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Abstract. We present the high-level microarchitecture of LPX: a low-
power issue-execute processor prototype that is being designed by a joint
industry-academia research team. LPX implements a very small subset
of a RISC architecture, with a primary focus on a vector (SIMD) multi-
media extension. The objective of this project is to validate some key new
ideas in power-aware microarchitecture techniques, supported by recent
advances in circuit design and clocking.

1 Introduction

Power dissipation limits constitute one of the primary design constraints in fu-
ture high performance processors. Also, depending on the thermal time constants
implied by the chosen packaging/cooling technology, on-chip power-density is
a more critical constraint than overall power in many cases. In current CMOS
technologies, dynamic (“switching”) power still dominates; but, increasingly, the
static (“leakage”) component is threatening to become a major component in
future technologies [6]. In this paper, we focus primarily on the dynamic com-
ponent of power dissipation.

Current generation high-end processors like the IBM POWERA4™ [3, 26], are
performance-driven designs. In POWERA4, power dissipation is still comfortably
below the 0.5 watts/sq. mm. power density limit afforded by the package/cooling
solution of choice in target server markets. However, in designing and implement-
ing future processors (or even straight “remaps”) the power (and especially the
power-density) limits could become a potential “show-stopper” as transistors
shrink and the frequency keeps increasing.

Techniques like clock-gating (e.g. [21, 13]) and dynamic size adaptation of
on-chip resources like caches and queues (e.g. [1, 20, 4, 9, 12, 2, 15, 27]) have
been either used or proposed as methods for power management in future pro-
cessor cores. Many of these techniques, however, have to be used with caution in
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server-class processors. Aspects like reliability and inductive noise on the power
supply rails (Ldi/dt) need to be quantitatively evaluated prior to committing
a particular gating or adaptation technique to a real design.

Another issue in the design of next generation, power-aware processors, is the
development of accurate power-performance simulators for use in early-stage
design. University research simulators like Wattch [7] and industrial research
simulators like Tempest [10] and PowerTimer [8] have been described in the
recent past; however their use in real design environments is needed to validate
the accuracy of the energy models in the context of power-performance tradeoff
decisions made in early design.

In the light of the above issues, we decided to design and implement a simple
RISC “sub-processor” test chip to validate some of the key new ideas in adaptive
and gated architectures. This chip is called: LPX, which stands for low-power
issue-execute processor. This is a research project, with a goal of influencing real
development groups. LPX is a joint university-industry collaboration project.
The design and modeling team is composed of 10-12 part-time researchers span-
ning the two groups (IBM and University of Rochester) aided by several grad-
uate student interns and visiting scientists recruited from multiple universities
to work (part-time) at IBM. LPX is targeted for fabrication in a CMOS 0.1 mi-
cron high-end technology. RTL (VHDL) simulation and verification is scheduled
for completion in 2002. Intermediate circuit test chips are in plan (mid- to late
2002) for early validation of the circuit and clocking support. LPX chip tapeout
is slated for early 2003. In this paper, we present the microarchitecture definition
with preliminary simulation-based characterization of the LPX prototype. We
summarize the goals of the LPX project as follows:

— To understand and assess the true worth of a few key ideas in power-aware
microarchitecture design through simulation and eventually via direct hard-
ware measurement. Based on known needs in real products of the future,
we have set a target of average power density reduction by at least a fac-
tor of 5, with no more than 5% reduction in architectural performance (i.e.
instructions per cycle or IPC).

— To quantify the instantaneous power (current) swings incurred by the use
of the adaptive resizing, throttling and clock-gating ideas that are used to
achieve the targeted power reduction factors in each unit of the processor.

— To use the hardware-based average and instantaneous power measurements
for calibration and validation of energy models used in early-stage, power-
performance simulators.

Clearly, what we learn through the “simulation and prototyping in the small”
experiments in LPX, will be useful in influencing full-function, power-efficient
designs of the future. The calibrated energy models will help us conduct design
space exploration studies for high-end machines with greater accuracy. In this
paper, we limit our focus to the microarchitectural definition process, with re-
lated simulation-based result snapshots, of the LPX prototype. (Note that LPX
is a research test chip. It is not intended to be a full-function, production-quality
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Fig. 1. Power profile: (a) relative unit-wise power; (b) power breakdowns: ISU

microprocessor. At this time, LPX is not directly linked to any real development
project).

