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Abstract—A serial sum-product architecture for low-density
parity-check (LDPC) codes is presented. In the proposed ar-
chitecture, a standard bit node processing unit computes the
bit to check node messages sequentially, while the check node
computations are broken up into several steps and computed on
the fly. This bit node centric architecture requires considerably
less memory compared to other serial architectures, including
the check node centric architecture.

Index Terms - Low-density parity-check (LDPC) codes,
sum-product algorithm, bi-partite graph, serial architecture.

I. INTRODUCTION

The spectacular success of turbo codes with its iterative
decoding and message passing mechanism has inspired the
rediscovery of low density parity-check (LDPC) codes [1],
[2]. Though LDPC codes were first discovered by Gallager as
early as in the 1960s [3] they were not considered for practical
use due to their immense computational complexities. Recent
work has shown that LDPC codes achieve near Shannon limit
performance [4]. However until recently the lack of efficient
implementation techniques has prevented LDPC codes from
being considered for error correction in several applications.

One of the inherent difficulties in finding implementable
architectures for LDPC decoder architectures is that LDPC
codes have less structure than other codes such as trellis
or turbo codes. An LDPC code is defined by its random
like parity-check matrix which dictates the communications
between the bit and check nodes. On the other hand other
codes such as turbo codes have a more regular structure.
The random nature in turbo codes is accomplished by an
interleaver which is external to the code. Computations and
message passing in turbo codes can be easily separated
and the decoder primarily consists of message computation
circuitry. However, randomness is inherent to the LDPC code
and the message passing is defined by the code itself. Thus,
the message computations and message passing in LDPC
codes are inseparable, which complicates the implementation.

One implementation method for LDPC codes is a fully
parallel architecture where the exact copy of the bi-partite
graph of the code is built in hardware. The bit and check
node computations are implemented as combinational logic

and the edges of the graph are simply the wires that connect
the appropriate nodes as defined by the graph. This method
achieves high throughput since an entire block is processed
simultaneously. However, the main drawback of this parallel
architecture is the tremendous wiring complexity due to the
node connections. Given that the number of messages passed
along the edges in a typical LDPC code is extremely large,
and given that each message needs to be represented with a
number of bits large enough for an adequate resolution of the
messages, the number of wires needed to connect the nodes
are in the orders of tens of thousands even for a code of
moderate length in the range of about one thousand bits. The
large wiring complexity significantly increases the area and
reduces the utilization. The LDPC decoder chip by Blanksby
et al. [5] is implemented in the fully parallel architecture and
has an area of about 53.5 mm2 in 0.16µm technology and
dedicates about half of this area for wire routing.

The serial architecture can overcome the area overhead by
saving the messages in memory and processing bit node and
check node computations sequentially. Several proposals for
serial architectures have appeared in literature [6], [7]. Wu et
al. [8] and Hocevar [9] have proposed serial architectures that
process either the bit node or check node computations on
the fly. The architecture proposed in this paper also performs
some computations on the fly. However we will show that
our method requires significantly less memory and/or less
number of clock cycles to process a given block of code.

This paper is organized as follows. First, we give a brief
overview of LDPC codes. Then in Section III we give an
in-depth description of our proposed architecture. Subsection
III-A describes the memory requirements and Subsection
III-B compares the merits of the proposed architecture with
other architectures found in literature. Finally, Section IV
provides concluding remarks.

II. LOW-DENSITY PARITY-CHECK CODES

An LDPC code is defined by a binary parity-check matrix
(H). Though the matrix size is typically large, it is sparse.
The matrix has n columns and m rows as shown in (1). The
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Fig. 1. Message passing (a) check to bit nodes, Cj = {i1, i2, i3} (b) bit
to check nodes, Bi = {j1, j2, j3}
information in the parity-check matrix can also be represented
by a bi-partite graph. Each column and row corresponds to a
bit and check node in the graph respectively. A bit node i
is connected to a check node j by an edge if there is a 1
at the (i, j)th position in H. For each bit node i, the set of
participating check nodes, i.e., the position of 1s in the column
i, is denoted by Bi. Similarly the set of participating bit nodes
for the check node j is denoted by Cj . The number of 1s in a
row is called the row degree and denoted by dr and number
of 1s in a column is called column degree and denoted by dc.
For simplicity this paper considers only regular codes, where
the row and column degrees are constant.

