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Abstract

Increases in peak current draw and reductions in the operating
voltage of processors stress the importance of dealing with volt-
age fluctuations in processors. Noise-margin violations lead to un-
desired effects, like timing violations, which may result in incor-
rect execution of applications. Several recent architectural solu-
tions for inductive noise have been proposed that, unfortunately,
have a strong correlation to the underlying power-delivery pack-
age model and require a feedback loop that is largely constrained
by the voltage/current sensor characteristics. The resulting solu-
tions are not robust across a wide range of microprocessor de-
signs and packaging technologies. This paper proposes a Delayed-
Commit and Rollback scheme (DeCoR) that guarantees correct-
ness, insensitive to the package model or the responsiveness of the
voltage sensors. In particular, our approach recovers from, rather
than attempting to avoid, voltage emergencies. This approach in-
curs a small performance penalty when compared to an ideal ma-
chine that does not have voltage emergencies. We show that ex-
plicit checkpoint-recovery schemes, intended to handle infrequent
events, e.g., radiation-induced soft errors, suffer from large per-
Sformance overheads for frequently-occurring voltage emergencies.
DeCoR requires very few modifications to modern processor de-
signs, as it leverages the existing store queue and reorder buffers.
Unlike conventional designs that conservatively protect all compo-
nents of the processor from inductive noise with overly-large timing
margins, our approach only requires conservative protection of the
architected register state and cache write paths.

1. Introduction

Inductive noise has been a long-standing problem in processor de-
sign. With greater interest in reduced-power microarchitectures,
this problem has gained even more significance, especially as oper-
ating voltages decrease while peak currents increase in the presence
of technology scaling [24]. Large current swings over small time
scales cause large voltage swings in the power-delivery subsystem
due to parasitic inductance. One can view such voltage emergen-
cies as conditions when the supply voltage significantly deviates
from the nominal operating voltage, resulting in transient timing
faults and long-term reliability problems. The maximum allowable
magnitude of this deviation is referred to as the hard threshold.
Traditional designs require timing margins throughout the proces-
sor that are large to prevent timing faults. Supply-noise analysis of
the POWERG6 processor [14] shows voltage droop induced delay
degradation as large as 17% (corresponding to a voltage droop of
200mYV for a 1.1V supply) can occur. To avoid large timing margins
required by supply noise, processor designers must find solutions
to the inductive noise problem that are cost effective, guarantee cor-
rectness, and minimally impact system-level performance.
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Several researchers and microprocessor vendors have investi-
gated architecture-level solutions to deal with voltage emergen-
cies [11, 15,20, 21]. These prior works strive to detect and avoid
impending voltage emergencies arising from inductive noise to pre-
vent failures. These impending voltage emergencies are either de-
tected using voltage sensors [15] or current sensors [20]. Joseph
et al. propose a voltage sensor based approach, where a throttling
mechanism is invoked when the sensed supply voltage crosses a
specified level, called the soft threshold [15]. Such a throttling
mechanism must react before the voltage deviation proceeds be-
yond the soft threshold to the hard threshold. The choice of the soft
threshold level is largely governed by the voltage sensor response
time and accuracy. Our experiments (detailed in Section 6.2) show
that throttling mechanisms cannot guarantee robustness for some
benchmarks even with an ideal sensor delay of zero cycles. More-
over, the high dependence of throttling mechanisms on underly-
ing assumptions associated with the power-delivery subsystem and
sensors means that these schemes cannot easily be re-targeted for
different processor architectures or power-delivery subsystems. In
addition, the conservative threshold settings used to offset the sen-
sor delay and allow the response mechanism to engage in these
schemes cause unnecessary throttling which degrades performance.
These drawbacks motivate the need for a solution that can be ap-
plied robustly to a wide range of designs with minimal hardware
cost and low performance impact.

In this paper, we propose a delayed-commit and rollback mech-
anism (DeCoR) to handle voltage emergencies. Rather than try-
ing to prevent voltage emergencies, this mechanism allows noise
margin violations to occur, but when they do, the architecture
has the ability to rollback to a guaranteed correct processor state.
This approach relaxes constraints on the power-delivery subsys-
tem and sensor implementation. We divide our processors into
two zones: roll-back protected (RB-protected) and timing-margin
protected (TM-protected) zones. A RB-protected zone includes all
structures where DeCoR permits recovery from voltage-induced
timing violations. In particular, we RB-protect the vast majority of
the processor core, along with the read path of the L1 data cache.
A TM-protected zone encompasses all other structures that require
timing margins large enough to prevent voltage fluctuations from
corrupting execution. The write path of the L1 cache, the entire L2
cache, and the retirement register file (RRF) are TM-protected.

The delayed-commit mechanism speculatively buffers proces-
sor updates to the machine state (register file and memory) until it
has verified that no noise-margin violations have occurred during
a time period sufficient for the sensors to detect potential noise-
margin violations. At the end of this sliding window of time, the
state is said to be noise-verified and can be committed to its respec-
tive structure. In the event of noise margin failure, noise-speculative
updates are discarded and execution is restarted from a prior noise-
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Figure 1: Three solutions to handle voltage emergencies with different
tradeoffs between robustness and cost of design. (a) represents a robust,
but costly solution. (c) provides a low-cost, but less robust solution.

verified state. Thus, the delayed-commit mechanism distinguishes
the processor’s noise-speculative state from its noise-verified state.
While the proposed delayed-commit and rollback mechanism may
appear to resemble traditional checkpoint-recovery schemes, there
are distinct differences in implementation requirements/challenges
and resulting performance penalties (discussed in detail in Sec-
tion 5.3). Moreover, DeCoR has a conservative overhead of 7%
compared to the 39% overhead of explicit checkpointing schemes.

Figure 1 illustrates three schemes to handle inductive noise, dis-
cussed so far. In standard design flows (Figure 1(a)), the circuit de-
signer is responsible for meeting timing margins under worst-case
inductive noise conditions. This leads to a robust, but over-designed
system for typical usage. In the emergency-avoidance throttling
scheme (Figure 1(c)), architectural techniques are used to protect
all state information while the timing margins are kept lean. Such
throttling schemes yield a lower cost design, but fail to guarantee
correct operation across different package solutions or designs with
large sensor delays. We also show that aggressive throttling can suf-
fer from its own timing problems or incur unacceptably large num-
bers of false alarms leading to performance degradation when com-
pared to an ideal noiseless machine. In the proposed scheme (Fig-
ure 1(b)), we retain the robustness of conservative designs while
gaining the benefits of throttling schemes. In other words, DeCoR
strikes a balance between traditional designs that are completely
TM-protected and previously proposed throttling solutions that at-
tempt to entirely eliminate conservative timing margins.

