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Abstract—Recent advances in high-level synthesis (HLS)
have enabled an automatic means of generating register-
transfer level from high-level specifications without compromis-
ing performance. HLS provides substantial improvements to
productivity and is a promising solution to designing future
heterogeneous chips consisting of dozens of unique IP blocks
(i.e., hardware accelerators). Despite their impressive capabil-
ities, HLS tools today are commonly used to target a small
subset of workloads, i.e., ones with inordinately regular control
flow and memory access patterns. The challenges of achieving
high-quality hardware for irregular workloads stems from HLS
relying on static analysis. Static analysis is overly conservative
when dealing with non-uniform memory access and imbalanced
workloads, and identifying the most appropriate parallelizing
strategy. In this brief, we propose the use of dynamic analysis to
generate higher quality designs using commercial HLS tools. Our
evaluations show that with dynamic dependence analysis, HLS
designs achieve 3.3x performance improvement for the sparse
matrix-vector multiply benchmark.

Index Terms—Hardware accelerators, high-level synthesis,
dynamic dependence analysis, SpMV benchmark.

I. INTRODUCTION

O CONTINUE scaling performance despite the power

wall, heterogeneous chips consisting of dozens of hard-
ware accelerators emerge as an alternative for the semi-
conductor industry. While accelerators overcome the power
wall and offer substantial performance gains, they intro-
duce non-negligible engineering costs as each requires a
one-off design. To realize the potential of accelerators,
hardware design and build process need improvements.
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High-Level Synthesis (HLS) automatically generates Register-
Transfer Level (RTL) from a high-level workload specifica-
tion, often written in C/C++. The productivity gains offered
by HLS combined with recent advances that improve the
Quality of Results (QoR), make it a promising solution and
key to the feasibility of future accelerator-centric architectures.

HLS claims to increase productivity by reducing hardware
design efforts, making large companies including Google,
NVIDIA, and Qualcomm have already used HLS in recent
projects [1]. However, HLS requires designers to restructure
programs, tweak source code, and learn intricate details of how
HLS works to apply convoluted compiler directives to obtain
good results. Looking at this trend, researchers proposed
techniques to improve the quality of HLS-generated designs,
regarding performance [2], area-saving designs [3], and short-
ening optimization time with Design Space Exploration (DSE)
techniques [4]. In this regards, non-intrusive' approaches are
an alternative to reduce the gap between the benefits revealed
by research and the results presented by industry.

Despite the increased use and maturity of HLS tools, several
limitations still exist in off-the-shelf HLS tools. One well-
known difficulty involves workloads whose behavior depends
on dynamic information. Specifically, HLS struggles when
the number of loop iterations (i.e., the loop’s ftrip count) is
unknown at design time [5]. When considering these irreg-
ular workloads, HLS tools are unable to efficiently exploit
inter-loop iteration parallelism (i.e., hardware loop unrolling).
The use of static analysis is insufficient to produce high-
performing, parallel designs without user guidance. As this
form of parallelism is a major source of efficiency for accel-
erators, this fundamental flaw is a significant drawback when
considering commercial HLS tools.

In this direction, the main contribution of this brief is to
propose the use of dynamic dependence analysis to assist
designers to use commercial HLS tools to generate efficient
accelerators for irregular workloads. Our approach evaluates
the Sparse Matrix-Vector Multiply (SpMV) benchmark. This
benchmark depends on the input data to reveal its inner loop
trip count and has relevance to scientific applications [6].
This brief demonstrates how dynamic analysis can be useful
for exposing unknown cycle information and improving the
performance of accelerators generated by conservative HLS
tools. Furthermore, our technique supports two state-of-the-
art, commercial HLS tools, showing that the benefits are not
specific to a tool. Results show that with dynamic dependence
analysis, the performance of SpMV improves by up to 3.3x.