H =




0 1 0 · · · 0
1 0 0 · · · 1
· · · · · · · · · · · · · · ·
0 1 1 · · · 0


 (1)

Two types of messages are passed along the edges between
the bit and check nodes. The messages passed from bit node i
to check node j are denoted by Qi,j , where j ∈ Bi. Similarly
the messages computed at the check node j and passed to the
participating bit nodes are denoted Rj,i, where i ∈ Cj . Fig. 1
shows the messages passed between the nodes.

An LDPC code can be decoded using the sum-product al-
gorithm, which consists of four steps per iteration. In the
following equations, the iteration index is denoted by k.

1) Initialization
All the messages from check node j to bit node i are
initialized to zero i.e. R0

j,i = 0.
2) Bit node processing

For each i ∈ {1, ..., n} compute Qk
i,j , where j ∈ Bi

Qk
i,j =

∑
l∈Bi,l �=j

Rk
l,i + λi (2)

where λi is the a priori log-likelihood ratio of the bit i.

3) Check node processing
For each j ∈ {1, ...,m} compute Rk

j,i, where i ∈ Cj

Rk
j,i = sk

j,i × φ−1


 ∑

l∈Cj ,l �=i

φ
(|Qk

l,j |
) (3)

where the sign bit sk
j,i is given by

sk
j,i =

∏
l∈Cj ,l �=i

sign(Qk
l,j) (4)

and

φ(x) = − log
(
tanh

x

2

)
= log

(
ex + 1
ex − 1

)
= φ(x)−1

(5)
4) A posteriori log-likelihood ratio (LLR) computation

After K iterations, the LLR for each bit i is computed
by

Λi =
∑
l∈Bi

RK
l,i + λi (6)

The equations (2) - (6) are well known and cited here for
reference.

III. PROPOSED SERIAL SUM-PRODUCT ARCHITECTURE

FOR LDPC DECODER

This paper proposes an architecture that performs check
node computations on the fly. This is achieved by breaking
the check node computation (3) up into several steps. Consider
the following definitions:

ρk
i,j = φ(|Qk

i,j |) (7)

σk
i,j = sign(Qk

i,j) (8)

P k
j =

∑
l∈Cj

ρk
l,j j ∈ {1, ...,m} (9)

Sk
j =

∏
l∈Cj

σk
l,j j ∈ {1, ...,m} (10)

where ρk
i,j is the transformed magnitude of the bit to check

node message Qi,j and | | is the notation for magnitude. Based
on these variables, the sign and magnitude of the message from
check node j to bit node i is given by:

|Rk
j,i| = φ(P k

j − ρk
i,j) (11)

sign(Rk
j,i) = Sk

j × σk
i,j (12)

The check node computations are performed in sign-
magnitude format, while the bit node computations can be
performed in 2’s-complement format.

A block diagram of the proposed architecture is shown
in Fig. 2. The illustration is for a simplified example where
dc = 3, Bi = {j1, j2, j3}. At each time cycle the bit node
processing unit (BNU) performs computations pertaining to
one bit node. This is called bit node centric architecture. It
takes n cycles to perform the entire computations for bit nodes
1 to n by using one bit node processing unit. Within the first
time cycle, the first bit node (i = 1) is computed. Then at
(n(k− 1) + i)th time cycle, the decoder is computing the ith

bit node at kth iteration and produces messages Qk
i,j ,∀j ∈ Bi.

The bit to check node messages are converted from 2’s-
complement to sign-magnitude format. There are dc number
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Fig. 2. Block diagram of the proposed architecture for dc = 3,Bi =
{j1, j2, j3}

of messages generated at each cycle. The magnitude values
of the messages are sent to combinational logic units that
perform the function φ and the outputs from these units are the
transformed magnitudes, ρk

i,j , j ∈ Bi as defined in (7). These
transformed magnitudes are fed to corresponding update units.