The main contributions of this paper are:

1. We provide a detailed analysis of a wide range of power-
delivery subsystems for modern processors and show how dif-
ferent characteristics affect the occurrence of voltage emer-
gencies. This analysis highlights the need for a widely usable
robust solution to deal with voltage emergencies.

2. We propose a delayed-commit and rollback mechanism to han-
dle voltage emergencies and can accommodate various of volt-
age/current sensor and power-delivery subsystem options. This
approach is robust—guaranteeing correct operation across a
wide range of package designs and sensor delays.

3. We explore various design parameters and present an exper-
imental evaluation of benefits and costs associated with our
framework. DeCoR can be low cost by leveraging existing
buffering and reusing the flush mechanisms found in typical mi-
croarchitectures, and performance impact is substantially lower
than that of employing explicit checkpoint mechanisms.
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The rest of the paper is organized as follows. Section 2 high-
lights two different types of transient errors and emphasizes the
need for an explicit solution to deal with noise-margin violations.
Section 3 provides a brief description of power-delivery subsystems
for processors and shows the effects of differing characteristics on
voltage emergencies. Then, the proposed delayed-commit and roll-
back mechanism is presented in detail in Section 4. The approach
is evaluated in Section 5 and a comparison to explicit checkpoint
schemes highlight the differences between the two schemes. Sec-
tion 6 presents an overview of existing throttling mechanisms for
emergency avoidance, and gives examples where throttling fails to
guarantee correct application behavior and showcases the robust-
ness of our proposed scheme for a wide range of package solu-
tions. Section 7 reviews prior research related to inductive noise
and checkpoint mechanisms. Section 8 concludes the paper.

2. Background on Transient Errors

With continued advances in technology, the issue of reliability for
modern high-performance processors is gaining importance. Re-
liability can be affected by transient errors, which can either be
radiation-induced soft errors or voltage-induced noise-margin vio-
lations. Soft errors and noise-margin violations are similar in that
they can cause transient failures, but they differ greatly in their
characteristics. The main differences are in 1) the physical phe-
nomenon that causes them; 2) the frequency of error occurrence;
3) the structures sensitive to the errors; and 4) the relationship be-
tween application characteristics and error occurrence. In this sec-
tion, we explore these main differences and highlight the differing
requirements for detection and correction.

Soft errors are generally characterized as single-event upsets or
bit-flips, caused by energetic particles from cosmic rays or alpha
particles. The occurrence of soft errors is quite rare and these errors
primarily affect data storage nodes. The probability of single-event
upsets affecting the correctness of computation depends on the ar-
chitectural vulnerability factor of the logic [18], which determines
whether a fault in that logic would actually affect the outcome of
the application. A common strategy is to employ a reactive mech-
anism where appropriate recovery actions are taken once an error
has been detected. One of the main challenges to dealing with soft
errors is the implementation of a robust error-detection mechanism,
often seen in the form of parity bits and/or error correcting codes
(ECCQ). For example, a parity-bit propagation technique to detect
soft errors was implemented by Fujitsu in their SPARC processors,
providing coverage for almost 80% of latch banks and array struc-
tures [2]. Other detection approaches utilize redundant (or checker)
processors and threads, which re-execute some or all of the instruc-
tions to verify correctness [4,22,28]. The infrequent occurrence of
soft errors allows these reactive mechanisms to have large penal-
ties associated with recovery. For example, the Fujitsu processor
employs a checkpoint hardware mechanism with a quiescent and
preparation period for restart of around 1us. This is because mi-
crosecond scale penalties are acceptable for soft errors that occur
at the timescale of days.

Noise-margin violations have very different characteristics from
those observed for soft errors. Noise-margin violations are sensitive
to the characteristics of the underlying power-delivery subsystem
and the application. Inductive noise results from parasitics present
in the system, which can cause the voltage to swing significantly
in response to current fluctuations. If the voltage swings are sig-
nificant, they can induce timing-margin violations. Noise-margin
violations primarily affect logic delay paths and are tightly cou-
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Figure 2: Isolated current pulses and resonating pulses with a period of 100MHz.

pled to application characteristics. For example, the presence of
repeated execution patterns in applications can increase the suscep-
tibility to timing violations due to resonance in the power-delivery
network [12]. Unlike soft errors, noise-margin violations are eas-
ier to detect, e.g., using hardware sensors, but require careful bal-
ance between latency and resolution. Several researchers have pro-
posed to address noise-margin violations through feedback-driven
avoidance mechanisms [11,15,20,21], where these sensors predict
impending violations and take preemptive actions, such as throt-
tling. Traditional designs require overly conservative timing mar-
gins, preventing the occurrence of such violations. In contrast, de-
signs can more aggressively reduce timing margins if the aforemen-
tioned avoidance mechanisms are in place. Consequently, frequent
and repetitive occurrence of voltage noise requires fast detection
and response to ensure correctness and limit performance loss.

In contrast to the above avoidance techniques, this paper
presents a simple yet robust reactive approach to deal with noise-
margin violations. The approach is based on a delayed-commit
mechanism that requires very little modification to conventional
processor designs. The high occurrence (due to repeated execution
patterns) of voltage-induced errors means that the implementation
and performance issues related to delayed-commit and rollback
are paramount. Reactive mechanisms that have been proposed to
handle soft errors cannot be used to address noise-margin viola-
tions due to the large disparity in the temporal characteristics of
the two types of transient errors. Radiation-induced soft errors are
infrequent and, hence, can use recovery schemes [2,29] that imple-
ment checkpointing with coarse granularity on order of hundreds
to thousands of cycles. While sufficient for soft errors, this gran-
ularity is too coarse for much more frequent voltage emergencies,
incurring overly high overheads and leading to unacceptably large
performance penalties. DeCoR provides a fine-grained reactive ap-
proach for this very different problem domain—addressing voltage
noise-margin violations—with minimal impact on performance.

