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Gu-Yeon Wei† (guyeon@eecs.harvard.edu), and David Brooks† (dbrooks@eecs.harvard.edu)
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Abstract—Hardware acceleration can increase performance and reduce energy consumption. To maximize these benefits, accelerator-
based systems that emphasize computation on accelerators (rather than on general purpose cores) should be used. We introduce
the “accelerator store,” a structure for sharing memory between accelerators in these accelerator-based systems. The accelerator
store simplifies accelerator I/O and reduces area by mapping memory to accelerators when needed at runtime. Preliminary results
demonstrate a 30% system area reduction with no energy overhead and less than 1% performance overhead in contrast to conventional
DMA schemes.
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1 INTRODUCTION

Tightening power budgets and performance limits have led to
a surge of interest in hardware accelerators. Many processors
currently use these specialized circuits to compute specific
workloads – the iPhone processor’s HD video engine [6] is
one such example. Designers rely on specialization to increase
logic efficiency, which improves energy consumption and per-
formance by 100-500x compared to general purpose cores [3].
Accelerators achieve these gains at the expense of flexibility,
limiting each accelerator to the workloads it was designed for.
As a result, accelerated systems must utilize several hardware
accelerators to target the diverse set of workloads typically
handled by processors. Each accelerator must be small since
many accelerators will be needed, and must communicate with
other accelerators efficiently to prevent I/O complexity and
bottlenecks. Unfortunately, today’s accelerators meet neither
criteria: most contain large memories and rely on complex
DMA I/O schedules. To address these challenges, we intro-
duce the “accelerator store,” a shared memory structure that
simplifies accelerator I/O and reduces chip area.

We developed the accelerator store to take advantage of
hardware acceleration’s improved energy and performance.
Diminishing threshold voltage reductions limit the amount
of logic that a processor can simultaneously power, resulting
in growing regions of unpowered logic known as “dark sili-
con” [10]. Dark silicon threatens general purpose (GP) multi-
core processor performance by limiting the number of active
cores, in conflict with multicore’s thirst for additional active
logic. Although accelerated systems are subject to the same
power limits as GP-CPUs, improved logic efficiency means
that accelerated systems can use less energy for the same
computations. We envision accelerated systems will contain
several accelerators, but only turn on the accelerators designed
for the current workload. This approach allows systems to use
growing transistor budgets to add several accelerators, while
powering the subset designed for current workloads. As a
result, accelerated systems will only power highly efficient and
lower energy logic, and therefore are less likely to encounter
dark silicon problems when compared to GP approaches.

This multi-accelerator vision requires a new architecture
that favors accelerators over general purpose logic whenever
possible. Toward this vision, we introduce the accelerator store,
an efficient memory structure designed to simplify accelerated
system design and reduce chip area. Current DMA approaches
follow a predetermined sequence of data transfers between
accelerators and system memory: a GP-CPU core decides the
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location and size of transfers in advance, and accelerators can
only request the next transfer in the sequence. In accelera-
tor store-based systems, accelerators decide which blocks of
memory to access and how much data to transfer on demand.
This increased flexibility lets accelerators tackle unpredictable
workloads without GP-CPU involvement. The accelerator store
achieves this by offering random access and FIFO interfaces,
the most common memory primitives used in ASIC and FPGA
toolkits.

The following design aspects of the accelerator store reduce
accelerator area demands and simplify accelerator I/O with
minimal impact on performance and energy:

• Reduced memory buffers: Accelerators can directly access
data in the accelerator store without large buffer memories
required by DMA.

• Memory reuse: The accelerator store dedicates memory
to running accelerators. When an accelerator finishes and
turns off, the accelerator store rededicates the memory to
other running accelerators. This requires less memory than
present approaches which provision memory to accelera-
tors individually.

• Simple accelerator I/O: FIFOs provide a simple mecha-
nism for exchanging data between accelerators. In con-
trast to FIFOs, DMA requires accelerators to agree on a
common data structure or a GP-CPU to translate between
structures.

• Reduced GP-CPU energy: FIFOs also allow accelerators to
communicate with little or no GP-CPU assistance. This lets
GP-CPUs stay in low-power sleep modes for more time.

• Reduced memory energy: The accelerator store monitors
each of its SRAM memory blocks and turns off any that
are unused (SRAMs must be powered if they contain data,
otherwise they will lose state).

• Low performance overhead: Although a centralized struc-
ture may suggest high performance overheads, early re-
sults show the accelerator store reduces performance by
less than 1% using memory selection techniques discussed
in Section 3.2.

