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Abstract— This paper presents a 28-nm system-on-chip (SoC)
for Internet of things (IoT) applications with a programmable
accelerator design that implements a powerful fully connected
deep neural network (DNN) classifier. To reach the required
low energy consumption, we exploit the key properties of neural
network algorithms: parallelism, data reuse, small/sparse data,
and noise tolerance. We map the algorithm to a very large
scale integration (VLSI) architecture based around an single-
instruction, multiple-data data path with hardware support to
exploit data sparsity by completely eliding unnecessary computa-
tion and data movement. This approach exploits sparsity, without
compromising the parallel computation. We also exploit the
inherent algorithmic noise-tolerance of neural networks, by intro-
ducing circuit-level timing violation detection to allow worst case
voltage guard-bands to be minimized. The resulting intermittent
timing violations may result in logic errors, which conventionally
need to be corrected. However, in lieu of explicit error correction,
we cope with this by accentuating the noise tolerance of neural
networks. The measured test chip achieves high classification
accuracy (98.36% for the MNIST test set), while tolerating
aggregate timing violation rates >10~1. The accelerator achieves
a minimum energy of 0.36 pJ/inference at 667 MHz; maximum
throughput at 1.2 GHz and 0.57 pJ/inference; or a 10% margined
operating point at 1 GHz and 0.58 pJ/inference.

Index Terms— Deep neural networks (DNNs), hardware accel-
erators, Internet of things (IoT), machine learning (ML), razor,
system-on-chip (SoC), timing error detection and correction,
timing error tolerance.

I. INTRODUCTION

HE capability to interpret the complex, noisy real-world
data arising from multi-modal sensor-rich systems is a
critical enabling technology for the Internet of things (IoT).
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Fig. 1. Overview of inference task using an accelerator with programmable

DNN computation graph. The host microcontroller provides input sensor data,
topology, and weights. The accelerator processes the DNN graph and returns
the output classes.

Machine learning (ML) techniques such as deep neural
networks (DNN5s) excel at tackling challenging classification
and regression problems on sensor data from important appli-
cation domains such as audio, vision, and medical [1].

As ML capabilities rapidly develop, the application scope
for intelligent, autonomous IoT devices will mature. However,
the system-on-chips (SoCs) in these devices are typically
heavily constrained by form factor, cost, energy, and security
limitations. As a result of these constraints, significant research
is required across many fields to realize practical products.
For the silicon platform, one of the biggest concerns is
achieving sufficient energy efficiency to execute ML work-
loads locally on the device. The micro-controller platforms
typically employed in energy-constrained devices are woefully
under-powered for many ML techniques. This limitation can
be overcome by adding a specialized hardware accelerator
(Fig. 1). By efficiently accelerating DNN graph inference,
with programmable network topology and model parameters
(weights), we can support a wide range of sensor signals
for a variety of potential applications with a single dedicated
hardware intellectual property (IP) block.

Many of the fundamental neural network architectures
that have been presented in the ML literature [1], including
spiking neural network (SNN), fully connected neural
network (FCNN), convolutional neural network (CNN), and
recurrent neural network (RNN), have now been implemented
in silicon. Several works have previously described specialized
architectures in silicon for CNNs, often focusing on computer
vision tasks [2]-[7], such as classifying the ImageNet data
set. These require high-compute performance to provide real-
time frame rates, and typically require off-chip DRAM storage
to process such a large model. This paper complements
these results, by focusing on the efficient implementation
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of much simpler classification problems commonly encoun-
tered in autonomous IoT applications without communication
capabilities [28]. For these cases, it is typically necessary to
minimize the power consumption, along with die size and off-
chip components (e.g., off-chip memory).

There is currently a lot of interest in neuromorphic
computing, which attempts to more closely mimic the opera-
tion of biological systems. For example, a number of imple-
mentations of SNNs in silicon have been presented in [8]-[11].
However, to date, SNNs seem to offer very limited accuracy,
even on small data sets (e.g., 84% on MNIST in [11]).

In contrast to previous work on CNNs and SNNs, we imple-
ment the FC DNN algorithm. FC DNNs can support a
wide range of general sensor data classification/regression
tasks [12]-[15], which we use as the basis to explore a range of
low-power design techniques. However, they are challenging
to implement for heavily energy constrained applications due
to their large compute and memory footprint. We exploit three
desirable properties of FC layers to achieve an energy efficient
implementation.

1) Highly Parallel Graph With Data Reuse: Efficient
and lightweight single-instruction, multiple-data (SIMD)
data path, optimized to balance data reuse and local
memory bandwidth.