3. The Power-Delivery Subsystem and Voltage
Emergencies

Noise-margin violations, or voltage emergencies, are closely linked
to the detailed characteristics of the power-delivery subsystem
(PDS). In this section, we investigate the interaction between cur-
rent consumption profiles and the PDS that leads to voltage emer-
gencies. We consider voltage swings greater than +£5% of the nom-
inal voltage to be voltage emergencies. The +5% margins, assumed
in previous studies, allow designers to chose relatively aggressive

383

margins as opposed to 15-20% [14]. We also show how different
package parameters can affect voltage variations for a given pro-
cessor. It is important to understand this interaction to design robust
architectural solutions that can handle noise-margin violations.

3.1 Characteristics of current pulses

While the PDS of a given microprocessor is a complex system con-
sisting of several different components (e.g., voltage regulator mod-
ule, package, on-die capacitors, etc.) [5, 8], a simplified second-
order lumped model [13,26] can adequately capture its resonance
characteristics with impedance peaking in the mid-frequency range
of SOMHz-200MHz. Ideally, the supply voltage across a processor
should be constant. However, due to dynamic current fluctuations
and the non-zero impedance of the PDS, large voltage fluctuations
can occur. One way to characterize voltage variations is by convolv-
ing the instantaneous current profile of the microprocessor with the
impulse response of the PDS (Equation 1).

v(t) = i(t) * h(t) (@)
Sudden short spikes in current can cause voltage variations, but
the magnitude of the variation largely depends on the amount of
charge build up over a specific time interval. Figure 2(a) shows
the voltage transients for current pulses of varying amplitudes and
durations. The first and second pulses have the same width, but
the second pulse has a higher amplitude. A sufficiently high am-
plitude can induce violations (£5%). The last two pulses shown,
though they have large integrated charge, do not cause significant
variations in voltage. This shows that isolated pulses with a certain
amplitude/width combination can lead to voltage emergencies.
Even if the voltage fluctuation caused by a current pulse in
isolation does not exceed noise margins, a series of such pulses
at the resonance frequency of the PDS may lead to a voltage
emergency. Figure 2(b) shows the voltage response for a series of
current pulses. The first sequence of current pulses has a period
of 30 cycles, which corresponds to a frequency of 100 MHz for a
3GHz processor. If the resonance of the PDS also occurs at 100
MHz, voltage swings gradually build up and exceed emergency
thresholds. Thus, it is important to consider both isolated pulses
and resonating pulses when designing an architectural solution to
handle voltage emergencies.

3.2 Analysis of sensitivity to power-delivery subsystem

Given that a power-delivery subsystem can be modeled as a second-
order linear system, the response of the package model to current
variations is largely governed by three factors: Q (quality factor),
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C (resonance cycles) and Z (peak impedance). These factors affect
the robustness and correctness of any solution for handling noise-
margin violations. In this section, we analyze the effects of these
three factors on voltage emergencies.

Quality factor (Q): The quality factor of a system is the ratio of
the resonant frequency to the rate at which it dissipates its energy.
This factor determines the width of the resonance, or the resonance
band of the system. A higher Q leads to a greater build up of voltage
for currents oscillating within the resonance band. Q depends on
the effective inductance (L) and resistive losses (R) at the resonant

frequency (f = m) as shown in the following equation:
2xmx fxL
= — 2
Q I (@)

A good package will have lower parasitic inductance and hence
lower Q than a poor package. Figure 3(a) shows different packages
with different Q, where it can be seen that higher-Q packages have
a narrower resonance band and higher impedance at the resonant
frequency. Higher impedance means that applications with current
variations within the resonance band experience larger voltage fluc-
tuations. Figure 3(b) illustrates how different packages with differ-
ent Q factors affect voltage emergencies on a subset of the SPEC
CPU2000 benchmarks. As Q increases, the fraction of cycles where
the voltage extends beyond £5% thresholds increases for all bench-
marks. However, the slope for each benchmark differs, with crafty
experiencing the steepest increase in noise-margin violations. This
can be attributed to the differing current profiles of the benchmarks.
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The PDS Q factor defines an important constraint on any tech-
nique designed to handle voltage emergencies. Specifically, the rate
of change of voltage will depend on Q. For example, a snapshot
of crafty’s voltage trace is depicted in Figure 4(a). This exam-
ple assumes two thresholds, one at +3% (soft) and the other at
+5% (hard). The short time interval over which the voltage crosses
both soft and hard thresholds determines the maximum delay any
soft-threshold based avoidance mechanism can tolerate. Figure 4(b)
plots the percentage of voltage emergencies occurring for different
delays between threshold crossings over a range of Qs across the
entire voltage trace of crafty. This plot shows that even with mod-
erately low Qs voltage fluctuations can be very fast.

Resonance Cycles (C): This factor represents the number of
processor cycles corresponding to one period of the PDS resonant
frequency. As processor frequency increases while the PDS reso-
nant frequency remains fixed, C also increases. For example, a res-
onant frequency of 100MHz for a 10GHz processor would result in
a C of 100 [20], whereas C would be 30 for a 3GHz processor.

Voltage emergencies strongly depend on this resonance cycles
metric. Figure 5(a) plots the resulting voltage fluctuations for three
settings of C and shows that the minimum width of an emergency-
inducing isolated current pulse differs for different resonance cy-
cles. In fact, this width depends on the resonant frequency of the
PDS such that a larger C tends to require wider current pulse
widths, in terms of the number of processor cycles. Figure 5(b)
shows how the fraction of cycles with noise-margin violations
varies with processor frequency for a given package. The pack-
age considered here has a resonant frequency of 100MHz. We can
see that the peaks for the different benchmarks shown here are at
lower values of the resonance cycles metric (20-30 cycles). This is
because, in these benchmarks, current pulses tend to have smaller
widths—both for resonating and isolated pulses.

