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Abstract—Performance analysis and optimization are essen-
tial tasks for hardware and software engineers. In the age
of datacenter-scale computing, it is particularly important to
conduct comparative performance analysis to understand dis-
crepancies and limitations among different hardware systems
and applications. However, there is a distinct lack of productive
visualization tools for these comparisons.

We present CHAMPVis [1], a web-based, interactive visualiza-
tion tool that leverages the hierarchical organization of hardware
systems to enable productive performance analysis. With CHAM-
PVis, users can make definitive performance comparisons across
applications or hardware platforms. In addition, CHAMPVis pro-
vides methods to rank and cluster based on performance metrics
to identify common optimization opportunities. Our thorough
task analysis reveals three types of datacenter-scale performance
analysis tasks: summarization, detailed comparative analysis, and
interactive performance bottleneck identification. We propose
techniques for each class of tasks including (1) 1-D feature space
projection for similarity analysis; (2) Hierarchical parallel co-
ordinates for comparative analysis; and (3) User interactions for
rapid diagnostic queries to identify optimization targets. We eval-
uate CHAMPVis by analyzing standard datacenter applications
and machine learning benchmarks in two different case studies.

I. INTRODUCTION

Datacenters are the cornerstone of many internet services,
including search, online retail, social media, and scientific
computing. As these services expand globally, so does the
amount of computing resources devoted to them. For example,
over the next 20 years, datacenters are expected to consume
up to 5% of world-wide energy [2]. At this scale, even small
performance optimizations in the software or hardware in a
datacenter can translate to large savings [3], [4].

The first step to optimization is identifying performance
bottlenecks. The computer systems community has made
significant strides in building tools for bottleneck analysis. For
example, Eyerman et al. [5] log hardware events symptomatic
of poor performance. TopDown [6] records the performance
impact of these events and outlines a structured, hierar-
chical methodology to categorize critical bottlenecks. This
methodology was adopted in commercial tools including Intel
VTune [7] and Linux perf [8]. However, these tools only
consider a single application and hardware platform at a time,
making comparative analysis laborious and time-consuming.

*Authors contributed equally to this work.

CHAMPVis enables using TopDown-style hierarchical perfor-
mance analysis across multiple applications.

Supporting comparative performance analysis across appli-
cations and hardware platforms is key for datacenter-scale
optimizations. Typical datacenters contain thousands of ma-
chines which are grouped into tens of machine types, and each
essential application spans thousands of lines of code [9]. By
analyzing a diverse set of applications or hardware platforms,
performance optimizations can be applied to a wider range
of inefficiencies. For example, Google and Facebook apply
TopDown performance analysis within their datacenters [4],
[10]. These works led to solutions that reduced total datacenter
cycles by up to 2%. However, researchers are currently limited
to studying only the most abstract level in TopDown — deeper
evaluations would require visualization techniques tailored to
datacenter-scale hierarchical comparisons.

To enable productive, efficient, and user-friendly perfor-
mance comparisons, this paper presents CHAMPVis. Our
tool facilitates identifying similarities and differences across
different software applications and hardware platforms. We
consider key design decisions such as how to visually relate
performance metrics at different levels of the hierarchical
hardware structure, how to guide users through the analysis
process, and how to compare the performance of different
applications and hardware platforms across multi-dimensional
metrics. CHAMPVis allows users to directly interact with and
extract useful details from hierarchical performance analysis
data while simultaneously making effective comparisons. This
closes the loop between identifying an important performance
bottleneck and comparing results across software applications
or hardware platforms. This will enable datacenter system
engineers and software application developers to more pro-
ductively optimize performance.
This paper makes three main contributions:

1) High-level similarity analysis across applications by pro-
jecting multi-dimensional performance data onto a 1-D
feature space, thereby providing a quick comparative
analysis view.

2) Interactive hierarchical performance analysis and detailed
comparison of trends, which allows users to identify key
optimization targets.

3) User-guided performance analysis that leverages a user’s
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domain knowledge by supporting interactive filtering,
clustering, and interactive navigation in different com-
parative views. Users can immediately see the results of
their diagnostic queries for searching and filtering, which
reduces lengthy performance analysis cycles.