2) Sparse and Low Range Data: Graph pruning schedule
that removes redundant operations and loads/stores,
without restricting parallelism and support for a small
8-bit fixed-point data type.

3) Noise Tolerance: Lightweight timing violation detec-
tion (Razor) scheme to minimize voltage guard-bands,
without a costly explicit error correction mechanism.

This paper [12] is the state of the art in energy efficiency,
with a minimum energy of 0.36 uJ/inference at 98.36% accu-
racy on the MNIST data set. We also demonstrate aggregate
timing violation rates > 107!, without degrading classification
accuracy.

The remainder of this paper is organized as follows.
Section II gives an overview of the challenges of implementing
DNNs for embedded applications. Section III describes the
DNN engine accelerator architecture. Section IV presents
further techniques to exploit data reuse and data spar-
sity to reduce compute and data movement. Section V
discusses the application of timing error tolerance techniques
to DNNs. Section VI gives the hardware implementation, and
Section VII presents the measurement results. Section VIII
concludes this paper.

II. FuLLY CONNECTED DEEP NEURAL NETWORKS
A. Inference Algorithm

The “deep” designation in DNN refers to a model involving
more than one hidden layer between the input layer and the
output (softmax) layer (Fig. 1). The additional hidden layers
allow for much more complex non-linear functions to be
learned. A DNN is typically represented as a simple weighted
directed acyclic graph consisting of multiple layers of neurons
(nodes) and weights (directed edges), as shown in Fig. 1.
Specifically, the activation value of the jth neuron in the
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kth layer, x;(k), is given as

xj(k) = go(b,-(k) + > wi (k) - xik 1)) (1)

where w;;(k) is a unique weight that defines a connection
in the graph, and b;(k) is a bias term. The non-linearity
(activation function) used is the rectified linear unit (ReLLU)

@ (x) = max(x, 0). 2)

The weights and bias, W (k) and b(k), for each layer are opti-
mized during the training process [1], which is not described
in this paper.

The intrinsic data reuse of the FC graph (Fig. 1) is high, as
denoted by the large number of edges that fan-out from each
neuron output. In Section IV, we will describe a schedule that
allows this reuse to be exploited. However, this only extends
to the activation data; there is no fundamental reuse of the
weights. By batching multiple inference tasks, it is possible to
introduce reuse, but this comes at the cost of increased latency.

B. DNN Hardware Accelerators

A dedicated hardware accelerator typically offers signif-
icantly better efficiency than using software running on
a general-purpose microprocessor [15]. We are essentially
trading efficiency for flexibility. DNNs represent a particu-
larly good target for hardware acceleration, because we can
accelerate a single algorithm, which can then be programmed
to do a range of different tasks by changing only the graph
topology and the weights (i.e., the DNN model). This is the
approach we follow in this paper.

This inner-product form of (1) is similarly a very common
idiom in digital signal processing (DSP) algorithms, e.g.,
finite-impulse response (FIR) filters [16]. However, here,
the kernel is typically much wider and involves much more
data storage and movement than is required in a filter.
Nonetheless, many common optimizations used for DSP algo-
rithms are also relevant here. Just like with the FIR algorithm,
FC DNNs map very well to simple SIMD data paths.

III. ACCELERATOR ARCHITECTURE
A. SIMD Architecture

The DNN engine is a five-stage SIMD-style program-
mable sparse matrix-vector machine for processing arbitrary
DNNs (Fig. 2). The architecture is based around an eight-way
SIMD multiply-accumulate (MAC) data path. Each lane of the
data path processes a single neuron to completion, with eight
in flight at any time. Each lane is fed by the same activation
value read from IPBUF', when processing the input layer,
or from the XBUF SRAM, when processing hidden layers.
A vector of eight unique weights is loaded from the on-chip
WMEM SRAM. Once a set of in-flight neurons are complete,
the activation stage adds the bias term to the accumulator
register, applies the activation function, and writes the eight

IThe input data are held in a separate SRAM to XBUF, so that it is not
overwritten. This allows us to run the accelerator continuously for accurate
power measurement without a lull in activity due to the host CPU interaction.
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Fig. 2. Block diagram of the five-stage accelerator pipeline.

activations back to XBUF. XBUF is double buffered to allow
new activation data to be written for the k% layer, while
simultaneously reading data from the (k — 1)™ layer in the
same cycle. A sequencer schedules the operations based on the
configuration register settings, for different DNN topologies of
up to eight FC layers with 1-1024 nodes per layer.

