
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4302708

A Bit-Node Centric Architecture for Low-Density Parity-Check Decoders

Conference Paper · December 2007

DOI: 10.1109/GLOCOM.2007.57 · Source: IEEE Xplore

CITATIONS

0
READS

107

3 authors, including:

Ruwan Ratnayake

London Metropolitan University

7 PUBLICATIONS 21 CITATIONS

SEE PROFILE

Gu-Yeon Wei

Harvard University

234 PUBLICATIONS 7,697 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gu-Yeon Wei on 18 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4302708_A_Bit-Node_Centric_Architecture_for_Low-Density_Parity-Check_Decoders?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4302708_A_Bit-Node_Centric_Architecture_for_Low-Density_Parity-Check_Decoders?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruwan-Ratnayake-4?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruwan-Ratnayake-4?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/London_Metropolitan_University?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruwan-Ratnayake-4?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Harvard_University?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gu-Yeon-Wei?enrichId=rgreq-026e6b283442c4bb2500ec8d49989301-XXX&enrichSource=Y292ZXJQYWdlOzQzMDI3MDg7QVM6MjA4NDU1NzQ4MDY3MzI5QDE0MjY3MTExMzE0OTI%3D&el=1_x_10&_esc=publicationCoverPdf

A Bit-Node Centric Architecture for Low-Density
Parity-Check Decoders

Ruwan N.S. Ratnayake
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

Email: ratnayak@fas.harvard.edu

Erich F. Haratsch
LSI Corporation

Allentown, PA 18109

Gu-Yeon Wei
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

Email: guyeon@eecs.harvard.edu

Abstract—A bit-node centric decoder architecture for low-
density parity-check codes is proposed. This architecture per-
forms the optimum sum-product algorithm. A bit node processing
unit computes the bit-to-check node messages sequentially, while
the computation of the check-to-bit node messages is broken
up into several steps. A stand-alone decoder architecture, and a
decoder architecture for a concatenated detector-decoder system
are presented. The proposed stand-alone decoder architecture
requires significantly less memory compared to other known
serial architectures. The hardware requirements are reduced even
further for the concatenated detector-decoder system.

I. INTRODUCTION

The phenomenal performance of turbo codes based on itera-
tive decoding and belief propagation has revitalized the interest
in low-density parity-check (LDPC) codes [1], [2]. Though
Gallager first discovered LDPC codes several decades ago [3],
until recently these codes were not considered for practical
applications due to their immense computational complexity.
The near Shannon limit performance of LDPC codes, as shown
by Chang et. al. [4] makes them a strong competitor to turbo
codes. Although various architectures have been proposed in
the past years for the implementation of LDPC codes, there is
still a need for more efficient architectures for area-constrained
applications, such as magnetic recording.

Inherently, LDPC codes have less structure compared to
other codes such as trellis or turbo codes. An LDPC code is
fully defined by a parity-check matrix, which determines the
internal connections within the decoder. The sparse, random-
like nature of the matrix makes the implementation of these
connections challenging. In contrast, turbo codes have a more
regular structure. Though randomizing the messages is a
necessary feature in turbo codes, it is fulfilled by an external
interleaver. Because the computation of messages and message
passing are performed separately in turbo codes, the decoder
primarily consists of computational circuitry. On the other
hand, randomness is inherent to the LDPC code and the
message passing is defined by the code itself. Therefore, the
message computations and message passing are inseparable,
which complicates the implementation of LDPC codes.

One approach for the implementation of the LDPC decoder
is a fully parallel architecture, where the exact copy of the
bi-partite graph of the code is laid out in hardware. Each bit
and check node are constructed as combinational logic and the