2 Background: Power-Performance Data

In an out-of-order, speculative super scalar design like each of the two cores in
POWERA4, a large percentage of the core power in the non-cache execution engine
is spent in the instruction window or issue queue unit [26, 9, 20, 12]. Figure 1(a)
shows the relative distribution of power across the major units within a single
POWERA core. Figure 1(b) zooms in on the instruction sequencing unit that
contains the various out-of-order issue queues and rename buffers.

Figure 2 shows the power density across some of the major units of a single
POWERA4 core. The power figures are non-validated pre-silicon projections based
on unconstrained (i.e. without any clock-gating assumptions) “average/max”
power projections using a circuit-level simulation facility called CPAM [19].
(Actual unit-wise power distribution, with available conditional clocking modes
enabled, are not shown). This tool allowed us to build up unit-level power char-
acteristics from very detailed, macro-level data. Here, the activity (utilization)
factors of all units are assumed to be 100% (i.e. worst case with no clock-gating
anywhere); but average, expected input data switching factors (based on rep-
resentative test cases run at the RTL level, and other heuristics) are assumed
for each circuit macro. Such average macro-level input data switching factors
typically range from 4-15%. (From Figure 2, we note that although on a unit
basis, the power density numbers are under 0.5 watts/sq. mm., there are smaller
hotspots, like the integer FX issue queue within the ISU that are above the limit
in an unconstrained mode). (Legend for Figs. 1-2: IDU: instruction decode unit;
FXU: fixed point unit; IFU: instruction fetch unit; BHT: branch history table;
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ISU: instruction sequencing unit; LSU: load-store unit: includes L1 data cache;
FPU: floating point unit).

Another class of data that we used was the performance and utilization infor-
mation obtained from pre-silicon performance simulators. Figure 3 shows the rel-
ative “active/idle” barchart plot across some of the major units for a POWERA4-
like pre-silicon simulation model. The data plotted is for a commercial TPC-C
trace segment. This figure shows, for example, that the instruction fetch unit
(IFU) is idle for approximately 47% of the cycles. Similar data, related to activi-
ties within other units, like issue queues and execution unit pipes were collected
and analyzed.

3 Areas of Focus in Defining the LPX Processor

Based on microarchitecture level and circuit simulation level utilization, power
and power-density projections, as above, we made a decision to focus on the
following aspects of a super scalar processing core in our LPX test chip:

Power-efficient, Just-in-Time Instruction Fetch. Here, we wanted to study
the relative advantages of conditional gating of the ifetch function, with a goal
of saving power without appreciable loss of performance. The motivation for this
study was clearly established after reviewing data like that depicted in Figures 1
and 2. In simulation mode, we studied the benefit of various hardware heuristics
for determining the “gating condition” [18, 14, 5], before fixing on a particular set
of choices (being reported in detail in [17]) to implement in LPX. Our emphasis
here is on studying ifetch gating heuristics that are easy to implement and test,
with negligible added power for the control mechanism.

Adaptive Issue Queues. The out-of-order issue queue structure inherent in
today’s high-end super scalar processors is a known “hot-spot” in terms of power
dissipation. The data shown in Figures 1, 2, and also corroborative data from
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other processors (e.g. [1]), makes this an obvious area to focus on. In LPX, our
goal is also to compare the achieved power savings with a fixed issue queue
design, but with fine-grain clock-gating support, where the valid-bit for each
issue queue entry is used as a clock-gating control. A basic issue in this context
is the extra power that is spent due to the presence of out-of-order execution
modes. Is the extra power spent worth the performance gain that is achievable?
We wish to understand the fundamental power-performance tradeoffs in the
design of issue queues for the next generation processors. Again, simplicity of
the adaptive control and monitoring logic is crucial, especially in the context of
the LPX prototype test vehicle.

Locally Clocked Execution Pipeline. Based on the data shown in Figures
1 and 2, a typical, multi-stage complex arithmetic pipeline is also a high power-
density region within the chip. We wish to study the comparative benefit of
alternate conditional clocking methods proposed in ongoing work in advanced
circuit design groups ([21, 23, 16]). In particular, we wish to understand: (a) the
benefit of simple valid-bit-based clock-gating in a synchronously clocked execu-
tion unit; and (b) the added power-savings benefit of using a locally asynchronous
arithmetic unit pipeline, within a globally synchronous chip. The asynchronously
clocked pipeline structure is based on the IPCMOS circuit technology previously
tested in isolation [23] by some in our research team. Such locally clocked meth-
ods offer the promise of low power at high performance, with manageable in-
ductive noise (Ldi/dt) characteristics. In LPX, we wish to measure and validate
these expectations as the IPCMOS pipe is driven by data in real computational
loop kernels.