II. BACKGROUND

Modern datacenters comprise a heterogeneous mix of ap-
plications and hardware platforms that makes performance
analysis a challenging and laborious task [11]. To gain benefits
from performance optimization in a datacenter, optimizations
must target multiple applications and hardware platforms.
However, each application and hardware platform has unique
characteristics which influence the overall performance. This
section discusses how performance counters are used to iden-
tify these characteristics.

A. Performance counters

Performance Measurement Units (PMUs) in modern CPUs
collect statistics about specific hardware events, and these
statistics are referred to as performance counters (PCs). Hard-
ware events are recorded during the execution of an application
on a given hardware platform. Many performance measure-
ment strategies leveraging PCs have been explored (Section
IV). CHAMPVis uses TopDown [6] — a methodology that
relates individual, low-level hardware events to the fraction of
time each application spends “waiting” on the given hardware
resource. For an expert user, analysis of these statistics reveals
possible optimization targets.

B. Hierarchical organization of computer systems

Modern CPUs are organized as a hierarchy of hardware
components. At the highest level, every CPU cycle (time)
spent on a given application is assigned to one of four
stages of program execution: frontend, speculation, backend,
and retiring. The frontend stage is responsible for decoding
the work to be performed. The speculation stage refers to
predictive optimizations that enable higher performance. The
backend stage comprises loading and storing data to memory,
and the retiring stage refers to computations.

These four stages can be broken down hierarchically into
more specific sub-systems, as shown in Figure 1. We refer to
these sub-systems as the levels of the TopDown hierarchy [6].
The TopDown hierarchical performance analysis methodology
uses profiling to determine the fraction of computing cycles the
application is stalled in a stage of computation or hardware
sub-system. Understanding the relative fractions of compute
cycles in the different stages of level 1 (i.e., root) of the
hierarchy is interesting and informative. However, to identify
optimization targets users have to be able to find and analyze
the specific hardware resource that is causing the bottleneck
in lower levels of the hierarchy.

III. TASK ANALYSIS

This section describes the three categories of tasks that
software and hardware engineers must perform in order
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Fig. 1: TopDown Summary: TopDown microarchitectural
view of computer systems showing their hierarchical structure.
Here, we show details and lower-level data for the ‘backend
bound’ stage. The parallel plots show performance details for
three different applications for each hierarchy level.

to optimize datacenter performance: summarization, detailed
comparative analysis, and interactivity.

Summarization tasks relate to observing and comparing sim-
ilar and dissimilar applications or hardware platforms.

Task 1.1 - Performance Similarity Overview: How sim-
ilarly do the applications or hardware platforms profiled
perform?

Task 1.2 - Hierarchical Performance Overview: How
does the similarity between applications or hardware
platforms change across hierarchy levels?

Task 1.3 - Outlier Detection: Which applications or
hardware platforms are outliers?

Detailed Comparative Analysis aims to find trends in per-
formance bottlenecks among applications or hardware config-
urations.

Task 2.1 - Detailed Comparative Analysis: How similar
is the trend of hardware resource usage among applica-
tions or hardware platforms?

Task 2.2 - Hierarchical Performance Analysis: How
do trends vary across hierarchical levels?

Task 2.3 - Trend and Bottleneck Identification: Which
features result in differences in performance bottlenecks
between applications or hardware?

Interactive Performance Bottleneck Visualization enables
comparison of multiple application simultaneously, which is
key for datacenter-scale performance analysis.

Task 3.1 - Performance-based Clustering: How many
clusters are needed to represent the applications or hard-
ware platforms profiled?

Task 3.2 - Cluster Analysis: How do the performance
optimization targets change for each cluster of applica-
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tions or hardware?

Task 3.3 - Benchmark Comparison: How does the
performance of users’ applications or hardware compare
to standard benchmarks?