wires represent the edges of the graph, which connect the bit
and check nodes. A fully parallel architectures achieves high
throughput since an entire code word is processed simultane-
ously. However this approach has several disadvantages. One
drawback is the lack of decoding flexibility. Since the decoder
is hardwired it can generally decode only a single code.
Another significant disadvantage is the enormous complexity
associated with the wire connections. The number of messages
passed along the edges is large in a typical LDPC code, and for
an adequate resolution each message needs to be represented
with a sufficient number of bits. Therefore, the number of
wires required to connect the nodes exceeds tens of thousands
even if the code word length is moderate and in the range
of about one thousand bits. A significant portion of the chip
needs to be allocated simply for wiring, which reduces area
utilization. The paper by Blanksby et al. [5] describes a fully
parallel LDPC decoder designed and implemented in 0.16µm
technology. The chip measures about 53.5mm2 and half of
the area is allocated for wire routing. Moreover this excessive
wiring complexity is typically associated with non-uniform
delays and cross talk issues which further diminish the merits
of the fully parallel approach.

The wiring and computational complexity associated with
the fully parallel architecture can be avoided with a serial
architecture. In this approach, the wiring overhead is reduced
by saving the messages in dedicated memory. Furthermore, bit
and check node messages are computed sequentially by read-
ing the relevant messages from the memory, processing them
and writing the results back into the memory. Additionally,
since the message passing in not hardwired, the decoder can
accommodate more than a single code. Recently, several serial
architectures have appeared in the literature [6], [7], [8]. In
particular, the papers by Wu et al. [9] and Hocevar [10] present
serial architectures, which process either the check node or
bit node computations on the fly. The architecture proposed
in this paper performs the check node computations on the
fly. However, our architecture implements the optimum sum-
product algorithm while requiring significantly less memory
and in certain instances less latency compared to the other
serial architectures.

The remaining part of this paper is organized as follows.
In Section II we explain the considered LDPC decoding

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

265

algorithm. Afterwards in Section III we give an in-depth
description of our proposed architecture. The memory
requirements, throughput characteristics and a comparison
of the proposed architecture with other architectures are
given in Subsections III-A and III-B, respectively. Section
IV describes the proposed architecture for a concatenated
detector-decoder system. Final concluding remarks are given
in Section V.

II. SUM-PRODUCT ALGORITHM FOR LDPC DECODING

An LDPC code is defined by a binary parity-check matrix
consisting of n columns and m rows. The matrix is typically
large in size, but sparse. The parity-check matrix can be
mapped to a bi-partite graph composed of nodes and edges. A
given column in the matrix corresponds to a unique bit node
and a given row in the matrix corresponds to a unique check
node. A bit node i is connected to a check node j by an edge
if the element at the (j, i)th position in the parity-check matrix
is non-zero. The set of check nodes connected to a given bit
node i is denoted by Bi. These are the non-zero positions in
the ith column in the matrix. In the same manner the set of
bit nodes connected to a given check node j is denoted by
Cj , which corresponds to the non-zero elements in the jth

row. The cardinality of Cj and Bi are called row and column
degrees and denoted by dr and dc, respectively. For simplicity
we consider only regular codes, where the row and column
degrees are constant, independent of the row or column index.
A message passed from bit node i to check node j is denoted
by Qi,j , where j ∈ Bi. Similarly, a message from check node
j to bit node i is denoted Rj,i, where i ∈ Cj .

LDPC codes can be decoded iteratively using the sum-
product algorithm. The algorithm consists of four main steps.
In the following, iterations internal to the decoder are indexed
as k. The a priori and a posteriori log-likelihood ratios (LLR)
of the bit i are denoted by λi and Λi, respectively:

1) Initialization
All the messages from check node j to bit node i are
initialized to zero, i.e. R0

j,i = 0.
2) Bit node processing

For each i ∈ {1, ..., n}, j ∈ Bi compute Qk
i,j based on

the messages from check nodes generated in the previous
iteration and the a priori LLR,

Qk
i,j =

∑
l∈Bi,l �=j

Rk−1
l,i + λi (1)

3) Check node processing
For each j ∈ {1, ...,m}, i ∈ Cj compute Rk

j,i,

Rk
j,i = sk

j,i × φ−1


 ∑

l∈Cj ,l �=i

φ
(|Qk

l,j |
) (2)

where the sign bit sk
j,i is given by

sk
j,i =

∏
l∈Cj ,l �=i

sign(Qk
l,j) (3)

LDPC
Decoder

a priori
LLR

a posteriori
LLR

Fig. 1. LDPC decoder in stand-alone mode.

and

φ(x) = − log
(
tanh

x

2

)
= log

(
ex + 1
ex − 1

)
= φ(x)−1

4) A posteriori LLR computation
After K iterations, the a posteriori LLR for each bit i
is computed as

ΛK+1
i =

∑
l∈Bi

RK
l,i + λi. (4)

The equations (1) - (4) are well known and cited here for
reference. Fig. 1 shows the decoder in stand-alone mode
where iterations are performed internal to the decoder.