Power-Efficient Stalling of Synchronous Pipelines. In the synchronous
regions of the design, we wish to quantify the amount of power that is consumed
by pipeline stall (or “hold/recirculation”) conditions. Anticipating (from circuit
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simulation coupled with microarchitectural simulation data) such wastage to be
significant, we wish to experiment with alternate methods to reduce or elim-
inate the “stall energy” by using a novel circuit technique called interlocked
synchronous pipelines (ISP) that was recently invented by some members of our
team [16].

Thus, a basic fetch-issue-execute super scalar processing element (see sec-
tions 4 and 5) was decided upon as the study vehicle for implementation by our
small research team. The goal is to study the power-performance characteristics
of dynamic adaptation: in microarchitectural terms as well as in clocking terms
with the target of achieving significant power (and especially, power density)
reduction, with acceptable margins of IPC loss.

4 Tuning the Microarchitecture

In this section, we outline the methodology adopted for defining the range of
hardware design choices to be studied in the LPX testchip. Since we are con-
strained by the small size of our design team, and yet the ideas explored are
targeted to influence real, full-function processor designs, we adopted the follow-
ing general method.

Figure 4 shows the iterative method used to decide what coarse-level features
to add into the LPX test chip, starting from an initial, baseline “bare-bones”
fetch-issue-execute model.

— A given, power-efficient microarchitectural design idea is first simulated in
the context of a realistic, current generation super scalar processor model
(e.g. POWERA-like microarchitectural parameters) and full workloads (like
SPEC and TPC-C) to infer the power-performance benefit. Once a basic
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hardware heuristic is found to yield tangible benefit - in other words, a sig-
nificant power reduction, at small IPC impact - it is selected for possible
implementation in LPX.

— A detailed, trace-driven, cycle-by-cycle simulator for the baseline LPX pro-
cessor is coded to run a set of application-based and synthetic loop test cases
designed to test and quantify the LPX-specific power-performance charac-
teristics of the candidate hardware power-saving feature. In order to get
a measurable benefit, it may be necessary to further simplify the heuristic,
or augment the microarchitecture minimally to create a new baseline. Once
the power-performance benefit is deemed significant, we proceed to the next
candidate idea.

In this paper we mainly focus on (b) above: i.e. understanding the fundamental
power-performance tradeoff characteristics, using a simple, illustrative loop test
case. However, we also refer briefly to example, full-model super scalar simulation
results to motivate the choice of a particular hardware heuristic.

Energy Models Used. The LPX cycle-by-cycle simulator used to analyze
early stage microarchitectural power-performance tradeoffs has integrated en-
ergy models, as in the PowerTimer tool [8]. These energy models were derived
largely from detailed, macro-level energy data for POWERA4, scaled for size
and technology to fit the requirements of LPX. The CPAM tool [19] was used
to get this data for most of the structures modeled. Additional experiments
were performed at the circuit simulation level, to derive power characteristics of
newer latch designs (with and without clock- and stall-based gating). The energy
model-enabled LPX simulator is systematically validated using specially archi-
tected testcases. Analytical bounds modeling is used to generate bounds on IPC
and unit-wise utilization (post-processed to form power bounds). These serve as
reference “signatures” for validating the power-performance simulator. Since the
LPX design and model are still evolving, validation exercises must necessarily
continue throughout the high-level design process. Details of the energy model
derivation and validation are omitted for brevity.

5 High-Level Microarchitecture of LPX

Figure 5 shows a very high-level block diagram of the baseline LPX processor
that we started with before further refinement of the microarchitectural features
and parameters through a simulation-based study. The function and storage
units shown in dashed edges are ones that are modeled (to the extent required)
in the simulation infrastructure, but are not targeted for implementation in the
initial LPX design. The primary goal of this design is to experiment with the
fetch-issue-execute pipe which processes a basic set of vector integer arithmetic
instructions. These instructions are patterned after a standard, 4x32 bit SIMD
multimedia extension architecture [11] but, simplified in syntax and semantics.
The “fetch-and-issue” sub-units act together as a producer of instructions, which
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Fig. 5. LPX Processor: High-Level Block Diagram

are consumed by the “execute” sub-unit. The design attempts to balance the
dynamic complexity of the producer-consumer pair with the goal of maximizing
performance, while minimizing power consumption.