B. Weight Storage

A distinctive property of neural networks is the requirement
for a large memory footprint to store the weights. The storage
requirement for activations is modest as it grows equal with
the number of output neurons in the layer. The weight matrix,
however, grows as the product of the number of input and
output neurons. For inference, we read the weights in the
model in their entirety, and hence, we must minimize the
distance this data travels to keep energy consumption in check.
For heavily constrained applications, it is essential to store the
weights as close as possible and ideally, this should be on-chip.
Access to off-chip SRAM, FLASH, or DRAM memory incurs
orders of magnitude greater energy cost; therefore, moving
weight storage on-chip generally is the most important opti-
mization. Of course, this imposes limitations on the model
size.

C. Data Types

The accelerator data paths use small fixed-point data types
throughout, rather than 32-bit integer or floating-point types,
which is a key advantage over a software implementation.
In particular, weights are stored as either 8- or 16-bit signed
types, which greatly reduce the storage required for each para-
meter. Support for both is included, as some networks cannot
tolerate heavily quantized weights. Weights can be represented
as two’s complement (TC) or sign-magnitude (SM), which
is discussed in Section V. The MAC data paths use 16-bit
unsigned activation data, with 32-bit accumulators. The output
of the accumulator is rounded back down to 16 bit unsigned
after the activation function, with support for programmable
rounding modes. The data types used here were chosen to
maximize the utility over a range of different networks,
as required over the life of the product, rather than over-
optimizing to suit a single DNN. For example, the MNIST data
set can tolerate weights as small as 1 bit [30], and something
in the vicinity of 4 bits per weight is probably energy optimal
in many cases [31], [39], but this may not be sufficient for
some other (possible unforeseen) networks.
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Fig. 3. Data path scheduling tradeoffs. (a) Two example schedules for a

four-way parallel MAC unit, both processing four graph edges. The parallel
neurons version requires only a single activation read, which is reused across
four edges. (b) Advantage of the parallel schedule is apparent as the SIMD
width increases, but is limited by memory bandwidth for weights.

D. SoC Interfacing

The accelerator attaches to the SoC via a single 32-bit AHB
interface, a prevalent Arm interconnect standard. An asynchro-
nous bridge is incorporated to allow the accelerator to run
from a faster clock, asynchronous to the interconnect. A higher
bandwidth 128-bit AXI stream interface is used to connect to
WMEM. The host CPU on the SoC initiates offloading a DNN
inference job by writing the memory-mapped configuration
registers in the accelerator. These define the characteristics of
the network architecture and various other hardware settings.
Next, the input data vector is written into IPBUF, and the
accelerator is started with another register write. Once the
graph has been fully computed, an interrupt is sent to the host
CPU, which can retrieve the output vector from XBUF. For a
classification problem, the host CPU must additionally find
the largest activation in the output vector, which represents
the most likely class.

IV. DATA REUSE AND SPARSITY
A. Data Reuse

Neural networks operate on large data structures stored
in SRAM. The cost of data movement to/from SRAM can
easily eclipse the compute itself. Therefore, reusing data
already loaded from SRAM is a key to reducing power.
The FC DNN graph provides scope for reuse of activation
data, as shown by the high fan-out from neuron nodes in the
graph (Fig. 1).

There are two ways to schedule the FC graph onto an
N-way parallel SIMD architecture consisting of multiple MAC
lanes [Fig. 3(a)]. The first approach is to compute a single
neuron in the current layer at a time. This schedule involves
reading N neuron values from the previous layer, along with
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N weights [Fig. 3(a)]. Hence, the single neuron schedule
does not exploit reuse. The alternative, is to calculate N
neurons in parallel (i.e., one per SIMD lane), and read a
single activation value from SRAM per cycle. This parallel
neuron schedule reduces the memory bandwidth for activations
by 1/N through reusing a single activation data value over the
N lanes. In other words, with the parallel neurons schedule,
activation data bandwidth is fixed at one independent of N.
The cost of this is that we now require N accumulators (c.f.
only a single accumulator is required for the single neuron
schedule); however, registers are much cheaper than SRAM
access, so this is a good tradeoff.

Unfortunately, there is no reuse opportunity in the weights,
so bandwidth for the weights increases with N. Therefore,
although there are no data dependencies whatsoever within a
single FC layer, the degree of parallelism is still limited by
memory bandwidth to WMEM. Fig. 3(b) shows an analysis
of the tradeoff between the normalized data reads (reciprocal
of reuse factor), and the memory bandwidth requirement, for
the parallel neuron schedule. For our design point, we use
an eight-way SIMD data path, which represents an 8x reuse
factor at a reasonable memory bandwidth that can be satisfied
by a standard 128-b AXI interconnect channel.