Other contributions include:

— demonstrate the importance of addressing unknown loop

trip counts in HLS DSE to achieve efficient designs;

' Non-intrusive means a companion tool that assists HLS tools to generate
efficient designs without modifying the source code of HLS tools.
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— understand the syntax of currently available commercial
HLS tools to take full advantage of the dynamic analysis
phase to generate meaningful directives for HLS tools;

— provide a Source-to-Source (S2S) transformation at
the C level to automatically apply the optimization
opportunities extracted from the dynamic analysis phase.

II. RELATED WORKS

HLS tools rely on static compilers to discover parallelism,
pipeline structure and memory access patterns from high-level
descriptions of incoming workloads. The frequent absence of
explicit parallelism leads commercial HLS tools to allow users
set optimization parameters (e.g., pipeline initiation intervals
and unrolling factors) based either on detailed application
knowledge [7] or handwritten-RTL reference designs [8] to
generate efficient accelerators. However, such an approach that
exposes the optimization parameters to the user does not solve
the performance problem of irregular workloads; it offloads the
responsibility of finding the workload parallelism from HLS
tools to users.

To overcome this HLS limitation, researchers start devel-
oping frameworks and companion tools [4], [9]-[11] that
perform the DSE of a selected benchmark as an earlier
step before invoking HLS tools. These proposed infrastruc-
tures help to understand the architectural design trade-offs
introduced by hardware accelerators. Aladdin [4] and Lin-
analyzer [9] construct a dynamic dependence graph directly
from the C code and estimate the latency, area, and power
for a variety of accelerators. HLScope+ [10] provides a fast
and accurate HLS-based cycle estimate of the FPGA exe-
cution. PARADE [11] integrates the accelerator models with
a cycle-accurate simulator, thus encompassing a DSE of the
entire system. All these works focus on providing analysis and
approximations for efficient benchmark exploration. In con-
trast, our approach differs from previous ones in the sense
that we use DSE as an initial phase to analyze the original C
code and propose optimization parameters that can be directly
fit into HLS tools.

Table I shows works with similar objectives. They propose
techniques that can be used in conjunction with commercial
HLS tools to improve the quality of generated accelerators.
Alle et al. [2] paved the way to use S2S transformations in
C code for assisting HLS. However, they rely on the user
to apply their technique. For example, they require the user
inform (i.e., through directives) the loop latency to allow loop
pipelining in applications with data-dependent memory access.
Liu et al. [12] also propose an automated S2S transforma-
tion framework that generates pipelines to select dynamically
among multiple schedules during runtime. However, their
flow requires an HLS pass to extract scheduling information.
Lattuada and Ferrandi [13] present another work that heavily
relies on the user, e.g., the benchmarks have to be annotated
by hand. On the contrary, our approach extracts the application
parallelism through a DSE phase, showing the user the best
opportunities for optimizing the accelerator. Besides, instead
of requiring a user-defined optimization parameter, our flow
automatically generates the optimization parameters.

Tan et al. [5] describe an approach that generates a dataflow
pipeline architecture where multiple pipeline instances of a
dynamic-bound inner loop are scheduled to execute in par-
allel. Dai et al. [14] and Josipovi¢ et al. [15] propose the
inclusion of a hardware module, i.e., a hardware dynamic haz-
ard resolution mechanism and elastic circuits, respectively, to
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TABLE I
RELATED WORKS THAT PRESENT FRAMEWORKS AND COMPANION
TooLS THAT ENHANCE THE QUALITY OF HLS-GENERATED DESIGNS

Works  Year _lrregular Non-intrusive Target Device Human  Number of

Workloads  Technique FPGA ASIC Interaction HLS tools
[2] 2013 v v 4 High 2
[5] 2015 v v v High 1
(121 2017 v v v High 1
(131 2017 v v v High 1
[14] 2017 v v v High 1
[15] 2018 v v Medium 1
[16] 2016 v v Low 2
Our work 2018 v v v v Low 2

resolve runtime conflicts caused by pipelining irregular loops.
Unlike the three, our approach focuses on finding opportuni-
ties through available HLS directives to improve the quality
of the generated accelerator without inserting any new hard-
ware modules. Besides, our approach causes resource-saving
opportunities in different parts of the design, not just in the
loop pipeline.