The basic instruction processing pipeline is illustrated in Figure 6. The de-
code/dispatch/rename stage, which is shown as a lumped, dummy dispatch unit
in Figure 5, is actually modeled in our simulator as an m-stage pipe, where m=1
in the nominal design point. The nominal VFXU execute pipe is n=4 stages
deep. The LSFX execute pipe is p=2 stages (in infinite cache mode) and p=12
stages when a data cache miss stall is injected using the stall control registers
(Figure 5); in particular, using a miss-control register (MCR).

One of the functional units is the scalar FXU (a combined load-store unit and
integer unit, LSFX) and the other is the vector integer unit (VFXU). The VFXU
execution pipe is multi-cycle (nominally 4 cycles). The LSFX unit has a 1-cycle
pipe plus (nominally) a 1-cycle (infinite) data cache access cycle for loads and
stores. At the end of the final execution stage, the results are latched on to the
result bus while the target register tags are broadcast to the instructions pending
in the issue queue.

As a substitute for instruction caching, LPX uses a loop buffer in which
a loop (of up to 128 instructions) is pre-loaded prior to processor operation. The
loaded program consists of pre decoded instructions, with inline explicit specifiers
of pre renamed register operands - in full out-of-order mode of execution. This
avoids the task of designing explicit logic for the instruction decode and rename
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processes. LPX also supports an “in-order” mode, without register renaming as
the lowest performance design point for our tradeoff experiments.

The instructions implemented in LPX are listed below in Table 1. For the
most part, these are a set of basic vector (SIMD) mode load, store and arith-
metic instructions, following the general semantics of a PowerPC™VMX (vector
multimedia extension) architecture [11]. There are a few added scalar RISC
(PowerPC-like) instructions to facilitate loading and manipulation of scalar in-
teger registers required in vector load-store instructions. The (vector) load and
store instructions have an implied “update” mode in LPX, where the scalar ad-
dress base register is auto-incremented to hold the address of the next sequential
array data in memory.

Table 1. LPX Instruction Set

Example Syntax Semantics
Vector Load VLD vrl, r2, 0x08 |Load vrl. Scalar base address register: r2
Vector Store VST vrl, r2, 0x08 |Store vrl.
Vector Add VADD vrl, vr2, vr3|vrl <— vr2 + vr3
Vector Sub, Mul, Div instructions: similar to VADD above
Scalar Load LD r1, r2, 0x08 Load scalar reg rl

Scalar Inc INC rl Increment rl (scalar)
Scalar Dec DECrl Decrement rl (scalar)
Cond. Branch |BC +-0x08 Branch conditional (PC relative jump)

Uncond. Branch|BR +-0x08 Branch unconditional
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6 Examples: LPX Microarchitecture Analysis

In this section, we illustrate the use of simple loop-based test cases in understand-
ing the basic power-performance trade-offs of adaptive structures and clocking
mechanisms that were chosen for study in LPX. The challenge is to determine
the nominal sizes, adaptation windows and (in each case) a simple “monitor-
and-control” mechanism that is appropriate in the context of building a small
prototype engine, like LPX.

We started with the simplest baseline, where ideal cache effects were modeled,
by architecting a single-stage LSFX pipe unit; but, later we had to augment the
specification to include a variable-length LSFX pipe, to simulate data cache
miss latency. In the absence of real cache hardware (correspondingly, real cache
hit/miss code in the simulator), we architect for programmable “miss” scenarios
via a user-loadable miss control register (MCR). Details of how this works in the
real hardware are not discussed in this paper. For brevity, we only show a few
example tradeoff analysis examples limited to the infinite (ideal) cache scenario.

As described before in section 4 (see Figure 4), each candidate power reduc-
tion idea is analyzed in the “large” (i.e. using a general out-of-order super scalar
simulator) to ensure potential benefit. Then, a simpler hardware heuristic is used
for trial and measurement “in the small” within the LPX simulation tool kit.