In the remaining sections, we describe the accelerator store
design and how accelerators use the accelerator store to access
shared memory (Section 2), analyze private memories in eleven
accelerators to estimate potential area reductions and perfor-
mance pitfalls (Section 3), and achieve a 30% area reduction
with no impact on energy and a performance impact of less
than 1% running on a simulated prototype system (Section 4).

2 ACCELERATOR STORE DESIGN

Accelerator store systems contain several accelerators, one
or more GP-CPU cores, and an accelerator store (Figure 1).
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Fig. 1. Example accelerator store processor

These systems rely on accelerators to process most workloads,
whereas GP-CPU cores provide system oversight and perform
rarely executed operations (those not worth accelerating). The
system’s accelerator store manages accelerator data, and pro-
vides each accelerator with an accelerator store port (ASPort) to
access this data. Accelerators use dedicated ASPorts rather than
a single shared bus to avoid contention, since accelerators often
require significant bandwidth when accessing memory.

Data access requests from accelerators traverse through
ASPorts and continue through the accelerator store’s three
major components: the priority table for arbitrating memory
requests from accelerators, the handle table for translating these
requests from accelerators into SRAM accesses, and the SRAM
collection for storing data. In cases when the SRAM collection
does not have enough storage capacity, accelerator state can
be temporarily paged out from the accelerator store to system
memory.

We connect each component as Figure 1 shows, and discuss
the design of each component in Section 2.2. First we explain
the accelerator store’s handle abstraction for shared memory.

2.1 Accelerator store handles
Accelerators cannot access accelerator store memory directly.
Instead, the memory must be allocated to a handle, which
represents a region of shared memory. Accelerators can then
access the memory region by specifying the handle’s corre-
sponding handle ID number. Software running on a GP-CPU
core is responsible for creating handles in the accelerator store
and distributing the corresponding handle IDs to the relevant
accelerators. Currently, the programmer must specify the max-
imum size of memory allocated to each handle statically at
compile time. We are investigating future tools and runtime
systems for the accelerator store that would support dynamic
memory allocation and mapping.

During computation, accelerators send information to each
other using FIFO handles. For example, if an application
wishes to compress and encrypt data, it will configure a
compression accelerator to send its resulting compressed data
to the encryption accelerator. The software creates a FIFO
handle and gives the handle ID to both accelerators during
configuration. The compression accelerator pushes results into
the FIFO handle, and the encryption accelerator retrieves the
compressed data by popping it from the FIFO handle. In
this way, FIFO handles allow accelerators to exchange data
without any prior knowledge about each other’s design or data
structures. In addition to FIFO handles, the accelerator store
supports random access (RA) handles which uses addresses
rather than push and pop operations to access data.

Handles provide several benefits to accelerator based sys-
tems. First, handles provide memory protection – accelerators
can only access a handle’s memory if given its handle ID.
Second, handles declare the mapping of shared physical mem-
ories to accelerators. This information includes the location and
amount of SRAM memory mapped to a handle. Third, handles

TABLE 1
Accelerator memory compositions

Accelerator Function Memory area

AES Data encryption 40.3%
JPEG Image compression 53.3%
FFT Signal processing 48.6%

Viterbi Convolutional coding 55.6%
Ethernet Networking 90.7%
USB (v2) Peripheral bus 79.2%

TFT Controller Graphics 65.9%
Reed Solomon Decoder Block coding 84.3%
UMTS 3GPP Decoder Turbo coding 89.2%

CAN Automotive bus 70.0%
DVB FEC Encoder Video error correction 81.7%

Average 69.0%

enable automatic SRAM VDD-gating. Without handles, the
accelerator store cannot know which data is valid and cannot
safely turn off any SRAMs.

2.2 Accelerator store components

The following accelerator store components make the handle
abstraction possible:

2.2.1 Priority table

The priority table arbitrates all handle requests from accelera-
tors. Each accelerator communicates with the accelerator store
via an ASPort, but the accelerator store may not be able to
satisfy requests from every port at every cycle. The priority
table selects a subset to satisfy using a priority-ordered list of
ASPorts. Starting with the highest priority ports, it accepts as
many requests as it can satisfy in a cycle. The priority table
can be modified at runtime – this allows software to prevent
starvation and provide bandwidth management by regularly
adjusting the priority table.

2.2.2 Handle table

The handle table stores each handle’s configuration and uses
this information to translate handle requests from accelerators
into SRAM accesses. To explain it’s functionality, we offer an
example: when an element is to be popped from a FIFO,
the handle table receives a handle request containing the
FIFO handle ID. The ID leads to the handle configuration,
which includes the FIFO handle’s address in SRAM memory
and the head pointer (the next element to pop). The handle
table uses this information to identify the word in SRAM
corresponding to the pop request, and passes this information
to the SRAM collection. Meanwhile, the handle table updates
the head pointer.

