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Abstract—IoT devices are increasing in prevalence and popu-
larity, becoming an indispensable part of daily life. Despite the
stringent energy and computational constraints of IoT systems,
specialized hardware can enable energy-efficient sensor-data
classification in an increasingly diverse range of IoT applications.
This paper demonstrates seven different IoT applications using
a fully-connected deep neural network (FC-NN) accelerator on
28nm CMOS. The applications include audio keyword spotting,
face recognition, and human activity recognition. For each
application, a FC-NN model was trained from a preprocessed
dataset and mapped to the accelerator. Experimental results
indicate the models retained their state-of-the-art accuracy on
the accelerator across a broad range of frequencies and voltages.
Real-time energy results for the applications were found to be
on the order of 100nJ per inference or lower.

I. INTRODUCTION

From fitness and health to security and home appliances,

IoT devices are ubiquitous and have become an indispensable

part of daily life. Introducing advanced sensing and intel-

ligence to a plethora of domains, IoT has enabled ground-

breaking applications [1]. Many IoT systems require continu-

ous sensing and sensor-data classification, but these tasks are

exacting and intense for the system 's finite energy and compu-

tational resources. Traditional microcontrollers consume a lot

of power to perform the appropriate computations. However,

specialized hardware can bypass these costly calculations

and allow for energy-efficient classification in IoT devices.

Doing so facilitates more sophisticated, diverse, and meaning-

ful IoT workloads. This paper explores seven different IoT

workloads spanning audio keyword spotting, face recognition,

and human activity recognition (HAR) applications. These

workloads all employ neural networks. Each of the workloads

utilizes a dataset that, after preprocessing, is used to train

a fully-connected neural network (FC-NN). These FC-NN

models were ported onto a 28nm FC-NN hardware accelerator

SoC [2]. Experimental results demonstrate high classification

performance and low power consumption for each of the

workloads, with real-time energy costs on the order of nJs

per inference.

II. IOT APPLICATIONS

After an extensive literature review, deep learning datasets

were selected to create seven distinct IoT related applications.

The datasets encompass a wide range of applications including

audio keyword spotting, face recognition, and HAR.

A. Overview of Datasets

DARPA Resource Management (RM2) consists of digital

and transcribed speech for the use in training and evaluating

speech recognition and keyword spotting systems, recorded at

16KHz with 16-bit resolution [3]. The subset of RM2 used

to train and test our models contains 5,450 utterances from

168 speakers who collectively represent a wide variety of

American dialects. The complete lexicon of RM2 contains

more than 1,000 words with average word length of 300ms,

and each model evaluates detection of a subset of these words.

Feature extraction is performed similarly to prior literature [4].

For every 10ms of speech, the first 13 MFCCs1 are extracted

from the raw audio waveforms within a 25ms window. Each

input vector contains all extracted MFCCs within a 31 frame

window, resulting in 403 features per frame. These input

vectors are normalized to have zero mean and unit variance.

A moving average window is swept across the outputs of

the FC-NN. Thresholds that maximize the F-score for each

keyword are chosen from predictions on the training set, and

those thresholds are used for inference on the test set.

Labeled Faces in the Wild (LFW) was designed for

studying the problem of unconstrained face recognition [5].

LFW contains over 13,000 labeled images of faces of more

than 5,700 individuals. The images in this dataset contain a

high degree of variation in pose, lighting, facial expression,

age, gender, race, and background. Ths variation is motivated

by replicating a natural degree of variation in images that

could be seen by real-world facial recognition applications.

The 250x250 pixel color images are aligned by funneling

[6], cropped to 128x128, and converted to grayscale. The

matrix of all training images is used to fit a projection matrix

using principal component analysis (PCA), which is then

1Mel-frequency cepstral coefficients
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used to project image vectors onto a lower-dimensional space.