LPX experiments: an example loop test-case: vect_add. We use a simple “vec-
tor add” loop trace, formed by execution of the following loop, to illustrate LPX
tradeoff experiments:

-> VLD vri, r2 (0x4)
VADD vr4, vrl, vré
VLD vr6é, r2 (0x8)
VADD vr4, vr4, vr6
VST vr4, r3 (0x8)
DEC r7

—-—= BRZ r7, -0x7

The baseline LPX model parameters were fixed as follows, after initial exper-
imentation. Instruction fetch (ifetch) bandwidth is up to four instructions/cycle,
with no fetch beyond a branch on a given cycle. The instruction fetch buffer
size is four instructions; dispatch bandwidth (into the issue queue) is up to two
instructions/cycle; issue bandwidth (into the execution pipes) is up to two in-
structions/cycle; and, completion bandwidth is also two instructions/cycle. Fetch
and dispatch is in-order and issue can be in-order or out-of-order (switchable);
instructions finish out-of-order. (LPX does not model or implement in-order
completion for precise interrupt support using reorder buffers).

Conditional Ifetch. Figures 7(a,b) show a snapshot of analysis data from
a typical 4-way, out-of-order super scalar processor model. The data reported
is for two benchmarks from the SPECint2000 suite. It shows that the ifetch
stage/buffer, the front-end pipe and the issue queue/window can be idle for
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significant fractions of the program run. These are cycles where power can be
saved by valid-bit-based clock-gating. In addition, the fraction of cycles that are
wasted by useful (but stalled) instructions and by incorrectly fetched speculative
instructions can also be significant. Gating off the ifetch process using a hardware
heuristic to compute the gating condition, is therefore a viable approach to saving
energy.

For LPX, we wish to experiment with the simplest of such heuristics, that are
easy to implement. The basic method used is to employ the “stall” or “impending
stall” signals available from “downstream” consumer units to throttle back the
“upstream” producer (ifetch). Such stall signals are easy to generate and are
usually available in the logic design anyway. Figures 8(a,b) show results from an
illustrative use of conditional ifetch while simulating the vect_add loop trace.

We use the following simple hardware heuristic for determining the ifetch
gating scenario. When a “stall” signal is asserted by the instruction buffer (e.g.
when the ibuffer is full) the ifetch process is naturally inhibited in most designs;
so this is assumed in the baseline model. However, additional power savings can
be achieved by

retaining the “ifetch-hold” condition for a fetch-gate cycle window, GW,
beyond the negation of the ibuffer stall signal. Since the ibuffer was full, it would
take a while to drain it; hence ifetch could be gated off for GW cycles. Depending
on the size of the ibuffer, IPC would be expected to drop off to unacceptable
levels beyond a certain value of GW; but increasing GW is expected to reduce
IFU (instruction fetch unit) and overall chip power.

Adaptive Issue Queue. Figure 9 shows a snapshot of our generalized simulation-
based power-savings projection for various styles of out-of-order issue queue
design. (An 8-issue, super scalar, POWER4-like research simulator was used).
These studies showed potential power savings of more than 80% in the issue
queue with at most 2-3% hit in IPC on the average. However, the best power
reductions were for adaptive and banked CAM/RAM based designs that are not
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easy to design and verify. For LPX, we started with a baseline design of the
POWERA4 integer issue queue [20], which is a latch-based design. It is structured
as a 2-chunk structure, where in adaptive mode, one of the chunks can be shut-off
completely (to eliminate dynamic and static power).

Figure 10 illustrates the benefit of using a simple, LPX-specific adaptive issue
queue heuristic that is targeted to reduce power, without loss of performance;
i.e. the size is adapted downwards only when “safe” to do so from a performance
viewpoint; and the size is increased in anticipation of increased demand. (In the
example data shown in this paper, we consider only the reduction of dynamic
power via such adaptation). The adaptive issue queue control heuristic illustrated
is simpler than proposed in the detailed studies reported earlier [9], for ease of
implementation in the LPX context. The control heuristic in LPX is as follows:



Early-Stage Definition of LPX: A Low Power Issue-Execute Processor 13

=98 vect_add loop trace on LPX
o -

2.7

23 Pwf=4.119, IssueQpwr=0.098

Cycles per instruction (C

Yy
N
()

1 2 4 8 16 32 64 128
Adaptation cycle window, AW (cycles)
baseline power (non-adaptive) = 4.46 watts

Fig. 10. Adaptive issue queue experiment in LPX

if (current-cycle-window-issuecount <
0.5 * last-cycle-window-issuecount)
then
increase-size (* if possible *);
else
decrease-size (* if possible *);