Handles can be modified, created, or deleted at runtime,
allowing software to reuse memory with different accelerators
and to use sophisticated dynamic memory allocation schemes.

2.2.3 SRAM collection

The accelerator store contains several SRAMs to increase VDD
gating opportunities. If the accelerator store contained one
valid word and used one large SRAM, the entire large SRAM
would need to remain on. By instead using many small mem-
ories, the accelerator store can VDD-gate all but one SRAM to
reduce leakage power.

The SRAM collection contains a mix of 2KB and 4KB mem-
ories, since measurements of UMC 130nm SRAMs indicated
these memories provided the best balance between VDD gating
granularity and addressing logic overhead. To achieve these
VDD-gating benefits, the accelerator store turns off all SRAMs
not mapped to handles. It also uses head and tail pointers to
identify and VDD-gate SRAMs mapped to FIFO handles that
do not contain valid data.
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Fig. 2. JPEG accelerator memory profiles Access patterns for
each accelerator memory category are shown during compres-
sion of a 640x8 pixel image. Memories within each category are
similar and omitted for space.

3 CHARACTERIZING ACCELERATOR MEMORY

Centralizing data is key to the accelerator store’s area reduc-
tions, but must not introduce significant contention. Contention
concerns are especially relevant for accelerators, since dedi-
cated memories are frequently touted as a primary source of
performance improvement. We first examine the contents of
eleven accelerators, and find each contains significant amounts
of memory which can be reduced using the accelerator store.
We then focus on throughput patterns of memories in four
accelerators to ensure area savings does not come at the
expense of performance.

3.1 Accelerator composition & private memories
Memory centralization achieves significant area reductions
through memory reuse only if accelerator area is dominated
by memory. To evaluate the opportunity for memory area
reductions, we analyze the composition of eleven acceler-
ators from OpenCores [1] and Xilinx [12] (Table 1). ASIC
area measurements are obtained using synthesis results from
Design Compiler when generic RTL is available. ASIC area
measurements for FPGA-specific RTL is obtained by adjusting
Xilinx ISE synthesis results using known scaling factors [5].

Table 1 shows that an average of 69% of accelerator area is
consumed by memory – a large potential for area reductions.
We must ensure these reductions are possible without creating
significant contention.

3.2 Accelerator memory utilization
To understand the characteristics of accelerator memory use,
memories in four accelerators (JPEG, AES, Viterbi, FFT) were
instrumented to record all accesses while processing test work-
loads. Results for the JPEG accelerator are shown in Figure 2;
Viterbi, AES, and FFT show similar access characteristics but
are omitted for space.

Results indicate many memories have varying throughputs
and are used for varying lengths of time. The first three
categories of JPEG SRAMs in Figure 2 are well suited for
transplant to the accelerator store. All of these memories have
a sizable capacity, and are used infrequently or utilize little
throughput. The fourth category of JPEG SRAMs contains
many small ROMs, RAMs, and FIFOs that also have the highest
throughput. This fourth memory category is poorly suited for
the accelerator store because their small size will result in
little area reduction and large throughput will add significant
performance loss due to contention.

This accelerator memory area characterization demonstrates
that significant memory area reductions and low performance
overheads are possible in principle, provided memories are

intelligently selected for the accelerator store. The following
section evaluates the accelerator store’s ability to achieve these
goals while powering a security application.

4 EVALUATION

This section evaluates performance overheads, energy over-
heads, and area savings while running a prototype embedded
security application on a simulated accelerator store system.
The security application listens for suspicious activity and
records surveillance photos if alerted using three accelerators
from Table 1 (FFT, JPEG, and AES). The application also uses
three peripherals designed for the accelerator store (ADC, digi-
tal camera, and SD flash memory). The application detects sus-
picious activity by acquiring audio signals from a microphone,
analyzing them with the FFT, and checking if a frequency
response corresponding to suspicious activity occurred (glass
breaking or dog barking). If so, the camera takes pictures every
second, compresses the photos using the JPEG accelerator,
encrypts the JPEGs with the AES accelerator, and writes the
encrypted photos to the SD flash card. All accelerators and
peripherals maintain input and output FIFOs in the accelerator
store, and some maintain internal FIFOs and memories in the
accelerator store as well. Virtually all computation is executed
on accelerators rather than GP cores.

4.1 Cycle accurate simulation
Cycle accurate simulation of the accelerator store consists of
two parts: simulating the accelerator store logic, and repro-
ducing accelerator memory accesses.

