G. Ottoni et al., ‘‘Automatic Thread Extrac-

tion with Decoupled Software Pipelining,’’

Proc. 38th Ann. IEEE/ACM Int’l Symp. Micro-

architecture, IEEE CS, 2005, pp. 105-118.

7. A. Raman et al., ‘‘Speculative Parallelization

Using Software Multithreaded Transac-

tions,’’ Proc. 15th Architectural Support

for Programming Languages and Operat-

ing Systems (ASPLOS 10), ACM, 2010,

pp. 65-76.

8. H. Zhong et al., ‘‘Uncovering Hidden Loop

Level Parallelism in Sequential Applications,’’

Proc. IEEE 14th Int’l Symp. High Perfor-

mance Computer Architecture (HPCA 08),

IEEE CS, 2008, pp. 290-301.

9. R. Chappell et al., ‘‘Simultaneous Subordi-

nate Microthreading (SSMT),’’ Proc. 26th

Ann. Int’l Symp. Computer Architecture

(ISCA 99), IEEE CS, 1999, pp. 186-195.

10. D. Kim et al., ‘‘Physical Experimentation

with Prefetching Helper Threads on Intel’s

Hyper-Threaded Processors,’’ Proc. Int’l

Symp. Code Generation and Optimization

(CGO 04), IEEE CS, 2004, pp. 27-38.

11. C-K. Luk, ‘‘Tolerating Memory Latency

through Software-Controlled Pre-Execution

in Simultaneous Multithreading Process-

ors,’’ ACM SIGARCH Computer Architec-

ture News, vol. 29, no. 2, 2001, pp. 40-51.

12. B. Guo et al., ‘‘Practical and Accurate Low-

Level Pointer Analysis,’’ Proc. Int’l Symp.

Code Generation and Optimization (CGO

04), IEEE CS, 2005, pp. 291-302.

13. S. Campanoni et al., ‘‘A Highly Flexible,

Parallel Virtual Machine: Design and Experi-

ence of ILDJIT,’’ Software—Practice & Ex-

perience, vol. 40, no. 2, 2010, pp. 177-207.

Simone Campanoni is a postdoctoral fellow
in the School of Engineering and Applied
Sciences at Harvard University. His research
interests include code compilation chal-
lenges, static and dynamic compilation,
runtime optimization, and advanced code
analysis to extract coarse-grained parallelism
for many-core architectures from general-
purpose sequential code. Campanoni has a
PhD in information engineering from Poli-
tecnico di Milano University.

Timothy M. Jones is a postdoctoral re-
searcher in the Computer Laboratory at the
University of Cambridge, where he holds a
research fellowship from the Engineering and
Physical Sciences Research Council and the
Royal Academy of Engineering. His research
interests include computer architecture and
compiler optimization, with an emphasis on
automatic parallelization, power reduction,
and the application of machine learning to
compiler and microarchitectural design.
Jones has a PhD in informatics from the
University of Edinburgh. He is a member of
IEEE and the ACM.

Glenn Holloway is a systems programmer
in the School of Engineering and Applied
Sciences at Harvard University. His research
interests include static and dynamic code
optimization, register allocation, and auto-
matic parallelization. Holloway has an AM
in physics from Harvard University.

Gu-Yeon Wei is a Gordon McKay Professor
of Electrical Engineering and Computer
Science in the School of Engineering and
Applied Sciences (SEAS) at Harvard Uni-
versity. He also serves as the associate dean
for academic programs in the SEAS. His
research interests span multiple layers of a
computing system, including mixed-signal
integrated circuits, computer architecture,
and runtime software for automatic code
parallelization. Wei has a PhD in electrical
engineering from Stanford University.

David Brooks is a Gordon McKay Professor
of Computer Science in the School of
Engineering and Applied Sciences at Har-
vard University. His research interests in-
clude power-efficient computer system
design, variation-tolerant computer architec-
tures, and embedded-system design. Brooks
has a PhD in electrical engineering from
Princeton University. He is a member of
IEEE and the ACM.

Direct questions and comments about
this article to Simone Campanoni, Harvard
School of Engineering and Applied
Sciences, Harvard University, 33 Oxford
St., Maxwell Dworkin 308, Cambridge,
MA 02138; xan@eecs.harvard.edu.

[3B2-9] mmi2012040008.3d 1/8/012 17:12 Page 18

..

18 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

Authorized licensed use limited to: Harvard Library. Downloaded on April 27,2022 at 12:45:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