Discussion of Results. From Figure 8(a) we note that adding out-of-order (00)
mode to the baseline in-order (io) machine causes an IPC increase (CPI decrease)
of 23.6%, but with a 12.5% overall power increase. The ISU, which contains the
issue queue, increases in power by 27.5%. So, from an overall power-performance
efficiency viewpoint, the out-of-order (0o) mode does seem to pay off in LPX for
this loop trace, in infinite cache mode. However, from a power-density “hot-spot”
viewpoint, even this basic enhancement may need to be carefully evaluated with
a representative workload suite. Adding the valid-bit-based clock-gating (VB-
CG) mode in the instruction buffer, issue queue and the execution unit pipes,
causes a sharp decrease in power (42.4% from the baseline oo design point).
Adding a conditional ifetch mode, (with a cycle window W of 10 cycles over
which ifetch is blocked after the ibuffer stall signal goes away) yields an additional
18.8% power reduction, without loss of IPC performance. As the gating cycle
window W is increased, we see a further sharp decrease in net power beyond
W=10, but with IPC degradation. For the adaptive issue queue experiment
(Fig. 10) shown, we see that a 8% reduction in net LPX power is possible; but
beyond an adaptation cycle window, AW of 1, a 11% increase in CPI (cycles-per-
instruction) is incurred. Thus, use of fine-grain, valid-bit based clock-gating is
simpler and more effective than adaptive methods. Detailed results, combining
VB-CG and adaptation will be reported in follow-up research.
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Stall-Based Clock-Gating. As previously alluded to, in addition to valid-bit-
based clock-gating in synchronous (an locally asynchronous) pipelines, LPX uses
a mode in which an instruction stalling in a buffer or queue for multiple cycles is
clock-gated off, instead of a recirculation-based, hold strategy often used in high
performance processors. The stall-related energy waste is a significant fraction of
queue/buffer power that can be saved if the stall signal is avaliable in time to do
the gating. Carefully designed control circuits [16] have enabled us to exploit this
feature in LPX. In this version of the paper, we could not include the experimen-
tal results that show the additional benefits of such stall-based gating. However,
suffice it to say, with the addition of stall-based clock-gating, simulations pre-
dict that we are well within the target of achieving a factor of 5 reduction in
power and power density, without appreciable loss of IPC performance. The use
of a locally asynchronous IPCMOS execution pipe [23] is expected to increase
power reduction even further. Detailed LPX-specific simulation results for these
circuit-centric features, will be available in subsequent reports.

7 Conclusions and Future Work

We presented the early-stage definition of LPX: a low-power issue-execute pro-
cessor prototype that is designed to serve as a measurement and evaluation
vehicle for a few new ideas in adaptive microarchitecture and conditional clock-
ing. We described the methodology that was used to architect and tune sim-
ple hardware heuristics in the prototype test chip, with the goal of drawing
meaningful conclusions of use in future products. We presented a couple of sim-
ple examples to illustrate the process of definition and to report the expected
power-performance benefits of the illustrated adaptive features.

The basic idea of fetch-throttling to conserve power is not new. In addition
to work that we have already alluded to [18, 14, 5], Sanchez et al. [22] describe
a fetch stage throttling mechanism for the G3 and G4 PowerPC processors. The
throttling mode in the prior PowerPC processors was architected to respond
to thermal emergencies. The work reported in [18, 14, 5] and the new gating
heuristics described in this paper and in [17] are aimed at reducing average power
during normal operation. Similarly, the adaptive issue queue control heuristics
being developed for LPX are intended to be simpler adaptations of our prior
general work [9].

We believe that the constraint of designing a simple test chip with a small
design team forces us to experiment with heuristics that are easy to implement
with low overhead. If some of these heuristics help create relatively simple power
management solutions for a full-function, production-quality processor, then the
investment in LPX development will be easily justified.

In addition to the adaptive microarchitecture principles alluded to above, the
team is considering the inclusion of other ideas in the simulation toolkit; some
of these remain candidates for inclusion in the actual LPX definition: at least for
LPX-II, a follow-on design. The following is a partial list of these other ideas:
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— Adaptive, power-efficient cache and register file designs: these were not con-
sidered for implementation in the initial LPX prototype, due to lack of sea-
soned SRAM designers in our research team. In particular, as a candidate
data cache design for LPX-II, we are exploring ideas that combine prior
energy-efficient solutions [1, 4, 2, 15] with recently proposed, high perfor-
mance split-cache architectures ([24, 25]).

— Exploiting the data sparseness of vector/SIMD-mode execution, through
hardware features that minimize clocking waste in processing vector data
that contains lots of zeroes.

— Newer features that reduce static (leakage) power waste.

— Adding monitoring hardware to measure current swings in clock-gated and
adaptive structures.
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