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Abstract- The design of autonomous robots involves the 
development of many complex, interdependent components, 

including the mechanical body and its associated actuators, 
sensors, and algorithms to handle sensor processing, control, 
and high-level task planning. For the design of a robotic 
bee (RoboBee) it is necessary to optimize across the design 
space for minimum weight and power consumption to increase 
flight time; however, the design space of a single component is 
large, the interconnectedness and tradeoffs across components 
must be considered, and interdisciplinary collaborations cause 
different component design timelines. 

In this work, we show how the development of a hardware 
in the loop (HWIL) system for a flapping wing microrobot can 
simplify and accelerate evaluation of a large number of design 
choices. Specifically, we explore the design space of the visual 
system including sensor hardware and associated optical flow 
processing. We demonstrate the utility of the HWIL system 
in exposing trends on system performance for optical flow 
algorithm, field of view, sensor resolution, and frame rate. 

I. INTRODUC TION 

Highly interdisciplinary research to develop a colony of 
bio-inspired microrobotic bees, or RoboBees, is divided into 
three broad areas: body, brain, and colony. The body group 
investigates the design and manufacturing of an approx­
imately 500 mg flapping-wing MAV including considera­
tions of aerodynamics [1], artificial wings [2], actuation 
of wing stroke [3], control [4], passive stability [5], and 
power electronics [6]. The brain group is developing power 
efficient computational hardware and architectures [7] to 
enable high performance autonomous RoboBee algorithms. 
The colony group investigates algorithms for collective and 
emergent behavior of a group of RoboBees, despite minimal 
programming and communication between individuals [8]. 

The development of effective autonomous RoboBees 
presents a broad range of challenges and difficulties. 
The scale imposes stringent mass «500 mg) and power 
( <350 m W) constraints on all components of the system to 
allow flight of the robot, and any small inefficiency will im­
pact flight time [6]. The robotic system must be optimized for 
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low mass and power consumption within acceptable bounds 
on performance. However, each individual component is 
complex with many design choices to consider. To further 
complicate the optimization problem, the interconnectedness 
between components necessitates that the significant number 
of parameters defining each component not be considered in 
isolation. Due to the interdisciplinary nature of this project, 
each component will be at a different phase of development, 
increasing the difficulty of integration and full system testing. 
The RoboBee will also be targeted at a wide range of appli­
cations, where a design point optimized for one application 
may not be ideal for a different application. 

To overcome these challenges, we have developed a hard­

ware in the loop (HWIL) system. This system is modular to 
allow simultaneous development and evaluation of individual 
components and the entire RoboBee. Fig. I depicts the high­
level vision of the HWIL system. The system provides a 
virtualized environment for the RoboBee to operate in, mod­
ular implementations of each RoboBee component (hardware 
or software), and the ability to obtain any measurements 
of interest. At the start of the project, each component is 
implemented with a high-level functional software model, 
represented to the right of Fig. I. As the project progresses, 
the high-level component models can be replaced with actual 
hardware implementations, shown to the left of Fig. I. 
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This system meets our challenging design needs by 
exposing design parameters of all components for rapid, 
full-system testing and optimization across the integrated 
RoboBee design space. To alleviate different hardware design 
timelines the RoboBee can exist in the HWIL system as any 
combination of components where some may be software 
and others hardware. The system allows measurement of all 
metrics of interest to evaluate performance of the RoboBee, 
and the virtualized environment is reconfigurable, such that 
the RoboBee system can be optimized for widely varying 
environmental conditions. The HWIL system can incorporate 
cost models of power consumption and component weight to 
allow evaluation of tradeoffs between performance and cost 
(weight, power) at both the individual component and full 
system levels. The system allows both flexibility in evaluat­
ing the entire system performance, and targeted exploration 
of the design space of individual components. This work 
introduces the RoboBee HWIL system. 

To demonstrate effectiveness of the HWIL system, we 
explore the design space of a visual sensor and associated op­
tical flow processing components. Optical flow can broadly 
be described as the apparent motion of objects through an 
observer's field of view, given relative motion between the 
viewer and the objects, Fig. 2. Previous work has shown that 
flying insects use optical flow for various tasks, including 
velocity control, obstacle avoidance, and landing [9]. Given 
its use by real honeybees, it is reasonable to evaluate optical 
flow for exteroceptive feedback for a RoboBee. The design 
space for an optical flow sensor is significantly large as 
there is a wide range of optical flow algorithms, as well 
as dependence on characteristics of the visual sensor, such 
as resolution, field of view, and frame rate. 

t 
Bee Motion: 

UpwardTranslation 

Fig. 2. Here as the bee moves upwards, the per pixel optical flow 
vectors tend in the downward direction. This vector field can be 
used to estimate vertical/lateral motions. 