IV. RELATED WORK

In this section we analyze previous work based on the
performance analysis goals described in Section III.
Microarchitectural Performance Analysis. TopDown [6] is
a relatively new technique to view a system as a hierarchy
of microarchitectural features. Previous performance visual-
ization tools for high performance computing like Caliper [12]
and the HPCToolkit [13] identify bottlenecks across software
call stacks. TopDown and CHAMPVis, on the other hand,
are hardware-centric. Note that hardware structure is static
across applications. By exploiting this static structure, an
engineer can quickly determine which portion of the program
execution (e.g., computing vs. memory resources) is limiting
the applications performance. An alternative abstraction is
Hierarchical Cycle Accounting (HCA), as proposed by Nowak
et al. [14]. However, HCA lacks an intuitive connection to
system’s top-level execution and detailed hardware features;
this makes TopDown a particularly appealing approach.

The TopDown microarchitectural model has been effectively
employed to determine possible bottlenecks in many critical
settings, including datacenter-scale computing [4], [10], [15].
Furthermore, the TopDown model is used in VTune [16], a
PC-based performance analysis tool developed by Intel. While
engineers use Intel VTune to improve application efficiency on
a given system, it only allows to view a single application’s
PCs. Thus, Intel VTune remains insufficient for datacenter-
scale analysis as it precludes comparisons or analysis of trends
across multiple systems or applications.
Performance Visualization. A key result of visualizing PCs
is the ability to compare otherwise disaggregated and abstract
data across different applications and systems. However, the
high dimensionality and mixed data types of performance
data along with its hierarchical structure creates challenges.
Automatically selecting which performance counters should
be visualized is infeasible because expert users typically
need to analyze different PCs at different hierarchy levels to
understand the data and diagnose problems at both system and
detail levels. To that end, several tools have been developed
that visualize such high-dimensional data in a format that
allows dimensional analysis [17], [18]. However, they lack a
structured understanding of performance bottlenecks from the
hardware level.
Dynamic Interactivity. Tools like Intel’s VTune [16] or
the work from Koppelman and Michael [19] both use the
TopDown microarchitectural model, and thereby remove the
need to manually trace and find relevant paths in their analysis.
Existing tools allow users to quickly understand the root cause
of performance waste, but they currently only support static
visualizations. As a result, the user must rely on their intuition
to coarsely interpret the data. For instance, an engineer using

VTune still has to make some heuristic-driven decisions rather
than data-driven ones, because interactively analyzing a more
detailed performance break-down is not supported. Further-
more, since the PC visualizations are static, the engineer needs
to mentally connect and fuse information from different views,
increasing the user’s mental workload. This cognitive load
prevents the user from engaging in the higher-order task of
intuiting different scenarios and interpretations. Being able
to improve and optimize on existing conditions requires a
certain level of creativity that is only possible with real-time
interactivity [20].

V. CHAMPVIS

In this section, we describe the design and the features of
CHAMPVis. A web-based version of CHAMPVIS with pre-
loaded reference data is available online [1].

A. Application Configurations

CHAMPVis is designed for expert datacenter engineers.
When a datacenter engineer starts using CHAMPVis, the
performance data of a default set of applications has been pre-
loaded to quickly allow users to explore CHAMPVis and its
features (see Figure 3). Users may also upload their own data
(Linux perf utility output in CSV format [21]) and configure
the set of applications they would like to view (Task 3.3). The
ability to upload, curate, or reset the datasets being displayed
is provided in a top header.

B. Performance Data Summarization View

Datacenter engineers often have to determine whether a
number of applications exhibit similar performance charac-
teristics, for example to ensure that resource sharing would
not overload a particular hardware component. CHAMPVis
supports this task by offering a 1-D performance data summa-
rization view (Figure 2, left). This view allows the user to see
at a glance which applications are similar, and how similarity
changes at different hierarchy levels (Task 1.1, Task 1.2). We
use this data summarization view to guide the analysis steps
of users without them having to first analyze multidimensional
data at each level of the hierarchy. To create this view, we
project multidimensional features of each application into
a 1-D space, represented as a vertical line on the left of
the CHAMPVis screen, using a single similarity metric. The
similarity metric can be user-defined. This summarization (i.e.,
projection of all data points into a 1-D space) can be calculated
for each hierarchy level, allowing users to easily identify
outliers (Task 1.3).