Peak Impedance(Z): This factor represents the peak impedance
of the power-delivery subsystem at its resonant frequency. Ideally,
this peak (or target) impedance should be as low as possible to
avoid voltage emergencies. However, efforts to reduce this peak
impedance can increase system cost. Therefore, circuit and archi-
tecture designs must cope with higher than desired impedance to
avoid voltage emergencies. Figure 5(b) shows that as the peak
impedance of the package increases, noise-margin violations also
increase across all benchmarks and resonance cycles.
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The frequency of noise-margin violations varies across different
power-delivery subsystem designs, and is also closely related to the
current consumption profiles. It is important to guarantee that the
mechanism used for handling voltage emergencies is robust across
a wide range of package and processor characteristics.

4. Delayed-Commit and Rollback

The previous section has shown that a solution for handling noise-
margin violations needs to be robust for different packages and sen-
sors characteristics. Along these lines, we propose a technique to
deal with inductive noise that does not require fast sensors and ac-
tuation mechanisms, which are difficult to implement in practice.
Moreover, if sensor thresholds can be set close to or at the hard
threshold, we can reduce the false alarm rate (explained in Sec-
tion 6) to zero and avoid unnecessary performance loss. This sec-
tion describes an approach with exactly these characteristics. The
proposed solution provides the robustness of existing traditional de-
signs, while avoiding the need for large timing margins in the core
blocks of the processor. This approach requires very little new hard-
ware and, as we will demonstrate in Section 5, incurs small perfor-
mance penalties over ideal designs that do not suffer from voltage
emergencies. We approach the problem by dividing the processor
into two zones as described in Section 4.1. Section 4.2 presents de-
tails of the new technique that uses a delayed-commit mechanism.
This mechanism guarantees that only states verified to be correct
are committed, even in the presence of voltage fluctuations. Sec-
tion 4.3 then describes the proposed recovery mechanism that en-
sures a correct execution whenever a noise-margin violation occurs.

4.1 RB-protected and TM-protected zones

The proposed delayed-commit and rollback (DeCoR) mechanism
does not attempt to avoid voltage emergencies. Instead, it lets the
processor core run freely with aggressively set timing margins, and
provides safeguards to detect and recover from potential noise-
margin violations if and when voltage emergencies do occur. We
divide the overall machine architecture into two zones: a timing-
margin protected (TM-protected) zone, as is traditionally done, and
a rollback protected (RB-protected) zone.

The TM-protected zone relies on standard circuit-based tech-
niques to guarantee all timing margins are met. Although circuitry
in this zone requires more conservative designs, we limit blocks
that reside here to the retirement register file, the PC chain, the
L1 write port, and the L2 cache. Fortunately, these structures tend
to be less timing critical for several reasons. First, processor per-
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formance is relatively insensitive to L2 cache latency.For example,
many designs will construct L2 caches using low-leakage, high-Vt
transistors that trade access latency for reduced power consump-
tion [10]. For the L1 cache, the L1 read path is known to set the
access time, while the write path is less critical [31]. This is be-
cause the read ports are driven by small SRAM cells that cannot
easily be sized up, while the write ports are driven by external pe-
ripheral circuits that can be appropriately sized to increase speed.
We assume idle memory cells are resilient to common-mode volt-
age fluctuations, which affect both sides of a differential SRAM
cell equally. Recent cache designs from Intel [23] demonstrate that
memory cells retain state in lower-voltage drowsy modes, where
the voltages are much lower than the low-end voltage-emergency
level we assume. Furthermore, we assume idle memory cells can
have additional protection by using standard ECC measures com-
mon in today’s microprocessors. Finally, the retirement register file
and PC chain are relatively small structures, are less likely to be
timing critical, and can be sized up with small power penalties, if
needed.

The rest of the processor pipeline resides in the RB-protected
zone, which includes the instruction fetch unit, instruction cache
(there are no writes to the I-cache from the processor and the static
memory cells are robust as explained above), the issue logic, the
execution units, and the commit logic that consists of the reorder
buffer and store queues. These structures can assume more aggres-
sive timing margins to avoid unnecessary performance loss, since
they rely on an architectural mechanism for protection. We note
that updates to the branch predictor in the noise speculative state
may corrupt the predictor state if a rollback is initiated. However,
the frequency of these corruptions would be small and would not
impact correctness or performance. Slicing the processor into TM-
protected and RB-protected zones is also straightforward, and can
simply be applied at the architectural block level (in RTL). The
paths from these blocks can be flagged to have extra timing mar-
gins. This approach is more efficient than arbitrarily adding mar-
gins to all paths, and is no more complex than identifying critical
paths in schemes like Razor [9].

To deal with potential timing violations in the RB-protected
zone, we propose a delayed-commit and rollback mechanism that
guarantees correctness in the presence of voltage emergencies. Our
approach enables the processor to recover from voltage emergen-
cies by rolling back the system state if voltage emergencies are de-
tected by voltage sensors. The delayed-commit mechanism ensures
that the architected state and the values in the L1 data cache are
not corrupted by timing violations. Unlike emergency avoidance,
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Figure 6: Block diagram of delayed-commit architecture.

this mechanism does not seek to detect and mitigate emergencies,
but reacts to them after they occur. Hence, the response mecha-
nism is engaged only for true voltage emergencies (i.e., violations
of the +5% hard threshold) and does not need to detect emergen-
cies using soft thresholds. More importantly, our approach guaran-
tees correctness of the system across wide ranges of power-delivery
network and processor characteristics and sensor-delay latencies.

4.2 Delayed commit

Figure 6 presents a functional diagram of the delayed-commit ar-
chitecture. To guarantee system correctness, this architecture dis-
tinguishes between the noise-verified state and noise-speculative
state. A noise-verified state is the state of the machine that is known
to be correct. The program can be rolled back to the noise-verified
state following a voltage emergency, which will be signaled by a
voltage-sensor reading. In the noise-speculative state, the proces-
sor continues executing down the regular execution path and results
are held in existing buffering mechanisms (ROB and STQ) until the
outcome of the sensor reading is known. This buffering breaks the
traditional feedback loop necessary in sense and throttle schemes
(Section 6), accommodating any length of sensor delays.