Lastly, the commercial Merlin Compiler [16] is an example
of a companion tool that plays with optimization parameters
and demand low user interaction, similar to our approach.
However, they provide an environment that covers the entire
system, from design optimization to accelerator communica-
tion. Unlike, our approach targets irregular workloads and is
the first to show improvements for both FPGA and ASIC.

The original contribution of this brief is the proposition of
a design flow that uses commercial HLS as a back-end tool
to improve the performance of the SpMV benchmark. The
key difference from other works is the presence of a DSE
phase that extracts the profile information from the irregular
workload and uses it to generate optimization parameters that
guide the HLS tools automatically. Additionally, our approach
is the first that addresses both FPGA and ASIC flow in HLS
companion tools, as shown in Table I.

III. METHODOLOGY

Commercial HLS tools hide many architectural details from
designers [10]. As a result, designers need to rely on compan-
ion tools and analytical methods to help them optimize their
accelerators efficiently. Following this trend, our non-intrusive
approach assists HLS tools to generate efficient accelerators
from the SpMV benchmark through dynamic analysis. This
brief extends the former [17] in the sense that dynamic anal-
ysis is applied to improve the performance of the SpMV
benchmark instead of saving resources from regular work-
loads. This distinction made different optimization parameters
gain importance, such as those that expose the loop trip count.

A. SpMV Benchmark

SpMYV is an important kernel present in a variety of appli-
cations, including image processing [18] and text classifica-
tion [19]. However, parallelizing SpMV remains a challenging
problem because it deals with non-uniform memory access
and imbalanced workload. Recent works aiming to acceler-
ate SpMV on modern multi- and many-core architectures [20]
and GPUs [21]. In this regards, our proposal addresses this
optimization problem through the use of accelerators. To
demonstrate that HLS can efficiently generate accelerators
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Algorithm 1 SpMV Code Supporting CSR Format
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1: procedure SPMV_CSR(double *val, int *col, int *row, double *vec,
double *out, int lenght)

2 for i =0;i < lenght; i + + do

3: sum = 0;

4: for j = rowl[il;j < row[i + 1];j + + do
5: sum = sum + val[j] * vec[col[j]];

6 out[i] = sum;

for this irregular workload, we choose 10 of the most well-
known matrices (5 integer type and 5 double type) from the
SuiteSparse Matrix Collection [22]. Because each input results
in radically different behavior, each is treated as a single
benchmark. These carefully selected inputs cover 91.1% of
the sparsity behavior from a total of 2757 available matrices,
which rigorously evaluate our proposed technique.

B. Irregular Loop Trip Count

To demonstrate how static analysis limits HLS-generated
designs, Algorithm 1 shows a SpMV example in Compressed
Sparse Row (CSR) format. The inner loop processes the
non-zero elements (nnz) of the matrix in each row. By default,
HLS tools would not apply any unrolling factor to this loop
as the loop trip count is unknown at the static time. Thus,
such HLS absence directly degrades the performance achieved.
Let’s consider that a designer has a detailed application knowl-
edge, knows the maximum number of nnz (e.g., 64 per row)
and applies it as a user-defined optimization parameter in a
state-of-the-art HLS flow, as shown at the top of Figure 1.
It guides the HLS tool to generate the highest performance
accelerator. However, this HLS-generated design may still be
inefficient as many rows of the matrix is not as dense as 64. For
example, if the input matrix has only one row with 64 nnz, and
the remaining have 2 nnz per row, such aggressive design is
over-designed as most of the allocated hardware is idling dur-
ing the execution. In this case, either over- or under-provision
of hardware resource would lead to inefficient designs.