The update units consist of adders and memory access
circuitry. These update units can access any dc number of
memory elements from m memory elements (a memory
element consists of a specified number of memory bits). The
update units update the relevant memory elements such that
at the end of an iteration (i.e. nkth time cycle) the values
P k

j ,∀j ∈ {1...m} as defined in (9) are stored in the m
memory elements. In other words these memory elements keep
a running sum of the ρ’s. If the intermediate value in the
memory element j ∈ {1...m} for the kth iteration is given by
P k

j (i) for i ∈ {1...n}, then all the running sums saved in the
memory at the (n(k − 1) + i)th time instance are given by:

P k
j (i) =

{
P k

j (i− 1) + ρk
i,j if j ∈ Bi

P k
j (i− 1) else

(13)

Then at the end of an iteration the memory contains:

P k
j = P k

j (n) (14)

The sign values, σk
i,j , j ∈ Bi as defined by (8) are processed

in a similar manner. The sign values are fed into another set of
update units consisting of XOR and memory access circuitry.
These update units update the relevant memory bits such that
at the end of an iteration the memory bits contain Sk

j , j ∈
{1...m} as defined in (10). In other words these memory bits
keep a running product of the sign-bit σ’s. The sign product
is obtained by XOR gates. The running sign product stored in
the memory is given by:

Sk
j (i) =

{
Sk

j (i− 1)× σk
i,j if j ∈ Bi

Sk
j (i− 1) else

(15)

where Sk
j (i) is the intermediate value for the memory bit j ∈

{1...m} at the kth iteration. At the end of an iteration the
memory contains:

Sk
j = Sk

j (n) (16)

The transformed magnitudes and sign values are also fed
into the two first-in first-out (FIFO) buffers buffer 1 and
2 in Fig. 2 respectively. Without loss of generality it is
assumed that each message is represented by q bits, where the
magnitude and transformed magnitude consist of q − 1 bits
and the sign comprises 1 bit. Since dc number of transformed
magnitudes and sign values are computed at each time cycle,
the buffers 1 and 2 require dc(q − 1) and dc bits per row
respectively. At each cycle the messages fill in one row of
each buffer. Since the decoder saves information pertaining
to the entire code block, the buffers have n such rows.

At time cycle n(k − 1) + i, the set of ρk
i,j , j ∈ Bi is fed to

the bottom of buffer 1 and the set of ρk−1
i,j , j ∈ Bi from the

previous iteration is read from the top of buffer 1. Similarly
within this cycle, the sign values σk

i,j , j ∈ Bi are fed to the
bottom of buffer 2 and the sign values from the previous
iteration σk−1

i,j , j ∈ Bi are read from the top.

After completing n such cycles, i.e. at nkth time cycle,
the buffers 1 and 2 contain ρk

i,j and σk
i,j ,∀i ∈ {1...n}, j ∈ Bi

respectively. Each row i in the buffers contains the information
pertaining to bit node i. The bottom row of buffer 1 contains
ρk
1,j , j ∈ B1, and the top row contains ρk

n,j , j ∈ Bn. Similarly
the rows in buffer 2 contain σk

1,j , j ∈ B1 to σk
n,j , j ∈ Bn

consecutively in this order. At this time cycle the updated
memory contains the corresponding magnitudes P k

j and signs
Sk

j ,∀j ∈ {1...m}.

The check to bit node messages Rk
j,i are computed based

on the values computed in the previous iteration, namely
P k−1

j and Sk−1
j , j ∈ {1...m} saved in the memory and ρk−1

i,j ,
σk−1

i,j , j ∈ Bi saved in the FIFO buffers 1 and 2. At each
iteration, P k−1

j and ρk−1
i,j , j ∈ Bi pertaining to bit node i are

read from the memory and FIFO buffer 1 respectively. The
relevant intermediate results (P k−1

j − ρk−1
i,j ) are computed

for each j ∈ Bi and passed to combinational units that
perform the function φ. The outputs of these functional units
are the magnitudes of the messages from the corresponding
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TABLE I
COMPARISON OF ARCHITECTURES

Architecture Memory Clock Cycles

Standard 2ndcq n + m

Check node centric (2n + mdr)q m

Bit node centric (2m + ndc)q n

check nodes to the ith bit node at kth iteration, namely
|Rk

j,i|, j ∈ Bi according to (11).