The accelerator store portion of the simulator’s timing model
is based on an RTL implementation, designed in Bluespec
HLL [2] and compiled to RTL. Accelerator store power and
area estimates are obtained by synthesizing the RTL in Design
Compiler for the UMC 130nm GP process.

The simulator models accelerators by replaying traces of
memory accesses for each memory moved to the accelerator
store. Power consumption due to wire interconnect is from
previous estimates [4]. We conservatively assume interconnect
wires are the maximum length (chip width + height).

Cycle accurate accelerator timing is maintained by ensuring
the time between accelerator memory accesses is unchanged.
For example, if an accelerator store access stalls due to con-
tention, the simulator assumes that the accelerator stalls until
the access completes. This is a conservative performance esti-
mate, and assumes that all memory accesses are dependent
on all prior memory accesses. Actual accelerators may not
exhibit this behavior and may yield better than simulated
performance. Accelerator area and energy values are Design
Compiler estimates for the UMC 130nm GP process.

4.2 Selecting memories to move into the accelerator store
To balance memory size and minimize contention, memo-
ries with the largest values for the memory selection metric

memory capacity
average throughput

are moved from the private accelerator mem-
ory to the accelerator store. This includes all input and output
FIFOs, as well as several large random access and internal FIFO
memories as discussed in Section 3.2.

4.3 Performance & energy overhead
The accelerator store’s performance overhead is first evaluated
by tuning two parameters: shared memory percentage and in-
ternal bandwidth (Figure 3). Shared memory percentage refers
to the amount of accelerator memory located in the accelerator
store, rather than private accelerator memory. Systems with
0% shared memory only use private memories, whereas 100%
shared memory systems only use shared accelerator store
memory. Memory is moved from private to shared in order of
the memory selection metric described in Section 4.2: memories
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with the highest ratio of capacity to throughput are selected
first (on the left side of the plot).

Internal bandwidth is measured in channels, defined as the
number of handle requests the accelerator store can process per
cycle. Increasing channels decreases contention, but increases
energy and area. The number of channels must be chosen to
balance these overheads.

Results show the accelerator store can share a majority of
accelerator memory with a limited number of channels and
low performance degradation. Systems should not share all
accelerator memories: even five channels cannot keep perfor-
mance overheads below 100% when all memories are shared.
Sharing large memories and FIFOs, and keeping small lookup
memories private results in significant memory sharing with
insignificant performance overheads. In this approach, a three
channel system maintains 70% of all accelerator memory in the
accelerator store with less than 1% impact on performance.

Energy consumption overhead is manageable as well. The
accelerator store introduces an 8% system energy consumption
overhead when ignoring VDD-gating features. However au-
tomatic VDD-gating reduces energy consumption by roughly
8%, effectively canceling out energy overheads. Although ac-
celerators could implement memory VDD-gating without the
accelerator store, we have never seen an accelerator that imple-
ments this feature. Further, supporting automatic VDD-gating
in the accelerator store requires only one set of gating logic
rather than replicating copies in each accelerator.

4.4 Area reduction
The accelerator store’s ability to reduce memory area (by
eliminating I/O buffer memories and dedicating memory to

accelerators at runtime) assumes that a significant portion of
accelerators will be unused at any given time. If the system
only contains accelerators that will be in use simultaneously,
there is no opportunity for reusing memory. Such a processor
containing only the six accelerators and peripherals used by
the security application would incur a 3% system area over-
head (Figure 4) compared to a system without an accelerator
store. However, we believe designers are unlikely to fabricate
a processor for a single application and will include a set
of commonly used accelerators that applications can choose
from. In this scenario, the processor is more likely to contain
additional accelerators, such as those listed in Table 1. In such
a configuration, the accelerator store reduces system area by
30%.

5 RELATED WORK

Multi-component memory sharing has been explored but with-
out the full features of the accelerator store. SoCDMMU [11]
provides hardware support for malloc() for multicore SoCs but
does not support FIFOs, automatic VDD-gating, or handles.
Smart memories [8] features a GP-CPU in multiple tiles that
interact with memory, but does not target accelerators or sup-
port automatic VDD-gating. Memory sharing within functional
units [9] and server blades [7] has been investigated as well,
although these approaches are not designed for accelerators
and do not support automatic VDD-gating, handles, or FIFOs.

6 CONCLUSION

We introduced the accelerator store, a shared memory frame-
work for accelerator-based systems. We described the accelera-
tor store’s handle-based approach to sharing accelerator mem-
ory, characterized accelerator memory to gauge the potential
for area reduction and performance degradation, and achieved
system area reductions of 30% with less than 1% performance
impact and no additional energy in a simulated prototype.
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