B. Sparsity

The input data and intermediate activation data in many
neural network applications exhibit abundant sparsity, which
we exploit to lower the workload. The activation data contain
a large number of zero values because of the ReLU activation
function which convert negative accumulations to zeros. There
are also a large number of small non-zero values [17]. Oper-
ations and data movement associated with sufficiently small
activations can be ignored, as they are unlikely to significantly
influence the final accumulator value.

In previous work, it has been shown that it is possible to
save power in activation units by clock-gating registers either
side of a MAC data path lane, when either or both of the input
operands are zero [2], [4], [5]. Although this reduces power,
the resultant pipeline bubbles reduce the data path utilization.

In the DNN engine, bubbles are eliminated by dynami-
cally eliding all zero operands in the activation stage before
writeback. In fact, we can skip not only the zero values, but
also small non-zero values without degrading the prediction
accuracy, which leads to further savings. We implement this
in the activation stage (Fig. 2). After the ReLU operator is
applied to the neuron accumulations, a comparator is used to
compare the values with a per-layer programmable threshold.
An optimal threshold is determined for each layer empirically
by sweeping the threshold and observing the accuracy degrada-
tion [17]. Any rectified activations smaller than the threshold
generate a SKIP control signal that predicates writeback to
XBUF (Fig. 2). In the following layer, the elided neuron values
are completely ignored, and no computation is performed on
them. A small double-buffered 512-B SRAM (NBUF in Fig. 2)
maintains a list of indexes for the “significant” neurons stored
in the previous layer. NBUF then drives the sequencing of
the graph traversal and ensures that only “significant” neurons
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in the previous layer are processed as inputs to the current
layer. The NBUF indexes are also used to generate the
addresses for WMEM accesses. The address stream becomes
non-contiguous due to the data sparsity. For the MNIST data
set, the average number of loads, ops, and total cycles are each
reduced by approximately 4x, significantly improving the
energy and throughput, as we see in the results in Section VII.

V. TIMING ERROR TOLERANCE

A. Background

Razor systems allow excessive worst case Vpp guardbands
to be safely minimized down to the point where timing
violations start to occur, when setup and hold time constraints
are occasionally disturbed [18]-[26]. By adding in situ circuits
to detect the timing violations at critical paths, we are able to
track the timing violation rate as it changes over time due to
process, voltage, temperature, and aging (PVTA) variations.
However, timing violations may result in bit flips at compro-
mised flip-flops, and hence, measures must be taken to
correct or otherwise ensure that logic errors do not propagate
in the system resulting in functional failure. Therefore, Razor
systems typically consist of two key parts: 1) a mechanism
to detect timing violations and 2) a mechanism to correct any
potential logic errors.

The Razor concept was first applied to RISC
CPUs [18]-[20]. In a CPU pipeline, it is generally necessary
to correct any potential logic errors to guarantee the correct
execution of the software.” This is implemented by reusing
the checkpoint and replay mechanism in the pipeline to
perform exact error correction by reissuing instructions that
have potentially been affected by timing violations. Despite
good results, the additional complexity of adding Razor to
an already complex CPU leads to significant verification
challenges. It is also difficult to cleanly isolate the timing
violations in the CPU pipeline from the complex memory
system, which tends to be increasingly tightly integrated.

Razor and related approaches have also been applied to
hardware accelerators [21]-[26]. Accelerators appear to be a
better fit, as they tend to be relatively simple designs with a
very simple control plane and a predominance of data path
logic coupled and simple/regular data movement. This can
make error correction mechanisms simpler to design and easier
to verify [21].

In fact, in some applications, it is not always necessary
to completely correct logic errors. In many cases, a limited
number of occasional bit errors will not result in a notice-
able degradation according to some performance metric.
For example, in many DSP algorithms, it is sufficient to
merely limit the worst case magnitude of a logic error in a
mean-squared error sense. Therefore, instead of error correc-
tion through replay, we can use a cheaper error mitigation
technique since the algorithm itself is inherently robust to
noise [23]-[26].

2An exception to this would be any speculative state, such as branch
prediction results, which will be checked anyway at a later time.
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due to (a) their Gaussian distribution. (b) Using SM representation removes
switching due to sign extension, resulting in (c) low activity in high-order bits
(normalized to TC).