The use of simulators, software in the loop, and hardware 
in the loop systems for development and testing of DAVs 
is a well established technique [10]-[14]. Many of these 
systems are developed to test new algorithms for existing 
platforms [11], or do not modularize all components of 
the system. Our work is unique in that it allows for both 
software models and actual hardware implementations of all 
components of the system. Optical flow is commonly used 
for controlling robots and DAVs [15]-[20]. These robotic 

systems typically employ several cameras with optical flow 
processing using either biologically inspired EMD-type al­
gorithms [16], [19], or more conventional techniques such as 
the Lucas-Kanade algorithm [20]. Rather than just evaluating 
the performance of a robot with one optical flow configura­
tion, we use our system to evaluate a range of algorithms and 
configurations. Other research has compared the performance 
of different optical flow algorithms [20]-[22]. These works 
however either do not consider the algorithms in the context 
of a robotic system [21], [22], or do not consider the 
impact of the sensor design on the choice of algorithm [20]. 
Additionally, our flapping-wing micro air vehicle platform is 
orders of magnitude smaller than the fixed-wing planes [15], 
helicopters [17], quadcopters [18] and ornithopters [16] used 
in other works. Flight at the scale of an insect presents stricter 
power and weight constraints than larger vehicles. 

The rest of this work is organized as follows. We first 
detail the current implementation of each HWIL system 
component in Section II, and validate some of our software 
models in Section III. Then we demonstrate in Section IV 
how the HWIL system allows us to explore the design 
space for an optical flow sensor and its utility in exposing 
component level design space trends that impact whole 
system performance. Section V concludes the paper. 

II. SYSTEM OVERVIEW: 
OPTICA L FLOW TEST CA SE 

The goal of the RoboBee HWIL system is to allow 
deep and thorough evaluation of each system component 
at all stages of the development cycle. Here, we report on 
the current status of each component in the context of an 
optical flow sensor characterization. The HWIL system is 
composed of a virtual environment, visual sensors, optical 
flow processing, control, and a body physics simulation. 

For this design space exploration, we consider the 
RoboBee as depicted in Fig. 3. The RoboBee is limited to 
motions in the X, Z world plane by actuating a lift force 
Faxb and yaw torque Tpsi. A visual sensor is attached to 
the center of the body facing the Zb direction. The use of 
2D planar motion is not a limitation of the HWIL system 
as the environment, sensors, control, and physics engine 
are all capable of 3D motions. By limiting the motion of 
the RoboBee to 2D we can narrow the relevant design 
parameters. Optical flow based control in 3D expands the 
design space to include the number, arrangement, and ori­
entation of sensors on the body; more complicated optical 
flow motion interpretation algorithms; and more complicated 
control strategies to combine sensory data. The use of 2D 
allows us to focus on the properties of a single optical flow 
sensor, which provides a starting point for future explorations 
of the broader 3D case. 

A. Environment 
The HWIL system provides a realistic environment for the 

RoboBee to operate in by generating simulated inputs for all 
sensors as well as physical environmental disturbances. The 
virtual environment currently consists of visualizations of the 
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Fig. 3. The vehicle can actuate force Faxb aligned with Xb 

and torque Ta1j; about Zb in the body centered coordinate system 
(Xb' Yb, Zb)' Motion is constrained to the plane formed by the world­
fixed X Z axes with translational degrees of freedon Xb and Yb and 
rotational degree of freedom 7/J between the Z and Xb axes. 

virtual world for visual sensor input and wind disturbance 
models, and both elements can be adjusted to simulate 
various operating environments. 

The software design of the visual environment is similar to 
a game engine; however, we implemented the environment 
directly on top of the OpenGLl image rendering library 
rather than using an off-the-shelf game engine. This allows 
greater flexibility and better integration with the rest of the 
HWIL system. The world is bounded with a skybox and the 
ground plane is generated from a height map. Models of 
flowers or other objects can be imported in the 3DS format. 
A sample rendering of the environment is shown in Fig. 4. 

Fig. 4. Example of virtual 3D visual environment rendering. 