C. Performance Comparison View

CHAMPVis represents the aggregate performance data for a
given TopDown level as parallel coordinates. Each axis in the
parallel coordinate plot corresponds to one performance metric
of the current hierarchy level (see Figure 1). This supports
a detailed comparative analysis of different applications or
systems (Task 2.1). Users can navigate to lower levels of the
hierarchy by clicking on desired axis labels (i.e., performance

57

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 14:00:14 UTC from IEEE Xplore.  Restrictions apply. 



Fr
on

te
nd

 B
ou

nd

Re
tir

in
g

Ba
ck

en
d 

Bo
un

d
Ba

d 
Sp

ec
ul

at
io

n
Application 1

Application 3
Application 2

Reduce Visualize

1D spacing

(a) 1-D spacing

Frontend

Bad Speculation

Backend
Retiring

Similarity across 
application

App. 1
App. 2

App. 3

Frontend

Bad Speculation

Backend
Retiring

Outlier
application

(b) Parallel coordinates

Fig. 2: CHAMPVis Elements: (Left) Summarize multi-dimensional data with 1-D spacing. (Right) Spotting trends and outliers,
respectively, in multi-dimensional performance analysis.

metrics), with the ability to return to Level 1 metrics at any
time (Task 2.2).

Figure 1 shows the TopDown hierarchy, with corresponding
parallel plots for each hierarchy level. As users click through
the hierarchy, the selected top-level metric remains as the first
axis in the parallel plot as an indicator of the user’s filtering
choices. Each application is displayed as a line across the
parallel coordinate plot. The shape of these lines allows the
user to quickly identify trends for applications that are similar
for specific ranges of performance metrics or for particular
dimensions (Task 2.3), as illustrated in Figure 2, right.

D. Detailed Bottleneck Identification View

Datacenter engineers need to compare metrics across many
different applications to identify optimization targets. To this
end, CHAMPVis employs stacked bar charts to show perfor-
mance details on selected applications at the current hierarchy
level (Task 3.2). Individual segments in the stacked bar chart
represent the performance metrics of the selected level (see
Figure 3). This type of visualization is well-known in the
systems community and makes CHAMPVis more accessible
for domain experts. Furthermore, we allow users to select
and cluster applications of interest and selectively view only
those applications. This optional adaptive filtering step ensures
that investigation can be customized and user-driven and that
CHAMPVis scales to a larger number of applications.

E. Navigation and Interaction

Interacting with CHAMPVis is a dynamic process of hierar-
chical navigation, filtering, and clustering, which is supported
by the context of the TopDown model. This allows the user
to move from micro to macro analysis, explore information,
and perform meaningful analysis.

The central view of CHAMPVis is the parallel coordinate
representation of a particular performance metric for the
current hierarchy level.
Hierachical Navigation. By clicking on an axis’ title, users
can navigate across levels of the hierarchy based on the Top-
Down model. This progressive navigation from hierarchy level
to hierarchy level prevents the user from being overwhelmed
with information and, thus, aides in identifying bottlenecks. As

the user steps through each level for a more targeted explo-
ration, the axis and visualization titles, stacked bar chart, and
corresponding 1-D summarization view dynamically update.
Filtering. Users can also click and drag on any portion of
a parallel axis to select the range of the metrics they are
interested in, which automatically filters all other applications.
By setting multiple ranges of interest across metrics, users
can define detailed criterion of interest. Users can also filter
by clicking and dragging a selection in the top-level 1-D
summarization view.
Grouping and Clustering. Users can also extract groups
or clusters of applications, for example, by clustering all
applications with a similar performance metric at a particular
hierarchy level (Task 3.1). Clustering dynamically updates the
1-D summarization view and the stacked bar chart. Similarly,
the 1-D summarization view can be used to define clusters.
We encode applications within a cluster with the same color.

F. Implementation

CHAMPVis is a web-based visualization tool based on
JavaScript and D3.js [22]. Our online demo [1] shows the
results of Intel’s top-down microarchitectural profiling tools
[21] for different applications running on server-class CPUs.