During program execution, the processor buffers values corre-
sponding to the noise-speculative state in the reorder buffer (ROB)
and store queue (STQ). To know when this state can become noise-
verified, each entry in the ROB/STQ has a counter associated with
it. Completed results need to be buffered in the ROB/STQ until
they are verified to be correct with respect to noise violations. The
time the instructions need to be buffered is directly proportional to
the sensor delay in the system. If we assume a sensor delay of D
cycles, all completing instructions will set their counters for this de-
lay. When the instruction reaches the head of the queue and is ready
to retire, the commit logic verifies that the counter has expired and
then declares the state to be noise verified. At this point, it is safe
to commiit the state to the appropriate TM-protected structure, i.e.,
RRF or L1 data cache.

The correctness of our scheme centers on proper transitions
from the noise-speculative state to the noise-verified state. For our
current implementation, this transition takes place when commit-
ting state from the STQ to the L1 data cache and from the ROB to
the RRF. We must guarantee the robustness of writes to the RRF
and data caches at all times, because in a worst-case scenario, a
voltage emergency could occur when moving state into these noise-
verified locations. For this reason, the write paths of these structures

must have sufficient timing margins to tolerate voltage noise and
hence lie in the TM-protected zone. In contrast, reads from the data
cache and the retirement register file can experience voltage emer-
gencies, because these emergencies would be detected and handled
by the delayed-commit mechanism. In other words, we do not need
to take any special measures when data transitions into the RB-
protected zone. As discussed earlier, we assume that idle memory
cells in the ROB/STQ will not be corrupted during the few cycles
between a state becoming noise-verified and committed.

4.3 Rollback

When a voltage emergency occurs, the sensors notify the machine
that all noise-speculative states should be flushed, and that it should
initiate a rollback to the last noise-verified correct state. Flushing is
straightforward, as the noise-speculative state is already located in
structures (the ROB and STQ) that are capable of flushing specula-
tive states and rolling back program execution. Thus, a flush in our
rollback mechanism is similar to a flush after branch mispredicts,
and the machine can be restarted the next cycle. A key attribute
of our scheme is that rollbacks occur only when noise margins are
actually violated; false alarms never occur.

To ensure that rolling back the processor does not cause new
emergencies, we start the processor at a reduced frequency for
some number of cycles, called the throttling period. This guarantees
forward progress at the cost of a small loss in performance. Our
experiments show that a throttling period of 10 cycles at a 50%
frequency following the rollback action ensures forward progress.
This half-rate throttling can be achieved without PLL involvement,
that is, by simply gating the clock every other cycle.

5. Performance Analysis

This section investigates the performance impact of different pa-
rameters used in the proposed DeCoR mechanism and seeks to un-
derstand how changes in sensor delay, buffer size, throttling period,
and throttling factor affect performance. We refer to sensor delay as
the total time comprised of making measurements on one or mul-
tiple distributed sensors, communicating the results to the actuator,
and taking appropriate actions. Section 5.3 provides a performance
comparison of our proposed schemes with previous explicit check-
point schemes, and shows the high restore penalties associated with
previous schemes.

5.1 Power-delivery and simulation frameworks

Though we do provide detailed results considering four different
package configurations in Section 6.2, the following analysis will
focus mainly on a single package model based on the character-
istics of the Pentium IV package [5]. In this model, the resonant
frequency of the PDS occurs at I00MHz with a peak impedance of
Sm{2. This corresponds to a resonance cycle (C) of 30 cycles for
a 3GHz machine. This model’s impedance response is illustrated
in Figure 3(a) (Q=3). Finally, we assume peak current swings of
16-50A, and noise-margin violations occur at £5% of a 1V sup-
ply. Earlier works [11, 15,20] used parameters based on the Alpha
21264/21364 package, which we also evaluate in Section 6.2.

Our architectural simulations are based on a version of Sim-
pleScalar for the 86 architecture. Table 1 tabulates the parameters
used to configure an §-way superscalar, out-of-order processor. To
get a detailed cycle-accurate current profile, we incorporate a mod-
ified version of Wattch [6] into our SimpleScalar simulator. Voltage
variations are calculated by convolving the simulated current pro-
files with an impulse response of the PDS, as detailed previously in
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Clock Rate 3.0 GHz RAS 64 Entries
Inst. Window 128-ROB, 64-LSQ Branch Penalty 10 cycles
Functional 8 Int ALU, 4 FP ALU, Branch 64-KB bimodal
Units 2 Int Mul/Div, Predictor gshare/chooser
2 FP Mul/Div BTB 1K Entries
Fetch Width 8 Instructions Decode Width 8 Instructions
L1 D-Cache 64 KB 2-way L1 I-Cache 64 KB 2-way
L2 I/D-Cache 2MB 4-way, Main Memory 300 cycle
16 cycle latency latency

Table 1: Processor parameters for SimpleScalar.

Equation 1. This second-order model is used in several other stud-
ies [15,20].

We ran a subset of SPEC2000 benchmarks, as certain bench-
marks failed to complete successfully on our simulator. Each
benchmark was run for 100 million instructions of a representa-
tive phase given by Simpoint. Large current variations can lead to
significant voltage drops, and these variations are generally gov-
erned by the activity of the benchmark application just before the
voltage drop. Our experiments show some correlation between the
distribution of voltage and the IPC' of the application. Applica-
tions with high IPC (i.e., crafty and mesa) exhibit high levels of
processor activity and, hence, have more current variations around
the resonant frequency of the system. Benchmarks with lower IPC
(e.g., equake and apsi) have longer stall/idle periods (due to high
cache miss rates) than the previously mentioned benchmarks and,
thus, have a smaller fraction of cycles within the +5% threshold.

5.2 Performance Analysis of DeCoR

There are two primary sources of performance loss associated with
the delayed-commit scheme: 1) Delaying the commit of instruc-
tions in the reorder buffer and store queue may lead to buffer pres-
sure and potential stalls and 2) Each rollback and subsequent recov-
ery incurs a runtime penalty. The performance impact of delayed
commits is, therefore, a function of the sensor delay, the charac-
teristics of the power-delivery system, and size of the store queue
and reorder buffer. Rollback overhead can be further divided into
cycles spent in replay/rollback and cycles spent during throttle (the
slow startup mode engaged during recovery). Equation 3 provides
a breakdown of the penalty associated with rollback:

ExtraWorkpcr = RA * (RC + (TF — 1)« TP) 3)

! As we are using an 286 microprocessor model, IPC refers to the number
of micro-operations executed per cycle (uIPC).
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where RA represents the number of times the rollback happens
(or rollback alarms), RC represents the number of rollback cycles,
T P represents the throttle period, and T'F' represents the throttling
factor (fraction of the clock frequency applied during throttle).