III. BIT-NODE CENTRIC ARCHITECTURE FOR A

STAND-ALONE LDPC DECODER

This paper proposes to break up the check node computa-
tions in (2) and (3) into several steps so that check-to-bit node
message can be computed on the fly:

ρk
i,j

�
= φ(|Qk

i,j |) j ∈ {1, ...,m}, i ∈ Cj (5)

σk
i,j

�
= sign(Qk

i,j) j ∈ {1, ...,m}, i ∈ Cj (6)

P k
j

�
=

∑
l∈Cj

ρk
l,j j ∈ {1, ...,m} (7)

Sk
j

�
=

∏
l∈Cj

σk
l,j j ∈ {1, ...,m} (8)

where ρk
i,j is the transformed magnitude of the bit-to-check

node message Qi,j and | | is the notation for magnitude. Based
on these quantities, the sign and magnitude of the message
from check node j to bit node i is given by:

|Rk
j,i| = φ(P k

j − ρk
i,j) (9)

sign(Rk
j,i) = Sk

j × σk
i,j (10)

The check node computations are performed in sign-
magnitude format, while the bit node computations can be
performed in 2’s complement format.

Fig. 2(a) illustrates the block diagram of the proposed archi-
tecture. The block diagram is for a simplified example where
dc = 3, Bi = {j1, j2, j3}. At each time cycle the bit node
processing unit (BNPU) performs computations pertaining to
a single bit node and generates dc number of bit-to-check
node messages. The messages from the dc check nodes to
the same bit node are computed on the fly using equations
equations (5) - (10). Hence this approach is called bit-node
centric architecture. Given that the decoder processes dc bit-
to-check node messages and dc check-to-bit node messages, it

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

266

takes n cycles to process the entire code of length n. Within
the first time cycle, the first bit node (i = 1) is computed.
Then at (n(k−1)+ i)th time cycle, the decoder is computing
the ith bit node at the kth iteration and produces messages
Qk

i,j ,∀j ∈ Bi.
The bit-to-check node messages generated by the BNPU are

converted from 2’s-complement to sign-magnitude format. The
magnitude values of the messages are sent to combinational
logic units that perform the function φ and the outputs from
these units are the transformed magnitudes, ρk

i,j , j ∈ Bi as
defined in (5). The sign values are σk

i,j , j ∈ Bi as defined
in (6). Without loss of generality it is assumed that each
message is represented by q bits, where both the magnitude
and transformed magnitude consist of q − 1 bits and the
sign comprises 1 bit. The sign and transformed magnitude
pairs, denoted by [σk

i,j , ρ
k
i,j], are fed to the type-1 update

processing units (UPU1) as shown in 2(a). Each pair [σk
i,j , ρ

k
i,j]

corresponds to a message from the ith bit node to the jth check
node, and is a q-bit sign-magnitude quantity.

The type-1 update processing unit comprises simple cir-
cuitry, which includes an adder and an XOR gate and is
connected to suitable memory as shown in Fig. 2(b). A single
memory element stores a q-bit quantity. At each cycle the bank
of UPU1s can access any dc number of memory elements from
m memory elements. The UPU1s update the relevant memory
elements such that at the end of an iteration (i.e. nkth time
cycle) the values [Sk

j , P k
j],∀j ∈ {1...m} as defined in (7) and

(8) are stored in the m memory elements. In other words,
each memory element keeps a running product of the σ’s and
a running sum of the ρ’s. If the intermediate value in the
memory element j ∈ {1...m} for the kth iteration is given by
[Sk

j (i), P k
j (i)] for i ∈ {1...n}, then all the running products

and sums saved in the memory at the (n(k − 1) + i)th time
instance are given by:

Sk
j (i) =

{
Sk

j (i − 1) × σk
i,j if j ∈ Bi

Sk
j (i − 1) else

(11)

P k
j (i) =

{
P k

j (i − 1) + ρk
i,j if j ∈ Bi

P k
j (i − 1) else.