C. Dynamic Dependence Analysis

Dynamic dependence analysis comes to eliminate user guid-
ance to generate efficient HLS designs. In state-of-the-art HLS
flow, the user needs to learn the HLS syntax, understand the
available directives and how they are more effective, besides
needing detailed application knowledge to produce a meaning-
ful optimization parameter, as shown at the top of Figure 1.
On the contrary, our approach generates an optimized RTL
design with minimal human interaction.

First, the dynamic data dependence graph (DDDG) is con-
structed using a dynamic trace, built through an LLVM
instrumentation step [23]. In DDDG, the nodes represent oper-
ations (or instructions), and the edges represent dependencies
between operations [24]. The scheduling heuristic consists of
parsing registers and memory dependencies that yields an orig-
inal DDDG that only contains the true read-after-write data
dependencies. Then, we find places in the graph where control
flow and data dependencies cannot be disambiguated statically,
adding edges (i.e., true dependencies) at these locations, in
addition to manipulate the original DDDG to consider differ-
ent directives. Next, nodes are scheduled for execution when
all of the nodes they depend on (i.e., their parent nodes) finish.
Finally, the graph is re-balanced. Parent nodes on the critical
path and nodes that access memory with true dependencies
are left intact, but the remaining node operations can suffer

HLS tool

-—e— e = = -

User-Defined
Optimization
Parameters

RTL
Accelerator

ynamic Dependence Analysis

D

Automated
Optimization
Parameters
based on
User Choice

Supported HLS tools

Catapult C
Vivado HLS

Fig. 1. Difference between state-of-the-art and proposed HLS flow,
highlighting the included dynamic dependence analysis.

RTL
Accelerator

Area

reordering. The output of this backward step is a scheduled
DDDG that exposes the hidden parallelism of SpMV bench-
mark and is even more balanced to improve resource usage.
The bottom of Figure 1 shows our dynamic analysis flow.
First, we use the original C code as input to perform a DSE
based on a specific HLS tool, i.e., our approach automatically
evaluates several DDDGs. This phase results in several design
points where the best ones (e.g., from Pl to P8) are shown
in a Pareto curve. At this point, the user needs to pick up
one design, which is the only moment of human interaction.
Here we assume that the user has a performance constraint, as
shown in Figure 1. After his choice (e.g., P5), the extracted
profile information is used to (/) apply a S2S transformation at
the C level, and (2) to automatically generate an input configu-
ration (i.e., optimization parameters or directives) for a specific
HLS tool that reveals, for example, the unknown loop bounds
that depend on the input data. This flow ensures design porta-
bility between HLS tools without human interaction, which
encourages more software designers to adopt HLS tools.

D. Commercial Tools

The choice of commercial HLS tools was made based on
their market coverage. We aim to improve designs for both
FPGA and ASIC, and not be restricted to a single technology.
In this regards, the market-leading HLS tools chosen were:

Vivado HLS [25]: This HLS tool from Xilinx is used as
the solution when aiming FPGA platforms. Reported FPGA
numbers are for a Virtex-7 FPGA (xq7v585t).

Catapult C [26]: To demonstrate our proposed optimization
techniques’ generality both across different back-ends and
HLS tools, we leverage Catapult C as our ASIC HLS flow
using a commercial 40nm CMOS technology library.

Both HLS tools generate RTL and test benches starting from
C code, as shown in Figure 1. All synthesized RTL designs are
simulated using QuestaSim 10.4c; simulation results provide
performance numbers and validation for each design.”

2This brief intends to improve designs generated by commercial HLS tools
and not offer any comparison between them. In this regards, experimental
results fall into two categories, and each HLS tool evaluated a different type
of sparse matrix input (i.e., integer for ASIC flow and double for FPGA flow).
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Fig. 2. Evaluation of integer input sparse matrices for SpMV: (a) input matrix distribution, (b) dynamic analysis and (c) design performance using Catapult C.