Figure 7 presents the total performance penalty due to the
DeCoR mechanism for different sensor delays across several
benchmarks (TF = 2 and TP = 10 cycles). For sensor delays as
low as 5 cycles, the performance impact ranges from 0.02% to 7%
across the benchmark suite. This includes the total performance
penalty due to both STQ and ROB pressure during delayed commit
and rollback and the slow startup of the processor during rollbacks.

A breakdown of the contribution of each factor (buffer pressure,
rollback, and throttle) is also shown in Figure 7 for different sen-
sor delays. We observe that the performance loss in benchmarks
with high IPC (e.g., bzip and crafty ) is largely dominated by roll-
back and throttle penalties. There are two reasons for this. First,
benchmarks with higher IPCs generally have more voltage emer-
gencies. Second, high IPC benchmarks tend to have fewer memory
stalls, resulting in lower occupancy rates for the ROB and STQ.
Consequently, the penalty from buffer pressure is small. The per-
formance loss of benchmarks with low IPC is dominated by buffer
pressure, but the performance loss in these benchmarks is also gen-
erally small. For larger sensor delays, the buffer pressure penalty
and rollback penalty tend to dominate, and the throttle penalty
decreases. Another way to understand how the delayed-commit
scheme applies pressure to the store queue and ROB is to look at
occupancy. Our simulations show that benchmarks with low IPC,
like equake and apsi, tend to have near full ROB/STQ structures
and, hence, experience higher performance penalty due to buffer
pressure. The occupancy of these structures increases by only a few
entries for almost all of the benchmarks, indicating that a slightly
larger STQ/ROB can alleviate performance loss.

5.3 Comparison with existing explicit checkpoint-recovery
schemes

The proposed delayed-commit and rollback mechanism differs

greatly from traditional checkpoint-recovery mechanisms in terms

of the mechanisms and overheads involved. Previous checkpoint-

recovery schemes have an explicit checkpoint mechanism, whereas

our approach relies on a light-weight implicit checkpointing scheme.
In this section, we highlight the key differences between the two

approaches and compare the performance penalties of not using a

delayed-commit mechanism for handling inductive noise.
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Figure 8: Example illustrating the two checkpoints required in explicit
checkpoint schemes to maintain correctness given noise-margin violations.

Explicit checkpoint-recovery mechanisms have been employed
to tackle problems in a variety of domains. There can be several
mechanisms for explicit checkpoints that vary in their degree of
implementation complexity and overheads involved. Earlier check-
pointing schemes were predominantly aimed at providing fault tol-
erance in large systems. Recently, however, checkpointing schemes
have been proposed for several other domains: soft error detec-
tion [29], boosting processor performance [16,17,27], fault de-
tection [25] and debugging [19].

The general aim of recently proposed hardware checkpoint-
restart mechanisms has been to either provide recovery from soft
errors or to provide improved performance due to larger speculation
opportunities. All these schemes aim to take checkpoints at very
coarse granularities, ranging from 100 to 1000 cycles. The high
frequency of noise-margin violations (as compared to soft errors
or rollbacks due to exceptions in highly speculative architectures)
necessitates the need to have a low-overhead and very fine-grained
mechanism. Moreover, a robust scheme to handle noise-margin vi-
olations needs to be invariant to sensor delays. Figure 8 shows an
example of a scenario where the violation is detected after check-
point C'; 1 has been taken. To have correct semantics, the system
should rollback to checkpoint C;, incurring a higher rollback cost.
In general, even if the checkpoint interval is adjusted to match the
sensor delay in the previously proposed mechanisms, the recovery
costs of discrete, explicit mechanisms are higher than the implicit
checkpointing mechanism in DeCoR.
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A common trait to all checkpoint-recovery schemes is the ex-
plicit saving and restoring of required architectural state. The states
that must be saved for correct execution at recovery is mainly the
architected state, which consists of the registers and the updated
memory-state. For example, [16] and [17] assume a buffered mem-
ory update, using volatile bits for updated lines between check-
points. When a rollback occurs, the lines marked volatile are
flushed from the cache. However, this results in additional cache
misses after rollback. The overhead of implementations proposed
in [1] and [17] includes a register restore latency of 8 cycles (for
32 registers with 4 write ports); the infrequency of the rollbacks in
other implementations shadows the rollback cost. However, such
schemes will require frequent rollbacks and incur large perfor-
mance penalties when applied to noise-margin violations.

Figure 9 shows a breakdown of the performance impact of roll-
back, throttle, and restoring of state for explicit checkpointing com-
pared to the performance impact of rollback, throttle, and delayed-
commit for DeCoR with a sensor delay of 20 cycles. Due to the
rollback to the previous checkpoint, C;, instead of current check-
point, C; 1, for every rollback, the rollback penalties (including the
throttle penalties) are higher for the explicit checkpoint schemes.
We can also see that the performance impact of restoring state in
explicit checkpoint mechanisms is significantly higher, around 39%
on average. This includes both the register restore penalty as well
as the impact of flushing the volatile lines. For example, a huge per-
formance loss of 170% is seen for bzip, because frequent flushing
of volatile lines significantly increases cache miss rate. The major-
ity of the benchmarks clearly favor DeCoR by a wide performance
margin, with swim, a benchmark with very few emergencies, be-
ing a notable exception. In this case, the benchmark incurs a high
delayed-commit penalty (also seen in Figure 7), but the number of
rollbacks is small resulting in better performance for the explicit
checkpointing scheme.

In summary, explicit checkpoint mechanisms incur unaccept-
able performance overheads when applied to highly-frequent tran-
sient errors, characteristic of inductive noise. In contrast, DeCoR
provides reasonably low performance overheads across a wide
range of sensor delays. We now turn our attention to robustness
comparisons between DeCoR and existing throttling-based noise-
control mechanisms.
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Figure 10: Feedback loop in emergency-avoidance mechanisms.