The wind model subsystem allows for arbitrary 1 - cos 

profiles for a discrete gust model [23]. Here we use an 
impulse and step wind profiles as seen in Fig. 5. The 
wind force is then determined by F = �pCAv2, where 
p = 1.2 kg/m3, C = 1.05, A = 1 cm2 are the density of 
air at sea level, the bluff body drag coefficient for a cube (a 
rough approximation of the RoboBee body shape), and the 
wetted area of the RoboBee body respectively. 

B. Vision Sensor 

The HWIL system allows for visual processing of the 
environment by both hardware sensors and software sensor 
models. 

IOpen Graphics Library: http://www.opengl.org/ 
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Fig. 5. Wind Model: From left to right, impulse wind in solid red and 
step wind in dotted black. 

1) Centeye FirefiySmall: The hardware vision sensor used 
is the FireflySmall vision chip from Centeye, Inc. [24]. 
The FireflySmall chip is a variable acuity image sensor chip 
designed for embedded vision and robotic applications. This 
chip has a 128 x 256 array of logarithmic response pixels in 
a 2.4 mm x 4.7mm focal plane, with a 18.3!lill pixel pitch. 
The focal plane includes a binning network allowing M x N 
blocks of superpixels to be formed by shorting together all 
pixel circuits within such a superpixel block, with M and N 
each selectable from 1, 2, 4, and 8. Other peripherals include 
on-chip bias generators, an 8-bit ADC, a voltage regulator 
for powering analog circuits, and a parallel interface designed 
to enable operation from a microcontroller or a DSP. Fig. 6 
shows the FireflySmall sensor die. 

For the current study, the chip was operated in log­
response mode, where the voltage output is a logarithmic 
function of light incident on a pixel. This feature has the 
advantage of compressing a wide range of light intensities 
into a smaller voltage range, and allows the sensor to be 
operated without the use of precise timing to read the pixel 
array. The reduced complexity of operating the chip results 
in lower weight and computational burden on the RoboBee. 

When using the FireflySmall sensor in hardware, it is 
aimed at a LCD monitor displaying the rendered visual 
environment. A Sunex DSL240A lens is mounted on the 
sensor as seen in Fig. 6. We assume that the Sunex lens 
effectively copies the image from the LCD onto the sensor 
surface when focused on the LCD and aligned such that the 
edges of the rendering are at the edges of the active sensor 
area. Therefore, the field of view of the lens is determined by 
the environmental rendering displayed on the LCD, which 
is modeled as a pinhole lens in OpenGL, rather than the 
Sunex lens. The pinhole lens model is more relevant as 
small, lightweight optics such as a printed pinhole lens [25] 
are more desirable to the RoboBee platform than traditional 
optics. 

2) Virtual Sensor Model for Centeye FirefiySmall: The 
ability to use software models of hardware sensors in the 
HWIL system allows for expanded explorations of sensor 
parameters by offering quicker, easier adjustment of lens and 
sensor hardware configurations as well as exploration of pa­
rameter choices outside of current hardware capabilities. The 
current study was completed on a single workstation where 
interfacing to RoboBee hardware is possible. An accurate 
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6.1mm 

Fig. 6. Images of the FireflySmail sensor. The image on the left shows 
the sensor bare die, while the image on the right shows the sensor attached 
to a breakout board and with more conventional lens mounted. 

software vision sensor model could allow the same simu­
lations to be implemented on a cluster for larger parameter 
studies. The virtual software sensor model includes the same 
parameters as considered when using the hardware sensor 
including resolution, field of view for a pinhole lens, and the 
intensity response of the sensor. We do not currently consider 
secondary effects such as non-fixed-pattern noise or various 
modes of optical distortion. Since the sensor is virtualized, 
both resolution and field of view of the pinhole lens are 
determined by the environmental rendering parameters. An 
intensity response calibration transforms rendered intensities 
to sensor intensity. A comparison between the performance 
of the hardware sensor and the virtual sensor model is shown 
in Section III. 

Virtual Sensor Intensity Model 
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Fig. 7. Average measured response of the sensor to shades of gray, 
red, blue, and green. The color of the line corresponds to the color being 
measured. 