VI. CASE STUDY

To demonstrate how CHAMPVis can be used to accomplish
the tasks outlined in Section III, this section examines two
example use cases using performance data collected from the
Parsec suite of benchmarks [23] and machine learning (ML)
workloads, which represent user-defined workloads requiring
performance analysis (Task 3.3).

Comparing Parsec with user-uploaded applications. Fig-
ure 3 illustrates the suite of Parsec [23] benchmarks (purple)
and common ML kernels (green) loaded into CHAMPVis.

A typical analysis session begins by looking at the 1-D
summarization view of these two sets of applications (Figure
3) top, left). We first notice that the ML kernels are more
similar to one another than the diverse Parsec benchmarks
(Task 1.1). The parallel coordinate view for the top hierarchy
level reveals that the majority of execution cycles for our ML
applications of interest are spent in the retiring stage. Filtering
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Fig. 3: Benchmark Comparison: (Top, left) Level 1 main CHAMPVis view without and (Bottom, left) with filtering to
compare a subset of applications. (Right) Level 4 1-D spacing and parallel coordinates highlighting different lower-level
performance characteristics between groups of applications when the TopDown hierarchy is navigated as shown below.

the Parsec benchmarks (Figure 3, bottom left) reveals that only
vips performs similarly (Task 2.1). To identify optimization
targets and extract more specific bottleneck information, we
iteratively filter to the lowest level hardware components based
on where a majority of cycles are spent (Figure 3, right). Using
CHAMPVis we are able to make the following observations
and takeaways:

• FC and Conv kernels of varying size generally spend
more cycles in floating point vector unit (FP Vector) than
Parsec workloads (Task 2.2).

• Vips (an image processing workload in Parsec) performs
most similarly to the ML kernels overall, but does not
spend a significant share of cycles in FP Vector (Task
1.2, Task 1.3).

• ML kernels would benefit from optimizing FP Vector
(Task 3.2).

• The small FC kernel is disproportionately frontend-
bound; contrary to intuition, frontend-related optimiza-

tions can benefit ML kernels. This also suggests that
optimization strategies differ with neural network size
(Task 2.3).

Understanding user-uploaded applications. In addition to
the performance analysis for machine learning kernels already
described, the expert user can also perform more detailed com-
parisons amongst their workloads of interest, as summarized
in Figure 4. Therefore, we create and extract clusters based
on neural network type (Conv layers in green and FC in red,
Task 3.1), leading to the following observations:

• Kernel size tends to dictate similar performance char-
acteristics more than kernel type. For example, the 1-D
summary view at Level 1 shows that larger networks are
more similar than equivalent smaller kernels (Task 1.1).

• Conv layers tend to be more backend bound than FC
ones. This warrants further investigation for optimization
(Task 2.1).

• Lower-level analysis reveals DRAM bottlenecks for Conv
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layers compared to FC layers (Task 3.2).
The case study demonstrates that CHAMPVis allows the

users to find unique bottlenecks to performance across the
machine learning applications. With CHAMPVis, users are
able to not only compare well-understood benchmarks with
new applications but also gain deeper understanding of the
application to identify new optimization targets.

VII. CONCLUSION

CHAMPVis is a web-based tool for comparative per-
formance analysis empowered by the TopDown hierarchi-
cal framework for categorizing and interpreting performance
counters. CHAMPVis enables efficient identification of per-
formance bottlenecks through summarization and similarity
analysis, detailed multi-dimensional comparisons, and dy-
namic user interaction with performance data. While the tool
provides an opportunity for productive performance bottleneck
analysis in complex datacenters, we hope the work encourages
future work from the systems and visualization community
to close the gap between detailed and productive datacenter-
scale performance analysis. For example, we hope to profile
additional applications (e.g., SPEC [24]). In addition, to ease
usability, the interactions must be highlighted or clarified
with a tutorial. Finally, it would be beneficial to explicitly
visualize the connection with the TopDown hierarchy in order
to guide the user. The existing visual features of CHAM-
PVis allow expert computer systems researchers to conduct
effective TopDown-style performance comparison and identify
optimization targets, and we hope to maintain and extend
CHAMPVis in the future.
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