B. Error Tolerance in DNNs

Similar to previous work on error tolerant DSP accel-
erators [23]-[26], ML algorithms are inherently noise-
tolerant [29] and are a natural fit for Razor systems, without
the burden of exact error correction.

In our work, we use Razor timing error detecting flip-
flops (RZFFs) to monitor the timing violations on two timing-
critical stages: WMEM load and the MAC unit (Fig. 2). Rather
than explicit error correction, we mitigate potential intermittent
bit flips using two distinct mechanisms described follows.

1) Algorithm-Level Error Tolerance: Neural networks are
remarkably tolerant to noise, which is an essential character-
istic that allows them to operate on real-world signals which
contain noise and distortion, such as audio and natural images.
This inherent algorithmic resilience of DNNs is the basis for
timing error tolerance in this paper [29].

To further enhance this effect, we exploit the switching
statistics of the weights. The weight matrices have a zero-mean
Gaussian distribution [Fig. 4(a)], owing to the L1/L2 regular-
ization function used during the training process [1]. Small
magnitude integers with random sign result in a high switching
activity in the most significant bit (MSB) positions from
one word to the next, when represented using TC, owing
to sign-extension. Instead of the TC signed number system,
we use a SM representation, which removes the switching
activity due to sign-extension in small magnitude numbers,
as shown in Fig. 4(b). Hence, using SM for the weights reduces
switching activity, normalized to TC [Fig. 4(c)]. In turn, this
directly reduces the probability of a timing violation causing
a logic error.

Implementing the SM data path requires some changes.
Although multiplication is straightforward in SM, addi-
tion/subtraction is difficult to implement. Fig. 5 shows our
approach with two accumulators, one to sum all positive
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numbers, and one for the negative ones, which is quite similar
to the implementation in [27].

2) Circuit-Level Error Tolerance: Error tolerance in the data
path is harder to achieve because bit flips persist in the accu-
mulator, with no opportunity for masking. Although the SM
format previously described offers some benefit in the data
path, we additionally introduce the circuit-level technique of
time borrowing (TB) in the data path. Generous TB from the
accumulator is possible through the feedback path of the adder
in the MAC unit, which is much shorter than the path from
the operand register through the multiplier and the adder to the
accumulator (Fig. 5). This represents a one-sided critical path.
TB is enabled using a pulse latch, as described in Section VI.
We also introduce a bit-masking (BM) technique that uses per-
bit razor error data to mask individual bit errors in the weight
word. This is implemented by simply ANDing the inverted
error signal from the RZFF with the data bit, such that if a
timing-error occurs in a bit position, the output data will be
forced to zero, which may not be the correct bit value, but
instead represents a round toward zero operations.

VI. HARDWARE IMPLEMENTATION

An SoC targeting IoT applications (Fig. 6(a)) was imple-
mented in a 28-nm CMOS process and packaged in a 100-pin
QFN package. The SoC is based around an ARM Cortex-MO
microcontroller cluster and associated peripherals, memories,
and IO. The DNN engine IP itself connects to the MO cluster
through an asynchronous bridge, which allows independent
Fcrx and Vpp scaling to balance throughput and energy
efficiency. An on-chip digitally controlled oscillator (DCO) is
used to generate the high-performance clock for the acceler-
ator. A 1-MB on-chip SRAM (WMEM) stores the weights for
the DNN model (up tro 1 MB) and provides high bandwidth
access to the DNN engine through an AXI stream interface.
The 1 MB is split into four banks to ease floorplanning, with
each bank supplying up to 128-bits (8 weights) per clock cycle.

The Razor implementation uses a dual-mode RZFF
constructed from standard cells, with no custom layout. This
allows the design to be trivially ported to new process nodes.
The basic circuit is a double sampling with time-borrowing
design [19], but with the addition of a 2:1 mux that allows
either the pulse latch or the flip-flop in the data path. This
provides extra flexibility for experimental results, with either
hard-edge clocking using the flip-flop in the data path, or alter-
natively can operate as a pulse latch with the latch in the data
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TABLE I
TEST CHIP SUMMARY

Process Tech. TSMC 28nm HPC 1P10M

Die Size 2.4mm x 2.4mm

Total SRAM 128KB (SoC), IMB (WMEM), 6.5KB (DNN)

Total Flip-Flops 8460 (896/8460 RZFF)

ML Model Fully-Connected Deep Neural Network

Data Types 8/16-bit Weights, 16-bit Act., 32bit Acc.