6. Robustness Comparison to HW Throttling

Solutions to deal with inductive noise must correctly avoid or
recover from voltage emergencies, preferably with small perfor-
mance loss. This section evaluates the robustness of previously pro-
posed schemes [11, 15, 20, 21] across a wide range of PDS and
sensor delay assumptions. A common attribute of these schemes
is to use techniques that either spread out emergency-causing cur-
rent variations in time or reduce their amplitudes. We refer to all
of these techniques as throttling. The problem arises when one
tries to use throttling alone in an emergency-avoidance manner to
stop the processor from ever crossing a hard threshold. For the fol-
lowing discussion, we again assume a hard threshold of +/-5% of
the nominal voltage. Section 6.1 illustrates the feedback associated
with these emergency-avoidance approaches and discusses the im-
pact of voltage sensor delay characteristics on the correctness of
these schemes. Section 6.2 evaluates the effect of PDS characteris-
tics on the lack of correctness guarantees for emergency-avoidance
schemes in comparison to DeCoR. We also quantify DeCoR’s per-
formance overheads across a similar range of power delivery sub-
systems (Section 6.3).

6.1 Sensor characteristics

There are several different ways to reduce current variations via
throttling mechanisms such as frequency throttling, pipeline freez-
ing, pipeline firing, issue ramping, or changing the number of the
available memory ports [11, 15,20, 21]. All of these mechanisms
rely on voltage or current sensors to detect threshold crossings in-
dicative of noise-margin violations having occurred or about to oc-
cur. As shown in Figure 10, the sensor controls the throttling mech-
anism (i.e., the actuator). Assuming that the control logic and actua-
tion mechanism can react quickly, the main bottleneck in throttling
for emergency-avoidance is the speed of the sensors. This latency
sets the speed of the overall feedback loop. There are many ways
to build sensors that can trade-off delay and precision. Hence, it is
important to understand the impact of the inherent delay and in-
accuracy associated with the sensors on the different emergency-
avoidance schemes.

Recall Figure 4(a), which shows the number of cycles from the
crossing of the 3% soft threshold to the crossing of the 5% hard
threshold for the benchmark crafty. It took only 3 cycles. In general
for the avoidance schemes, the maximum allowable sensor delay is
largely determined by the minimum number of cycles for voltage
to transition between the two thresholds. This suggests that for the
emergency-avoidance throttling mechanism to work correctly for
crafty with our package model, the sensors need to detect the soft
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threshold crossing within two cycles, leaving only one cycle for
the actuator mechanism. Since noise violations are rare events, one
might argue that the fraction of those occurring with such a steep
slope might be extremely rare. Unfortunately, we need only a single
noise-margin violation to disrupt the reliability of our processor
circuits and cause incorrect program execution. Consequently, all
such situations must be avoided.

To guarantee correct operation, emergency-avoidance throttling
mechanisms must throttle before a hard emergency actually oc-
curs. In order to accommodate potentially long sensor delays, one
can consider increasing the separation between the hard and soft
thresholds. However, conservatively setting the soft threshold in-
creases the number of false alarms, where voltage variations are
unnecessarily flagged as requiring throttling. Since the processor
incurs a performance penalty every time throttling is engaged (i.e.,
the program slows down), we would like to engage the throttling
mechanism only when we are sure that the hard threshold would
otherwise be crossed.

Figure 11 illustrates the distribution of false alarms across
our benchmarks for several different soft threshold levels. A soft
threshold of +3% leads to an 80% false alarm rate, averaged across
all the benchmarks. Increasing thresholds closer to the noise mar-
gins leads to fewer false alarms, but the percentage is still relatively
high. In comparison, DeCoR does not incur any false alarms since
only the occurrence of voltage emergencies (hard threshold cross-
ings) is detected.

6.2 Robustness across package choices

As discussed in Section 3, a processor’s susceptibility to voltage
emergencies is tightly coupled to the underlying power-delivery
subsystem. Hence, correctness of any proposed solution depends
on assumptions made about the package and/or processor models.
In this section we show that the correctness of previously proposed
throttling schemes vary with respect to current swings (dependent
on processor architecture), resonant frequencies (i.e., packaging as-
sumptions), and sensor delays. In contrast, DeCoR’s performance
is affected by these parameters, but correctness is not. We chose to
sweep two of the three parameters governing power-delivery sub-
system characteristics—Q factor and resonance cycles—as chang-
ing either one affects the peak impedance of the system. We also
evaluate and compare the performance impact of different package
characteristics on the proposed DeCoR scheme.

The techniques discussed in Section 6 aim to avoid emergencies
by reducing current fluctuations via system throttling in response to
detection of voltage droop [15] or repetitive current patterns [20].
Figure 12 presents contour plots of the number of noise-margin
violations for bzip across different package characteristics, while
employing an aggressive, 0.5x frequency-throttling mechanism
that responds to voltage swings. With a soft threshold of £3%,
we consider two sensor delay scenarios — a sensor delay of O
(Figure 12(a)) and a sensor delay of 5 (Figure 12(b)). Even with
an optimistic sensor delay of O, this throttling scheme fails to
prevent noise-margin violations for packages with Q greater than 2,
leading to correctness violations. For more realistic sensor delays,
the number of violations increases by two orders of magnitude, and
even packages with relatively low Q are sometimes unable to avoid
noise-margin violations. The package characteristics assumed in
[15] lie in the small region (upper left corner) where the throttling
mechanism is effective. These results show that a throttling-based
emergency-avoidance scheme cannot alone guarantee correctness
for a wide range of designs.
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Resonance tuning is another throttling mechanism, which as-
sumes voltage emergencies are caused by repeating high-low/low-
high current transitions occurring within the resonance band [20].
We consider the mechanism proposed in [20] and compute the
corresponding parameters for each package with an initial re-
sponse threshold of 2. In addition to resonant pulses, several single-
transition events (single current pulses within the resonance band)
occur for different packages, and a significant fraction of these
events cause noise-margin violations. For example, Figure 13(a)
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illustrates an example of a such an isolated current pulse found
in SPEC benchmark equake that causes voltage to swing below
the hard threshold. Figure 13(b) shows a contour plot delineating
the fraction of single-transition events seen in equake that cause
noise-margin violations across different package characteristics.
These results show that the scheme proposed in [20] would not
be able to detect such pulse emergencies for packages with Q>2.
On the other hand, resonance tuning techniques could be used to
enhance DeCoR by filtering out many potential rollbacks while

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:06:32 UTC from IEEE Xplore. Restrictions apply.