(12)

At the end of an iteration the memory contains:

Sk
j = Sk

j (n) j ∈ {1...m} (13)

P k
j = P k

j (n) j ∈ {1...m}. (14)

Fig. 2(b) shows the circuitry for UPU1. At each cycle each
UPU1 accesses a q-bit memory element, where the sign value
Sk

j (i − 1) is fed to the XOR gate and the magnitude value
P k

j (i − 1) is fed to the adder. The quantities σk
i,j and ρk

i,j

generated within the current cycle are also fed to the XOR gate
and adder, respectively. The output of the XOR gate, Sk

j (i) and
the output of the adder, P k

j (i) are paired as [Sk
j (i), P k

j (i)] and
written back to the q-bit memory element.

The transformed magnitude and sign bit pairs [σk
i,j , ρ

k
i,j] are

also fed into the first-in first-out (FIFO) buffer as shown in Fig.
2(a). Since dc number of such pairs are computed at each time
cycle, the buffer requires dc × q bits per row. At each cycle

2's-SM

SM-2's SM-2'sSM-2's

FI
FO

 b
uf

fe
r

memory

BNPU

2's-SM 2's-SM

UPU2 UPU2 UPU2

memory

UPU2UPU1

memory

memory

UPU1 UPU1 UPU1

Fig. 2. Bit-node centric decoder architecture for dc = 3,Bi = {j1, j2, j3}.
(a) block diagram, (b) type-1 update processing unit (UPU1), (c) type-2 update
processing unit (UPU2).

the messages fill in one row of the buffer. Since the decoder
saves information pertaining to the entire code, the buffer has
n such rows.

At time cycle n(k−1)+i, the set of pairs [σk
i,j , ρ

k
i,j], j ∈ Bi

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

267

is fed to the bottom of the buffer and the set of pairs
[σk−1

i,j , ρk−1
i,j], j ∈ Bi from the previous iteration is read

from the top of the buffer. After completing n such cy-
cles, i.e. at nkth time cycle, the buffer contains σk

i,j and
ρk

i,j ,∀i ∈ {1...n}, j ∈ Bi. Row i in the buffer contains the
information pertaining to bit node i. The bottom row of the
buffer contains [σk

1,j , ρ
k
1,j], j ∈ B1, and the top row contains

[σk
n,j , ρ

k
n,j], j ∈ Bn. At this time cycle the updated memory

contains the corresponding final signs Sk
j and magnitudes

P k
j ,∀j ∈ {1...m}.
The check-to-bit node messages Rk−1

j,i are computed based
on the values computed in the previous iteration, namely
[Sk−1

j , P k−1
j], j ∈ {1...m} saved in the memory and

[σk−1
i,j , ρk−1

i,j], j ∈ Bi saved in the FIFO buffer. These quantities
are fed to the type-2 update processing unit (UPU2). UPU2
consists of an adder and an XOR gate as shown in Fig. 2(c).
At each iteration, Sk−1

j and σk−1
i,j ,∀j ∈ Bi are read from the

memory and the FIFO buffer, respectively and the product
(Sk−1

j × σk−1
i,j) is computed using XOR gates. These are the

sign values of the corresponding messages from the dc check
nodes to the ith bit node for the previous iteration, namely
sign(Rk−1

j,i), j ∈ Bi according to (10).
The magnitude of the check-to-bit node messages is

evaluated in a similar manner. At the kth iteration, the values
P k−1

j and ρk−1
i,j , j ∈ Bi pertaining to bit node i are read

from the memory and FIFO buffer, respectively. The relevant
intermediate results (P k−1

j − ρk−1
i,j) are computed for each

j ∈ Bi and passed to combinational units that perform the
function φ. The outputs of these functional units are the
magnitudes of the messages from the corresponding check
nodes to the ith bit node for the previous iteration, namely
|Rk−1

j,i |,∀j ∈ Bi according to (9). The sign and magnitude
values are passed through combinational logic that converts
from the sign-magnitude to 2’s-complement format. The
results Rk−1

j,i ,∀j ∈ Bi are the inputs to the BNPU for the ith

bit node from the previous iteration.