To develop the intensity model of the FireflySmall sensor, 
we positioned the sensor in front of the LCD monitor used 
for displaying the simulated scene and measured the intensity 
response across a range of colors displayed on the LCD. 
The sensor measures one channel intensity; however, we 
calibrated the sensor across different display colors to ensure 
any effects of sensing the color image in monochrome are ac­
counted for. For example, texture that may be apparent when 
viewed in color may be masked when viewed in monochrome 
by two colors having the same monochrome intensity. A 

calibration routine displayed approximately 17,000 RGB 
colors on the monitor and recorded the average brightness 
response across the sensor for each color. A nearest-neighbor 
interpolation routine generated the rest of the color space. 
The step size of the measurements was chosen such that 
the difference in response between steps was less than 
1, ensuring that no accuracy was lost due to the use of 
nearest-neighbor interpolation. This interpolation resulted in 
a lookup table with a sensor response value for each of 
the approximately 16 million colors in the 8-bit RGB color 
space. This lookup table was then used to convert the RGB 
values of the rendered environment into an approximation 
of the sensor response looking at the monitor displaying that 
same image. Fig. 7 shows the response of the sensor to the 
range of gray, red, green, and blue values. 

C. Optical Flow 

There are a wide range of algorithms available for cal­
culating the optical flow field, resulting in a range of 
computational complexities and effectiveness for control. 
When considering different optical flow algorithms, we are 
interested, primarily, in the tradeoff between power and 
performance. For this purpose we consider the widely used 
Lucas-Kanade algorithm, along with the computationally 
simpler, biologically-inspired Image Interpolation algorithm. 
We evaluate and compare the performance of both of these 
algorithms in Section IV. 

1) Lucas-Kanade: The Lucas-Kanade (LK) [26] algo­
rithm is one of the most commonly used optical flow 
algorithms for computer vision applications. The main as­
sumption in this algorithm is that the optical flow in a small 
neighborhood of pixels is the same. With this assumption, 
a least squares search is performed to find the estimated 
velocity for each pixel. The components of the per pixel 
optical flow vectors are averaged to generate one optical flow 
vector for the whole sensor. In the HWIL system, we use the 
OpenCV [27] implementation of LK optical flow. 

2) Image Interpolation: In contrast to the higher compu­
tational complexity of LK, we also investigate a simplified 
version of the Image Interpolation Algorithm proposed by 
Srinivasan [28]. This algorithm was modified to compute 
optical flow with subpixel precision. For 11 and 12 being two 
sequential images, the algorithm computes optical flow by 
constructing shifted versions of 11 in each direction vertically 
and horizontally, and determining the linear mixture of these 
shifted versions of 11 that best match 12 using a 2-norm 
metric. The linear mixture amounts form the optical flow 
measurement where the vector Xu contains the resulting 
optical flow components. 

D. RoboBee Body Physics Model 

The nonlinear body physics model is responsible for up­
dating the position of the RoboBee within the environment. 
It takes four forces as inputs: the body reaction force from 
the controller, gravity, the wind disturbance force from the 
environment, and an aerodynamic damping force. All forces 
are expressed in the body centered coordinate frame and the 
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vertical (I), lateral (2), and yaw (3) equations of motion 
become: 

1 Faxb + Fgxb + "2P
CA 

(sgn(vwxb)llvwxbI12 - sgn(xb)llxbI12) = mXb (I) 

1 Fgyb + "2pCA 

(sgn(vwyb)llvwybI12 - sgn(Yb)IIYbI12) = mYb (2) 

(3) 

In the first term of equation (1), the simulated RoboBee 
body can actuate a lift force Faxb, while lateral reaction 
force is always zero. In the yaw equation of motion (3), 
Ta'!jJ is the RoboBee body actuated yaw torques with the 
moment of inertia Izz = l.31 g mm2 measured from a 
SolidWorks model of the RoboBee body. The vehicle cannot 
exert a force in the lateral Yb direction, which is faithful 
to the current RoboBee actuated degrees of freedom. Thus, 
horizontal motion is achieved by tilting the body (i.e. 'lj; i=- 0), 
which creates a horizontal component of the lift force [29]. 
The Fgxb term in equation (I) and Fgyb term in equation (2) 
are the force of gravity transformed into the body centered 
coordinate system. The terms proportional to Vwxb or Vwyb 
are the force of the external wind and the terms proportional 
to Xb or Yb are the damping force due to moving the body 
through air. The force and torque equations of motion are 
then used to update the state of the RoboBee body at each 
time step using Euler's method. 

E. Control 

The controller uses optical flow derived body state ap­
proximations as input to reject environmental disturbances. 
The equations of motion described previously are linearized 
about stable hover, i.e. x = x = Y = Y == 0, F = mg and 
T = 0, since the controller is used for optical flow based 
hover in Section IV. The linearized system is used to design 
a state feedback controller with gain matrix K using the pole­
placement MATLAB routine place, assuming perfect state 
information (i.e. the state vector x = [x, x, Y, Y, 'lj;, 1>]). 