TABLE 11
INTEGER INPUT SPARSE MATRICES SET

TABLE III
DOUBLE INPUT SPARSE MATRICES SET

Sparse Matrix App. Domain ‘ Rows ‘ nnz ‘ nnz/row Sparse Matrix App. Domain ‘ Rows ‘ nnz ‘ nnz/row
SmaGri Directed Multigraph 1059 4919 4.64 besstm25 Structural 15439 15439 1.00
GL6_D_7 Combinatorial 636 5378 8.46 poli3 Economic 16955 37849 2.23
Ipi_klein2 Linear Programming 477 5062 10.61 dw8192 Electromagnetics 8192 41746 5.10
GL7d26 Combinatorial 305 7412 24.30 besstk12 Structural 1473 17857 12.12
Journals Undirected Graph 124 6096 49.16 ex7 Fluid dynamics 1633 54543 33.40
IV. RESULTS

This section presents how dynamic dependence analysis can
increase the quality of HLS-generated designs. At large, imbal-
anced workloads and non-uniform memory access account for
the most significant source of inefficiency in HLS-generated
RTL, due to the limitations of static analysis and required
conservatism to implement correct hardware. An archetype of
irregularity, the SpMV benchmark varies wildly across input
sets. For example, Table II shows the extent of disparity among
5 integer input sets, with sparsity range from 4.64 to 49.16.

Algorithm 1 presented in Section III-B shows the source code
for SpMV-CSR benchmark. Note the inner-loop in Algorithm 1,
where unknown static trip counts limit the amount of parallelism
that HLS can extract from the sequential specification. Unlike
regular applications where increasing design area (e.g., dupli-
cating resources) through HLS directives (e.g., loop unrolling)
produce greater parallelism and better performance. The issue
of optimizing SpMV-CSR using HLS alone is the irregular-
ity increase complexity of static dependence analysis in HLS
tool, which induces the generation of inefficient designs. On
the other hand, dynamic analysis can address this problem by
deciphering the optimal design rapidly.

Figure 2 shows the three phases performed to validate our
proposed optimization technique. First, (a) profile information
is extracted from the input matrix. This chart is optional and
helps users to understand where are the points to be improved.
Then, (b) a DSE is performed based on several scheduled
DDDG. Finally, (c) a commercial HLS tool (Catapult C or
Vivado HLS) automatically fed by our optimization parameters,
generates the accelerator with the most effective solution.

Although phase (a) is optional, it produces insights to
optimize the HLS-generated design. For example, sparsity
shown in the last column in Table II corresponds to the aver-
age density of non-zero elements of the matrix. This is typical
information used by designers to optimize the accelerator by
unrolling the inner-loop shown in Algorithm 1 [20]. However,
this information can be misleading, because depending on the
distribution of the non-zero elements across the matrix, it will
not match the normal curve average and this initial directive
will undoubtedly generate an inefficient design.

Let’s use GL7d26 as an example. Table II indicates to
use an unrolling factor of 24 for GL7d26 based on sparsity.
However, Figure 2a shows that GL7d26 has almost half rows
containing up to 16 nnz. This information reveals that a design
using an unrolling factor of 16 can have similar performance
and 33% less area compared to the same design generated
with an unrolling factor of 24. GL7d26 achieves this effi-
ciency because the faster execution time on low-density parts
compensates the large density parts.

Figure 2b illustrates the dynamic analysis phase. Each input
matrix performs a DSE by sweeping the inner-loop unrolling
factor from 1 to 32. Loop pipelining is set to minimize the
initiation interval, and arrays are partitioned by 32, caus-
ing memory bandwidth does not limit inner-loop unrolling.
Furthermore, Figure 2b highlights the implementation that sat-
urates the normalized performance for each input matrix. The
arrows are the efficient design that must be achievable (through
directives) by HLS tools.

Looking at the implementation phase (Figure 2c), results
show that all efficient unrolling factors exposed by our
dynamic analysis (Figure 2b) match with the best performance
design produced by Catapult C (Figure 2c).