Model Support Layers: 0-8, Nodes: 8-1024

Error Tolerance >10" @ 98.36% Accuracy

Vop 0.9V (nom.) / 0.6 — 1.1 V (operational)
667MHz @ 0.9V (WC sign-oft)

FMAX

1.2GHz @ 0.9V (w/Razor DFS)
33.7mW @ 667MHz/0.9V/8b (WC sign-off)
20.3mW @ 667MHz/0.715V/8b (DVS)
63.5mW @ 1.2GHz/0.9V/8b (DFS)
3.03mW @ 0.9V

Total Power

Leakage

path, which allows for a window of TB. A global pulse clock
(90-300-ps pulsewidth) defines the timing detection window,
the latch transparency time, and the hold padding required
at design time. For extra robustness, we use RZFF on all
bits of the WMEM access and MAC stage. All other paths
include 30% margin [24] to account for fast on-chip variation
effects [38]. The area overhead of the standard cell-based
RZFF is 3.24 x, which applies to <11% of total flops. An area
optimized RZFF cell can be implemented with area overhead
as low as 13.6% [32].

The test chip includes both a conventional TC data path as
well as the proposed SM data path on-chip to allow both to
be measured and compared in silicon. Fig. 7(b) shows the die
photograph, and Table I is a summary.
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Fig. 7. Measured error rate and power for voltage scaling at 667 MHz (top)
and error rate and throughput for frequency scaling at 0.9 V (bottom), with
16-bit weights.

VII. MEASUREMENT RESULTS

A. Voltage Frequency Scaling

Without any mechanism to track on-chip delay variation,
it is necessary to always operate at nominal voltage (0.9 V)
and the margined sign-off clock frequency of 667 MHz to
guarantee correct operation at the worst case PVT conditions
(SS, 0.81V, 125 °C). However, with Razor, we can adaptively
remove worst case margins. Fig. 7 shows the measurements
from Vpp and Fcrk scaling experiments. For Vpp scaling,
we fix the clock frequency at the worst case sign-off value
of 667 MHz (SS, 0.81 V, 125 °C), and sweep supply voltage,
from nominal voltage of 0.9 V down to 0.7 V. At each
step, we measure the power dissipation and timing error rate
observed over all 10 K vectors in the MNIST test set. For Fcrx
scaling, the procedure is similar, but with supply voltage
fixed at 0.9 V while sweeping the clock period. The timing
violation rate given is the number of words with timing
violations detected on one or more bits, as counted by on-
chip performance counters. The workload is a DNN with three
hidden layers and a topology of 784 x 256 x 256 x 256 x 10.
Results are given for both TC and SM number formats with
16-bit weights.

At 667 MHz, Vpp can scale from nominal (0.9 V)
down to 0.77 V before on-chip counters record the first timing
violations, which we refer to as the first error. By the time,
we reach the first error, we have translated the worst case Vpp
margin into a 30% power reduction (Fig. 7), for TT silicon
running at nominal voltage and room temperature. We can
scale Vpp below-mentioned the first error, until the zero-
margin point, beyond which the accuracy starts to degrade.
The region between the first error and the zero-margin point is
wide enough to allow the system to operate with an error-rate
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Fig. 8. Measured power breakdown of weights memory (WMEM) and the
rest of the accelerator, for 16-bit weights (left) and 8-bit weights (right),
at 0.9 V, 1 GHz.

driven dynamic voltage scaling (DVS) loop which targets
a small non-zero error rate, while retaining sufficient Vpp
margin to account for fast variation effects and high-frequency
Vpp noise. Alternatively, instead of reducing Vpp at sign-off
Fcirk, we can increase Fcpg at nominal Vpp. At 0.9 V, Fcrk
can scale beyond 1 GHz before the first timing violations are
observed. The zero-margin point is at 1.2 GHz.

At the high-throughput 1.2 GHz/0.9 V operating point,
the effective compute efficiency is 1.209 TOPs/W, given
typical activation sparsity levels. At the 667 MHz/0.715 V
low-power operating point, the effective compute efficiency is
slightly higher at 1.227 TOPs/W, including all memory power.

In Fig. 7, the timing error rate as a function of Vpp is almost
identical for TC and SM, with TC having a marginally higher
error rate. In terms of power consumption, the SM data path
has slightly lower power consumption due to the reduction
in switching activity, although the main motivation for SM
is in reducing the impact of timing violations as we will see
in the following.

The storage of the model parameters is a big cost for
DNN:Gs. Fig. 8 shows a breakdown of the power dissipation split
between the WMEM and the rest of the accelerator. Switching
from 16- to 8-bit weights reduces the power of the WMEM by
almost half, leaving the WMEM power approximately equal
to the rest of the accelerator.