A. Memory Requirements and Throughput

The FIFO buffer requires ndcq memory bits. The memory
capacity needed to store all the pairs [Sj , Pj],∀j ∈ {1...m}
is 2mq memory bits. The multiplication factor 2 is due to the
need to save the current computations pertaining to iteration
k while simultaneously reading the values from the previous
iteration k−1. Thus the decoder requires a total of (2m+ndc)q
memory bits.

At each time cycle the proposed architecture computes
dc number of check-to-bit node messages and dc number of
bit-to-check node messages. Thus it takes n cycles to process
a code of length n using a single BNPU and dc number of
UPU1s and UPU2s.

B. Advantages over Other Architectures

The proposed architecture performs the sum-product algo-
rithm as defined by the equations (1) to (4). Therefore, this ar-

TABLE I
ARCHITECTURE COMPARISON

Architecture Memory Clock cycles

Low code rate High code rate †

Yeo 2ndcq 2n 2n

CNC (2n + mdr)q m ≈ n

BNC (2m + ndc)q n n

Yeo: Serial architecture proposed in [6]

CNC: Check-node centric architecture

BNC: Bit-node centric architecture

† : Assumes maximum of dc parallel memory accesses

per memory bank per cycle

chitecture achieves better bit error rate performance than other
architectures that implement the min-sum decoding algorithm
such as [9], where only the minimum values are considered for
the message computation. Moreover the architecture described
in [9] is for a concatenated detector-decoder system only.

Hocevar describes an architecture in [10] that also computes
both bit-to-check and check-to-bit messages within one cycle.
However, Hocevar’s architecture is check-node centric since it
uses a check node processing unit and breaks up the bit node
computations. Mansour et al. [8] also describe an architecture
that is very similar to the one in [10]. The check-node centric
architecture described in [10] requires (2n + mdr)q memory
bits to save the required messages and intermediate values. On
the other hand, our bit-node centric architecture requires (2m+
ndc)q memory bits. The difference in memory requirements is
2(n−m)q bits, since mdr == ndc. Thus the bit-node centric
architecture always requires less memory than the check-node
centric architecture since m < n. The memory savings are
particulary significant for high code rates, which are desirable
in magnetic storage systems. Assuming dc = 3 and a code rate
equal to 8

9 (which in turn dictates dr = 27 for regular codes)
the check-node centric architecture needs 45mq memory bits
whereas the proposed architecture needs only 29mq bits. Thus
in this typical scenario, the check-node centric architecture
requires close to 50% more memory compared to the bit-node
centric approach.

Furthermore, a check node processing unit needs to sum
dr number of messages whereas a bit node processing unit
only needs to sum up dc number of messages. For high code
rates dr is considerably larger than dc. Thus, for such codes
the check-node centric architecture would need a significantly
larger adder tree. To alleviate a resulting speed bottleneck the
adder tree in the check-node centric architecture may need to
be pipelined.

For minimum decoding latency, both the bit-node centric
and check-node centric architecture need to access the memory
multiple times within a cycle. In the bit-node centric architec-
ture, the decoder needs to access dc memory elements from
a bank of m elements within a cycle. Although this memory
access can be serialized at the cost of increased number of

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

268

Channel SISO
Detector

LDPC
Decoder

extrinsic information

channel
outputs

a priori
LLR

Fig. 3. LDPC decoder concatenated with a soft-input soft-output detector.

cycles per iteration, for high code rates dc is small (e.g. 3 or 4)
making parallel access a feasible option. On the other hand, if
the check-node centric architecture processes one check node
within a cycle it needs to randomly access any permutation of
dr memory elements from n elements. Typically, in magnetic
recording applications both dr and n are prohibitively large
(long codes and high code rates) making such parallel access
impractical to implement. Therefore, for such applications the
memory access may need to be serialized for check-node
centric decoders. This significantly increases the number of
cycles needed per iteration compared to the m required cycles
if parallel access is feasible.