Comparing the sparsity measures shown in Table II and
the designs exposed by the dynamic analysis (Figure 2b), our
non-intrusive approach improves the performance of HLS-
generated accelerators. Otherwise, simplistic analysis using
sparsity or other static information can lead to inefficient designs
when dealing with irregular workloads. Results show that our
approach achieves 2.07 x better performance (Journals) for
integer sparse matrices than our baseline, i.e., compared to the
use of HLS tools without optimization parameters.

To demonstrate the approach’s effectiveness across multiple
platforms, we chose five large and complex double input sets
(i.e., number of nnz larger than 15000) shown in Table III
and evaluated over an FPGA device. Figure 3 shows the
performance results generated by Vivado HLS, where are
highlighted the hints produced by the dynamic analysis phase.
Results show a performance improvement of up to 3.3x for
ex7 compared to our baseline design. Furthermore, dynamic
analysis outcomes are precisely the set where are obtained

Authorized licensed use limited to: Harvard Library. Downloaded on April 22,2022 at 16:28:06 UTC from IEEE Xplore. Restrictions apply.



1444

71 16 =29 32
Unroling Factor

N
H

-
®

Execution Time (ms)
o 5

- poli3 dw8192 bcsstkl2 ex7

0 bcsstm2

Fig. 3. SpMV design performance using Vivado HLS. These experiments
help demonstrate the approach’s effectiveness across multiple platforms.

the best results regarding performance, same behavior as
shown in the ASIC flow. After this set, performance begins
to deteriorate caused by the inefficiency to generate sizable
Finite State Machines (FSM). FSM increases according to
the number of Functional Units (FUs) assigned in each loop
iteration, causing an unnecessary time control overhead if
those FUs are underused. As our dynamic analysis does not
model an entirely FSM, the point where performance saturates
is the optimal design set, as previously illustrated in Figure 2b.

Although our approach shows good results for both ASIC
and FPGA, their optimization parameters are entirely different.
For example, FPGA presents scarcer DSP slices than LUTSs
and FFs. To save DSPs, the produced directives must prioritize
share multipliers than other FUs. As shared FUs increase, the
HLS tool introduces more MUXes which raises the number
of LUTs. In ASIC design flow, on the contrary, the cost of
additional MUXes are dwarfed by the cost of FUs. Therefore,
the generated directives give less priority to shared FUs and
more priority to increasing performance.

Our dynamic analysis approach has two caveats. First, irreg-
ular workloads have few area saving opportunities because
standalone HLS tools cannot suitable parallelize the design as
discussed previously. Further, relatively large FUs driven by
unrolling factor dominates the area. This means that to achieve
performance improvement for the SpMV benchmark, based
on our approach or by handwritten modification, we have to
deal with an area overhead. Second, the intrinsic delay in the
overall C-to-RTL synthesis time brought by our non-intrusive
approach. Fortunately, our dynamic analysis time accounts for
less than 2% of the total synthesis time.

In short, ASIC and FPGA results show the same behav-
ior, indicating that our non-intrusive approach improves the
performance of the SpMV benchmark by up to 3.3x com-
pared to standalone commercial HLS tools. However, this
performance improvement shows a small increase in the
synthesis time.

V. CONCLUSION

Performance improvement for irregular workloads chal-
lenges modern commercial HLS tools, mainly caused by static
compilers that unpredict the loop’s trip count. In this brief, we
proposed a non-intrusive dynamic dependence analysis that
works in conjunction with commercial HLS tools to increase
the quality of accelerator designs.

Evaluation comprises a real benchmark (SpMV) through
two commercial HLS tools. Results show that the proposed
dynamic analysis can be used to accurately extract the
parallelism profile of the SpMV benchmark, automati-
cally producing optimization parameters that reached 3.3x
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more performance than unassisted HLS-generated accelerator
designs.
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