In the HWIL system, state information x and Y are the 
optical flow measurements, and x and Y positions are found 
by integration of optical flow. The optical flow measure­
ments are in units of pixels/second. Before each trial, the 
RoboBee is paned at I mls in the horizontal and vertical 
direction and optical flow is recorded. The optical flow is 
averaged to determine a gain factor G to interpret optical 
flow measurements as velocities in m/s. Since we are not 
studying the controller in this work, the gain factor G acts to 
normalize optical flow signals across trials such that the same 
controller and K matrix are used for all trials. Rotational 
state information 'lj; and 1> directly measures body orientation 
state. This measurement could be accomplished many ways 
on the RoboBee such as an ocelli [30], inclinometer, or 
more complex optical flow methods. The tradeoffs between 

these different hardware are worthy of future study with the 
HWIL system. Thus an estimate of the state i; is sent to the 
controller block K to determine the control vector il = [F, T] 
(Fig. 8). A nonlinear saturation block limits the force and 
torque to realistic bounds for the vehicle, 0 < F < 2Fg 
and -10-6 N m < T < 10-6 N m, which are consistent with 
measurements of actual RoboBee performance [31], [32]. 

Set Point 
+ 

Wind Disturbance 

il Controller K 1--+-+-f---7j Plant 

Fig. 8. Block diagram of the controller. An estimate x of the state 
vector i; is determined by the optical flow sensor. A gain G relates 
optical flow measurements in pixels/sec to mls and comparison to 
the set point determines error which the controller uses to determine 
body-frame control force and torque u with realistic upper and 
lower bounds placed on force and torque values. The plant inputs 
are u and the environmental wind disturbance. 

III. SYS TEM VALIDATION 

As described in Section II, the HWIL system supports a 
hardware vision sensor and a software model based on the 
sensor. In this section, we compare the performance of the 
sensor hardware and model, in the context of our test case, 
to validate and justify our ability to swap between them. 

To examine the accuracy of the sensor model, an image 
from the simulated environment processed by the sensor 
model was compared with output of the sensor viewing 
the same image displayed on the LCD monitor. Fig. 9 
shows a histogram of the per-pixel differences between the 
model and the sensor viewing the same image. As this 
figure demonstrates, the correlation is generally good. The 
differences that were recorded are likely due to warping from 
the single element lens and temporal noise sources (non­
fixed-pattern noise). While the accuracy could be improved 
by accounting for these variables, the acceptable performance 
at this point justifies the assumption that intensity response 
is the most important characteristic of the sensor. 

Now we compare use of the sensor hardware and model 
in the overall HWIL system, where translational optical flow 
is input to the controller as an approximate measure of the 
system state. For a single set of configuration parameters 
representing the middle parameters of each variable (Algo­
rithm: LK, Resolution: 64 x 64 px, FaY: 900, Frequency: 
100Hz, Wind Model: Impulse), the system was run with 
the hardware sensor and sensor model in two separate runs. 
The trajectory and velocity comparisons are displayed in 
Fig. 10. Comparing X and Z of the RoboBee over time, the 
reaction to the wind is similar, indicating good correlation 
between hardware and model. Any small differences in the 
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Fig. 9. Histogram showing differences between sensor and model. 
Dotted line indicates average difference. Lower differences indicate better 
correlation between model and actual sensor readings. 

velocity tend to compound over time in the trajectory, and 
as we are using velocity control, it is a poor representation 
of performance. 

IV. HWIL DESIGN SPACE EXP LORATION 

In this section, we demonstrate the value of our HWIL 
system for exploring large design spaces. The design space of 
an optical flow sensor for stable hover of a RoboBee is large, 
but a subset of the overall RoboBee design space. Stable 
hover represents one of the more challenging behaviors for 
a MAY. The results described here point to general trends in 
the optical flow sensor design space, but the final RoboBee 
design is by no means fixed to the results of this study. We 
expect that exploring other aspects of the RoboBee design 
space will further refine the trends of this study. We aim to 
demonstrate that the HWIL system is valuable in exposing 
trends in large design spaces, and that the system can scale to 
explore increasingly larger portions of the RoboBee design 
space as more components are integrated into the system. 