Table I summarizes the memory requirements and num-
ber of required clock cycles for different architectures. For
comparison, we have also considered the serial architecture
proposed by Yeo et. al. [6]. This architectures has one bit
node processing unit and dc number of pipelined check node
processing units. Each check node processing unit needs dr

number of cycles to complete the computations for a single
check node. Thus it takes n cycles to process all check nodes
and another n cycles to process all bit nodes. The scheme
switches read and write operations between two memory
banks. At each cycle it reads messages from one memory bank
and writes the results to the other.

For low code rates with small dr, the check-node centric
architecture requires less cycles per iteration compared to the
bit-node centric architecture. However for high code rates,
this advantage diminishes since the memory access may need
to be serialized. If we consider a fixed number of memory
accesses per cycle then both the bit-node and check-node
centric architectures require approximately the same number
of cycles per iteration. The last column in the table shows the
number of cycles needed per iteration when parallel memory
access is restricted to dc elements per cycle.

IV. BIT-NODE CENTRIC ARCHITECTURE FOR AN LDPC
DECODER IN A CONCATENATED SYSTEM

A receiver where the LDPC decoder is concatenated with
a soft-input soft-output (SISO) detector is shown in Fig. 3.
The SISO detector takes in channel outputs and extrinsic
information from the LDPC decoder and produces its own
extrinsic information which becomes the a priori LLR (λi) for
the LDPC decoder at the next iteration. Within one iteration
through the concatenated system, the data is processed once
by both the detector and LDPC decoder. (In some receiver
systems the LDPC decoder performs additional internal de-
coding iterations. In this paper we only consider one single
local decoding iteration for each global iteration through the

SM-2's SM-2'sSM-2's

FI
FO

 b
uf

fe
r

memory

BNPU

2's-SM

UPU2 UPU2 UPU2

memory

SISO channel
outputs

UPU1 UPU1 UPU1

Fig. 4. Block diagram of the proposed architecture for a concatenated
detector-decoder system where dc = 3,Bi = {j1, j2, j3}.

system). In this concatenated system, LDPC decoding involves
passing the a priori LLRs along the edges to the check
nodes, processing the check nodes and computing extrinsic
information at the bit nodes.

Since the LDPC decoder performs only one local iteration
per global iteration, the processing inside the LDPC decoder
is given by equations (1) - (4) where the LDPC iteration index
equals k = 1. Further, since R0

i,j = 0,∀i, j based on (1), the
messages passed along the edges from bit node i to check
node j are given by:

Q̂i,j
�
= Q1

i,j = λi, ∀j ∈ Bi. (15)

Thus, at each pass through the LDPC decoder, all the messages
from bit node i to its check nodes, namely Q̂i,j , ∀j ∈ Bi are
equal to the a priori LLR of the bit node i. The global iteration
index is not shown in (15). Denoting the global iteration index

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

269

as t and the a priori LLR pertaining to the ith bit node as λt
i,

the messages from the ith bit node to the jth check node at
the tth iteration are given by:

Q̂t
i,j = λt

i, ∀j ∈ Bi. (16)

Considering this simplification, the transformed magnitude
and sign bit information needed to be saved per bit node are
given by:

ρ̂t
i = φ(|λt

i|) (17)

σ̂t
i = sign(λt

i). (18)

Utilizing these quantities the check-to-bit node messages,
Rt−1

j,i , j ∈ Bi are computed in a similar fashion as described
in Section III. Based on these check-to-bit node messages, the
extrinsic information can be calculated as

Λt
e,i =

∑
l∈Bi

Rt−1
l,i (19)

and is passed to the SISO detector for the next iteration.
Fig. 4 shows the block diagram of the proposed architecture

for the concatenated detector-decoder system. In the Figure,
the exemplary case is considered where dc = 3,Bi =
{j1, j2, j3}. The BNPU calculates the extrinsic information
according to (19). The UPU1s and UPU2s are implemented
as shown in Fig. 2(b) and Fig. 2(c), respectively.