Package Z Q Resonance Comment
(mOhm) Cycles
pkgl 2252 1.879 60 Used in [15]
30-70A
pkg2 2.755 2.83 100 Used in [20]
35-105A
pkg3 4.763 2.657 30 Pentium IV [5]
16-50A
pkg4 16.79 6 30 Worst package
16-50A

Table 2: Four packages with different characteristics.

relying on DeCoR to provide correctness guarantees for single-
transition events. DeCoR’s correctness guarantee would also ease
the implementation of the resonance tuning approach.

6.3 DeCoR’s performance across package assumptions

In contrast to the two schemes evaluated above, the DeCoR scheme
proposed in this paper provides correctness guarantees across all
of the different package assumptions for the underlying power-
delivery network. However, there is a rollback penalty whenever
a noise-margin violation occurs, and performance degrades for
lower-cost package solutions. Table 2 provides a description of dif-
ferent packages, sorted by impedance. Pkg3 represents the power-
delivery subsystem that we use in our model, based on the Pentium
IV. Pkgl and Pkg2 represent packages used in related work [15,20]
based on the Alpha 21264 and 21364. Pkg1 represents a reasonably
good package as it has a low target impedance and low Q. Similarly
Pkg?2 is also a reasonably good package, with low impedance, but
slightly higher Q and much higher resonance cycles. Table 2 also
notes the current range (max current to min current) of the proces-
sors assumed in the related work. For comparison, we also include a
fourth package, Pkg4, that represents a low-cost package with very
high impedance and high Q. Such poor characteristics can be a re-
sult of high package-to-chip inductance, due to fewer or low-cost
bump connections, or less decoupling capacitance being available
on the chip.

Figure 14 presents surface plots of how performance of DeCoR
varies for crafty across a wide range of package characteristics and
two sensor delays.” Package models with a Q of 3 or lower result in
less than 10% performance loss, but performance degrades rapidly
as Q increases. Packages with higher resonance cycles tend to have
less impact on performance, which suggests the current profiles
in this benchmark have more activity around smaller resonance
cycles.

In summary, investigation of various avoidance and recovery
schemes applied across a wide range of systems with different
packaging characteristics shows only the proposed DeCoR scheme
can be a generally applicable solution to handle voltage emergen-
cies. As Q increases, DeCoR remains robust albeit with increasing
performance penalties, while the emergency-avoidance throttling
schemes fail to guarantee correctness.

7. Related Work

Prior works that handle noise-margin violations use throttling tech-
niques to either spread out current variations in time or reduce
their amplitude. Sections 6 and 6.2 provide detailed discussions
and comparisons between DeCoR and the previously proposed ap-
proaches [11,15,20,21].

2 We chose crafty for this analysis, because this was the worst SPEC bench-
mark, representing the worst-case results for our scheme.

391

As mentioned in Section 2 and 5.3, reactive schemes have been
proposed to deal with soft errors, but cannot be applied to noise-
margin violations. For example, Wang and Patel present a coarse-
grained checkpoint-restart mechanism to recover from soft errors,
relying on a separate checkpoint hardware structure [29]. Due to
the rare occurrence of radiation strikes, they assume checkpoint
recovery mechanisms have zero performance cost and primary
attention is given to soft error detection and coverage.

In another related work, Razor [9], the authors propose a circuit-
level mechanism to dynamically detect and correct timing failures
by augmenting critical flip-flops in the microprocessor pipeline
with shadow latches. These shadow latches rely on a delayed clock
to provide additional timing margins and enable detection of speed-
path failures. However, Razor may be costly to implement in a
high-performance out-of-order core with several large array struc-
tures and tight timing paths. A recent study by Annavaram et
al. [3] shows the distribution of timing margins for different paths
across functional blocks in the Intel Core Duo microprocessor have
hundreds of paths within 10% timing margins. This suggests that
voltage-induced violations are likely to affect many paths.

DIVA also provides a method to dynamically detect and recover
from transient errors [4,7,30]. This scheme relies on a checker pro-
cessor that runs in parallel with the main out-of-order core, check-
ing results prior to committing the instructions. None of the exist-
ing DIVA papers specifically address nor provide detailed analy-
sis of how well it can cope with inductive noise. DIVA assumes
that all reads and writes to all registers and memories will com-
plete without error, requiring extensive TM-protected zones within
the processor core given a noisy voltage environment. In addi-
tion, DIVA requires duplicate TM-protected functional units (e.g.,
INT/FPU/SSE units) that consume additional power and area re-
sources. In contrast, DeCoR requires little, if any, additional hard-
ware, and only the D-cache and register file write ports must be
TM-protected. If the DIVA detection mechanism is already in place
within a processor, it can replace explicit voltage sensors to detect
failures due to voltage noise within the DeCoR framework.

8. Conclusion

This paper presents a delayed-commit and rollback mechanism to
handle inductive noise in microprocessors. We divide the proces-
sor into two zones: a timing-margin protected zone encompassing
selected structures implemented with conservative timing margins
to handle the worst-case di/dt drops, and a rollback protected zone
encompassing all of the processor structures protected by DeCoR
from voltage-induced timing violations. Our scheme delays com-
mits to the processor state by speculatively holding processor up-
dates until it can verify that no noise-margin violations have oc-
curred. In the event of a noise margin violation, the rollback returns
the processor to a guaranteed correct state.

DeCoR is insensitive to the performance of voltage or current
sensors and the characteristics of the power delivery subsystem.
We demonstrate that our approach is robust across a wide range of
package assumptions and sensor delays. Moreover, this approach
simply relies on existing buffering and flush mechanisms present
in modern microarchitectures and, thus, can be implemented with
low cost. Experimental evaluation of overheads associated with our
framework show acceptable performance loss relative to an ideal
machine with no voltage emergencies. For sensor delays between
5 and 10 cycles, the observed performance loss is between 3% and
5%. Moreover, the performance impact of DeCoR is much lower
than using explicit checkpoint-rollback schemes to tackle voltage
emergencies (7% versus 39% for a sensor delay of 20 cycles).
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