An optical flow sensor has many design parameters that 
affect computational complexity and ultimately power con­
sumption, including the optical flow algorithm, sensor resolu­
tion, and sample rate of the optical flow sensor. We leverage 
the software sensor model to probe a greater range of design 
points. For each combination of parameters in Table I, a 
simulation was run for 120 seconds of virtual time and 
trajectory data similar to that of Fig. 10 was recorded. For 
each of the 240 simulations, the maximum and convergence 
time (Fig. 10) were found for X, which represents the 
world velocity response in the direction of wind disturbance. 
Convergence was defined as the first sample where IXI stays 
under a threshold (0.1 m/s) for the following interval (0.5 s) 
of samples. Since the controller attempts to eliminate veloc­
ity caused by the wind disturbance, decreases in either metric 
are interpreted as a more successful system configuration. 

Fig. 11 summarizes the parameter sweep results. The up­
per blue box plot summarizes the X convergence time metric 

TABLE I 

CONFIGURATION PARAMETER SWEEP 

Parameter Values Swept 
Optical Flow Algorithms II,LK 

Square Sensor Resolution (Px) 32,64,128,256 
Lens Field of View (Deg) 70,90,110 

Loop Frequency (Hz) 40,60,80,100,120 
Wind Direction X 

Wind Models Impulse, Step 
Max Wind Velocity (m/s) 3 

and lower green box plot summarize the maximum X metric 
in the same manner. Each plot has a fixed algorithm and 
wind model. Within each plot, each bar fixes one variable, 
either resolution, field of view, or sensor frequency. The 
points forming the bar vary the remaining two parameters. 
The height of an individual box indicates the influence on 
system performance of that variable. A smaller box indicates 
that variable is the main driver of performance relative to 
the other two variables. Box plots across the range of one 
variable can be used to determine if there is a trend for 
varying one of resolution, field of view, or sensor frequency 
independent of the other two parameters. Then by comparing 
trends across box plots, the effect of optical flow algorithm 
and wind model on the identified trend can be determined. 

Increasing resolution generally resulted in decreasing max 
X and X convergence time independent of other parameters. 
This trend can be explained by higher sensor resolution 
offering the optical flow algorithm more smooth changes 
in intensity. For the instance of II and step wind, max X 

showed an inverse parabola trend. The cause of this trend is 
worthy of further study with the HWIL system. 

As the frequency of optical flow sensing (i.e. the image 
sensor frame rate) increases, both performance metrics show 
a slight decreasing trend independent of other parameters. 
This trend can be explained by higher sensor frequency 
offering better estimates of changes in body velocity. 

Increasing field of view resulted in an increase in both 
performance metrics. This represents a non-obvious result, 
as generally wider field of view is desired for improved 
robotic control [19]. While we are still investigating the root 
cause of this behavior, we suspect this is due to increased 
sensitivity to rotation at larger fields of view affecting the 
translational measurement of optical flow. This result points 
to the utility of the HWIL system as this trend represents a 
counterintuitive result worthy of further study. 

While LK generally has better performance compared to 
II, the difference is slight, especially considering the much 
larger computational complexity of LK. This is likely due to 
the averaging step applied to LK to generate a single optical 
flow vector. Since LK generates a dense optical flow field 
(one optical flow vector per pixel), the optical flow field is 
averaged to generate a single vector as input to the controller. 
In the future, the dense optical flow field from LK could be 
used to estimate other components of the body state, such as 
yaw, rather than rely on a separate sensor. 
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There are diminishing returns in performance beyond a 
resolution of approximately 64 x 64 pixels and beyond a 
sensor frequency of 60 Hz. Although these will likely not 
represent the final operating points of the RoboBee, they 
do point to general trends in the impact of these variables. 
As the HWIL system is refined and more components are 
added, these will represent good starting points for continued 
refinement of these findings. The value of our HWIL system 
is that for a complex robotic system, where small changes 
in a vast number of parameters could significantly impact 
whole system performance, the HWIL system allows for 
trend exploration and whole robotic system optimizations. 

V. CONCLUSION 

Development of a robotic bee involves considerations of 
how a vast number of parameters impact whole system 
performance, weight, and power consumption. In this work, 
we propose our HWIL system as a framework to understand 
tradeoffs in the design parameter space within each compo­
nent as well as for the system as a whole. The modularity 
of the system allows for different levels of hardware and 
virtual component realism, which promotes interdisciplinary 
collaboration. The HWIL grand vision was illustrated by 
an optical flow sensor design test case where impact of 
design parameters and trends in performance were exposed. 
We expect that building more detailed models of all system 
components and running significantly larger design space 
explorations will offer unique insights into MAV power and 
performance tradeoffs. 
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