The sign value of the check to bit nodes is evaluated in
a similar manner. At kth iteration, the required Sk−1

j and
σk−1

i,j , j ∈ Bi are read from the memory and the buffer 2
respectively. The product (Sk−1

j × σk−1
i,j ) is computed using

XOR gates for each j ∈ Bi. These are the sign values of the
corresponding messages from the dc check nodes to the ith

bit node at kth iteration, namely sign(Rk
j,i), j ∈ Bi according

to (12). The sign and magnitude values are passed through
combinational logic that converts from the sign-magnitude
to 2’s-complement format. The results Rk

j,i, j ∈ Bi are the
inputs to the bit node processing unit for the ith bit node at
kth iteration.

A. Memory Requirement and Throughput

FIFO buffers 1 and 2 require ndc(q − 1) and ndc memory
bits respectively. 2(q − 1)m memory bits are required to
store Pj ,∀j ∈ {1...m}. The multiplication factor 2 is due
to the need to save the current computations pertaining to
iteration k while simultaneously reading the values from the
previous iteration k−1. Similarly, saving all Sj ,∀j ∈ {1...m}
requires 2m memory bits. Thus the decoder requires a total
of (2m+ ndc)q memory bits.

At each time cycle the proposed method computes dc

number of check to bit node messages and dc number of bit
to check node messages. Thus it takes n cycles to process
a data block of length n per iteration using one bit node
processing unit.

B. Advantages Over Other Methods

The proposed architecture performs the sum-product algo-
rithm as defined by the equations (7) to (12). This method
does not lose information such as the method proposed in [8],
where only the minimum values are considered. More over the
method described in [8] is for a concatenated detector-decoder
system only.

Hocevar describes an architecture in [9] that also computes
both bit to check and check to bit messages within one
cycle. However Hocevar’s architecture is check node centric
since it uses standard check node computational units and
breaks up the bit node computations. Mansour et al. [7] also
describe a method that is very similar to the architecture in
[9]. The check node centric method described in [9] requires
(2n + mdr)q memory bits to save the required messages

and intermediate values. On the other hand, our proposed
bit node centric method requires (2m + ndc)q memory bits.
The difference in memory requirements is 2(n −m)q, since
mdr == ndc. Thus the bit node centric architecture always
requires less memory than the check node centric one. The
memory savings are particulary significant for high rate
codes, which are desirable for example in magnetic storage.
Rates as high as 8

9 are typical in magnetic storage. Assuming
dc = 3 (which in turn dictates dr = 27 for regular codes
with rate 8

9 ) the check node centric method needs 45mq
memory bits whereas the proposed method needs only 29mq
bits. Thus in this typical scenario, the check node centric
architecture requires close to 50% more memory compared
to the bit node centric method.

Moreover, a check node processing unit needs to sum dr

number of messages whereas a bit node processing unit only
needs to sum up dc messages. For high rate codes dr is
considerably larger than dc. Thus, for such codes the check
node centric architecture would need a significantly larger
adder tree than the bit node centric architecture.

In terms of number of cycles required for each iteration,
the check node centric method requires m cycles if it uses
one check node processing unit. The bit node centric method
requires n cycles assuming it uses one bit node processing
unit. However, the cycle periods for both methods are
significantly different. Minimum cycle periods are determined
by the critical path delay. The critical path for the check
node centric method is greater than for the bit node centric
method (one reason is the larger adder tree). Both methods
need to perform the same number of computations to obtain
the relevant messages. Thus it takes a comparable amount
of time for one iteration (though the number of cycles are
different) for both methods if the same number of bit node or
check node processing units are assumed. Thus, the proposed
bit node centric method requires n number of shorter cycles
whereas the check node centric method requires m number
of longer cycles per iteration, giving comparable throughput.

Table I summarizes the memory requirements and number
of clock cycles needed for different architectures. For a
fair comparison the standard architecture considered has one
bit node and one check node processing unit. This scheme
switches read and write operations between two memory
banks. At each cycle it reads messages from one memory bank
and writes the results to the other.

IV. CONCLUSION

This paper presents a serial architecture for an LDPC
decoder that performs the sum-product algorithm. This archi-
tecture uses a standard bit node processing unit, while the
check node computations are broken up and computed on the
fly. This bit node centric architecture requires significantly less
memory than other serial architectures, especially for codes
with high code rate.
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