B. Timing Error Tolerance

Further improvements are possible by leveraging the
inherent resilience of the DNN algorithm. Fig. 9 plots
measured classification accuracy versus timing violation rates
for weights memory (i.e., WMEM loads), the data path MACs,
and the combination. Fig. 9 also includes a summary of this
data, with a degradation in absolute accuracy degradation of
no more than 0.14% (98.36%).

For the weights memory, SM numbering exploits the zero-
mean Gaussian distribution of the weights matrix to reduce
switching activity in the MSBs and thus bit flips. On top
of this, enabling the BM technique to mask individual bit
errors in the weight word allows the accelerator to tolerate
SRAM read timing violation rates in excess of 107!, at 98.36%
accuracy.

Error tolerance in the data path is harder to achieve because
bit flips persist in the accumulator. Although SM offers some
benefit, we mainly rely on circuit-level TB (Section V) to
tolerate the timing violation rates commensurate to levels
achieved for the memory. As seen in the final summary plot
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Fig. 10. Measured energy and throughput across different configurations
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16- or 8-bit weights, TC or SM format, and sparsity optimization (skip).

in Fig. 9, the combined timing violation tolerance for the DNN
engine improves by several orders of magnitude at 98.36%
accuracy, over the whole 10 K vector MNIST test set, which
supports further Vpp reduction down to 0.715 V (no margin).

C. Energy and Throughput

Fig. 10 summarizes energy and throughput improve-
ments offered by different optimizations and techniques. Five
Vpbp/FcLk operating points are given, starting with the worst
case (WC) sign-off point of 0.9 V/667 MHz, then showing
voltage scaling to the first error point (0.77 V), and the zero-
margin point (0.715 V), beyond which the accuracy degrades.
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TABLE 11
COMPARISON OF TIMING ERROR TOLERANT ARCHITECTURES
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Tschanz Bull Kim Das Whatmough This work
ISSCC’10 [19] ISSCC’10 [20] CICC’11 [26] CICC’13 [22] ISSCC’13 [24] ISSCC’17 [12]
Tech. 45nm 65nm 180nm 65nm 65nm 28nm
Area 13.64mm’ 4mm’ 0.24mm’ 0.53mm’ 5.76mm’
Pipeline i;gﬁe_ 33 2C_I]’3€T 8-stage é?;glt ARM 256-tap correlator SDOZfe:lc];:i((i)ie 16-tap FIR filter FC DNN
Error - Double Sampling Transition Detector Algorithmic Transition Detector ~ Transition-Detector Double-Sampling
Detection + Latch +FF (FF) + Latch + Latch + Latch
Error - Exact- Exact- Approximate- Exact- Approximate- Approximate-
Correction Replay Replay Mean/Median Replay Interpolation + TB® Algo. + TB®
Fuax 1.45 GHz 1 GHz 50 MHz 667 MHz 1 GHz 667 MHz
Fuax Gain 41%" 50%" 50%" / 80%"
Energy Gain 22%° 529" 87%" 34% 37%* 30%" / 40%"°
* First error point, with margin remaining.
® Zero-margin point, beyond which accuracy degrades.
“TB — time borrowing.
The last two operating points show the frequency scaling up 100 s 256 NN
to the first error point (1 GHz) and finally the zero-margin DN 5 &% * 40nm
point (1.2 GHz). 6 X
Overall, using Razor DVS and architectural tech- 95} * P *
niques, energy was reduced by more than 9x down to _ . gg’:’:q
0.36 uJ/inference, with a simultaneous increase in throughput &
of about 4x. This improvement can be broken down into the g 90} om @ In:SRAM
optimizations of small data types (“8 bit”), number represen- g 180nm
tation (“SM”), aggressive Vpp scaling due to error tolerance < ;ﬂ',\‘n % DNN ENGINE (ISSCC'17)
(“no margin”), and exploiting data sparsity (“Skip”). In partic- 85| : H::r?sogtha(ls(c\'i';i;;”
ular, exploiting data sparsity results in the most significant . B Kimetal (VLSI'15)
savings in energy/inference (3.7 x), which strongly motivates Buhler et al. (VLSI'17)
. . . . @® Zhang et al. (VLSI'16)
further research in this direction. 80 ‘ ‘
Alternatively, for maximum throughput, the clock frequency 10” 10" 10° 10!
can be scaled up to 1.2 GHz (at 0.9 V), an improvement of Energy/inference (u)
about 80% at the zero-margin point, when including the archi-  Fig. 11.  State-of-the-art measured MNIST accuracy versus energy results.

tectural techniques. Classification latency (c.f. throughput),
is an important consideration for real-time IoT applications.
At 1.2-GHz FcLk, the latency for this network is 35.8 us.