Since the messages from a given bit node to all its check
nodes are the same, the FIFO buffer storage capacity is
reduced by a factor of dc. Hence, the buffer requires q bits per
row to save the intermediate messages pertaining to a single
bit node. Storing all [St

j , P
k
j] and [St−1

j , P k−1
j], j ∈ {1...m}

requires 2mq memory bits. The total storage requirement is
(2m + n)q. At each time cycle the proposed architecture
computes dc check-to-bit node messages and a single extrinsic
information value.

The advantages of the proposed bit-node centric architecture
are significant for concatenated detector-decoder systems: No
additional delay is needed for LDPC decoding. The delay for
the decoder is in fact absorbed by the SISO detector. The
detector generates extrinsic soft outputs, λt

is which are imme-
diately processed in the same order by the decoder without
the need for buffering. Moreover the extrinsic information
values generated by the decoder are in the same order as
the channel outputs and can be immediately processed by the
SISO detector for the next iteration.

On the other hand, the check-node centric architecture is
less hardware-efficient in a concatenated detector-decoder
system. The check-node centric architecture processes the
extrinsic soft outputs from the channel, λt

is in a different
order than they are generated by the detector. This is due to
the fact that the dr number of λt

is required for each check
node are different. Therefore, first, the λt

is need to be buffered
before check node computations are performed. The extrinsic
information can be computed on the fly by updating a bank
of memory. The decoder needs m cycles in addition to the
delay for the SISO detector. The serial architecture proposed

by Yeo et al. [6] suffers from the same disadvantages when
used in a concatenated detector-decoder system. Also Wu et
al. [9] considered a concatenated detector-decoder system.
There however, an architecture for the min-sum decoding
algorithm was presented, which in general achieves worse bit
error rate than the sum-product algorithm implemented by
our architecture.

V. CONCLUSION

This paper presented a serial LDPC decoder architecture
that performs the sum-product algorithm. Two applications
were considered, namely a stand-alone LDPC decoder and
an LDPC decoder concatenated with a SISO detector. The
proposed architecture uses a standard bit node processing
unit, while the check node computations are broken up and
computed on the fly. This bit-node centric architecture requires
significantly less memory than other serial architectures,
especially for LDPC codes with high code rate. A simplified
version of the architecture targeted at concatenated detector-
decoder receivers was also proposed, which further reduces
memory requirements and is associated with less latency than
other architectures.

REFERENCES

[1] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Info. Theory, vol. 45, pp. 399–431, Mar. 1999.

[2] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans. Info.
Theory, vol. 47, pp. 599–618, Feb. 2001.

[3] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Info.
Theory, pp. 21–28, 1962.

[4] S. Y. Chang, G. D. Forney, T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” IEEE Comm. Lett., vol. 5, pp. 58–60, Feb. 2001.

[5] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-
density parity-check code decoder,” IEEE J. Solid-State Circuits, vol. 37,
pp. 404–412, Mar. 2002.

[6] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “VLSI architectures
for iterative decoders in magnetic recording channels,” IEEE Trans.
Mag., vol. 37, pp. 748–755, Mar. 2001.

[7] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High throughput
low-density parity-check decoder architectures,” Proc. IEEE GLOBE-
COM, vol. 5, pp. 3019–3924, Nov. 2001.

[8] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC de-
coders,” IEEE Trans. VLSI Systems, vol. 11, pp. 976–996, Dec. 2003.

[9] Z. Wu and G. Burd, “Equation based LDPC decoder for intersymbol
interference channels,” IEEE Int’l Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 5, pp. 757– 760, Mar. 2005.

[10] D. E. Hocevar, “LDPC code construction with flexible hardware imple-
mentation,” IEEE Int’l Conf. on Comm. (ICC), vol. 4, pp. 2708–2712,
May 2003.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

270

View publication statsView publication stats

https://www.researchgate.net/publication/4302708