We also ported a network for a 12-word keyword spot-
ting (KWS) data set. The topology is 403 x 200 x 200 x
12, which achieves a 99% accuracy with a weighted f-
score of 0.8 [37]. At the 667 MHz/0.715 V operating
point, the KWS network achieves an energy efficiency of
135 nJ/inference.

D. Comparison with State of the Art

For energy constrained applications, comparing published
results on the merits of operations per second, or operations
per Watt, is not always constructive because there is a range
of ML models in use, which achieve different accuracies and
require a wildly varying number of operations. Ultimately,
the most worthwhile comparison is of energy versus accuracy
on a particular data set. To this end, Fig. 11 shows a compar-
ison of hardware measurement results for previously published
chips that report MNIST energy and accuracy results. A range
of energy/accuracy points are shown for the DNN engine,’

3Includes accelerator and memory (WMEM) power, operating fully
embedded, with no external memory.

Measurements of this paper (DNN engine [12]) are shown for five DNNs,
from 256 nodes/layer down to 16, with three hidden layers. Also shown the
SNN [8]-[10], CNN [5], and in-memory (lower-resolution) [33] accelerators.

achieved by scaling the number of nodes in each of the three
hidden layers.

Fig. 11 includes not only different hardware architectures
but also different ML models. CNNs are well suited to
image classification problems, and achieve slightly higher
accuracy, albeit at higher power [5].* SNNs appear to occupy
a frontier that is at least an order of magnitude greater
in energy [8]-[10]. SNNs also seem to struggle to achieve
high accuracy on MNIST, even with very large ensembles [11].
Buhler et al. [9] show an interesting result, which is an analog
implementation of an SNN. In energy-accuracy terms, their
results seem in line with digital SNNs. Bankman et al. [36]
also implemented a mixed-signal approach for a CNN data
path, with results for a different data set. Zhang et al. [33]
present an ensemble weak classifier, where the computation
is performed in a standard 6T SRAM. Results for a heavily
cut-down version of MNIST (9 x 9 pixel images instead

4The reported CNN power in [5] does not include the off-chip DRAM.
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of 28 x 28) show 90% accuracy at 630 pl/inference. Simi-
larly, Ando et al. [34] described an in-memory SRAM-based
accelerator, this time for a binary FC network. Results
on a cut-down version of MNIST (22 x 22 pixels instead
of 28 x 28) show 90.1% accuracy, but energy/inference are
not reported. Biswas et al. [35] describe a CNN implemented
in a 10T SRAM structure, reporting an accuracy of 96% over
100 images (full test set is 10000 images); energy/inference
is not reported. Despite the interest in mixed-signal and in-
memory architectures, they are not yet competitive. Due to
vast differences in reported metrics, Fig. 11 only includes
published chips that report energy/accuracy on the MNIST
data set, which eliminates [13], [14], and [34]-[36].

Finally, Table II shows a comparison with previously
published timing error tolerant test chips. Similar to the
error tolerant DSP accelerators and in contrast to the CPUs,
our work on DNNs does not need to perform exact error
correction, which is a significant advantage. In fact, compared
to the DSP accelerators, there are no additional pipeline stages
at all in this design. The demonstrated timing error tolerance
of greater than 10~! without any replay is a compelling
result. Comparing the energy savings for these designs is not
really informative, as they have wildly different applications.
Nonetheless, our reported numbers are compelling; voltage
scaling provides around 30% energy gain, while retaining a
healthy noise margin, or 40% gain at the zero-margin point.

VIII. CONCLUSION

Low-power hardware for processing DNNSs is a key enabling
technology for IoT applications. We presented a 28-nm SoC
incorporating a specialized accelerator for FC DNN infer-
ence. The very large scale integration (VLSI) architecture
and circuit implementation of the accelerator is optimized by
exploiting inherent properties of neural networks, including:
parallelism, data reuse, sparse/small-range data, and noise
tolerance. The SoC includes on-chip SRAM to minimize the
energy cost of accessing the model parameters.

Measurement results demonstrate the state-of-the-art energy
efficiency, with a minimum energy of 0.36 ulJ/inference
at 98.36% accuracy on the MNIST data set. We also demon-
strate the aggregate timing violation rates > 107!, without
degrading classification accuracy.
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