Each input vector to the FC-NN is the concatenation of two

PCA-reduced image vectors, representing a pair of images in

which the faces either match or do not match. LFW defines

several paradigms for reporting performance. Due to the use of

funneling for alignment, the performance reported in this paper

is of the Image-Restricted, Label-Free Outside Data paradigm.

OPPORTUNITY Activity Recognition (OPP) dataset

consists of wearable data from subjects in a simulated break-

fast scenario [7]. Focusing on the activities of daily living, this

dataset serves as a benchmark for human activity recognition

algorithms. Seven IMUs, shown in figure 1a, recorded data at

30 Hz of 18 unique gestures (i.e. open drawer, open fridge).

Following suit of existing literature [8], the subset of sensory

data with no packet loss was used to train and develop the

FC-NN model. Each sample size had 77 features, and a total

of 650K samples were available. Run 2 of subject 1 was the

validation data, runs 4 and 5 of subjects 2 and 3 was used as

the test data, and the rest of the runs served as the training

data. [8] Time-series segmentation, a preprocessing technique

to contextualize time-dependent information, was applied to

the raw data with a window size of 0.36 seconds (12 samples)

and 50% overlap.

PAMAP2 Physical Activity Monitoring dataset includes

data from subjects performing 13 different physical activities,

from walking and cycling to vacuum cleaning and ironing

[9]. PAMAP2 captures a broad range of conventional physical

activities. Subjects wore 3 IMUs, indicated in figure 1b,

collecting data at 100Hz and a heart rate monitor collecting

data at 9Hz. Samples had 52 dimensions and the dataset com-

prised of 473K samples. Replicating processing from existing

literature (hammerla paper), the raw data was downsampled

to have a similar temporal resolution as the OPPORTUNITY

dataset. Additionally, the values were rescaled to fit within

5-bit values, and missing value handling was resolved with

linear interpolation. Only data from the “protocol” subset was

used. Runs 1 and 2 of subject 5 were the validation data, runs

1 and 2 of subject 6 were the test data, and the remaining runs

served as the training data [8]. Time-series segmentation was

applied to the raw data with a window size of 0.56 seconds (18

samples) and -10% overlap. Negative overlap fraction indicates

a space between the sampling windows.

Daphnet Freezing of Gait (DG) dataset comprises accel-

eration sensor data from patients with Parkinson 's Disease,

a progressive disorder impacting the motor system [10]. The

third human activity dataset, Daphnet Freezing of Gait, bench-

marks algorithms for identifying walking gait freeze and aims

to address a pressing health concern. Subjects wore 3 sensors

on their hips and legs as in figure 1c and performed activities

of daily living. The data was collected at 64Hz and was

annotated by professionals as either “freezing”, “not freezing”,

or “not part of the experiment.” Each data sample had 9 fea-

tures, and 470K samples were available. Similar to PAMAP2,

the raw data was downsampled, rescaled, and missing value

handling was accomplished with linear interpolation. Run 1

of subject 9 was the validation data, runs 1 and 2 of subject

(a) OPP (b) PAMAP2 (c) DG (d) Smartphone

Fig. 1. Sensors for HAR datasets: (a) sensors 1-7 are IMUs positioned on
arms, back, and ankles; (b) sensor 1 is a wrist heart-rate monitor, and sensors
2-4 are IMUs positioned on the chest, hip, and ankle; (c) sensor 1-3 are
accelerometers on the trunk, thigh, and ankle; (d) sensor 1 is a smartphone
at hip-level.

2 were the test data, and the remaining data was used for

training [8]. Time-series segmentation was applied to the raw

data with a window size of 0.48 seconds (16 samples) and

50% overlap.

Smartphone-based Human Activity Recognition: Raw
subset is one of two subsets of the Smartphone-based HAR

dataset. This subset includes the raw accelerometer and gyro-

scope data at 64Hz from a Samsung Galaxy S2 smartphone

fastened at the waist of subjects (as in figure 1d) doing 13

simple static and dynamic activities [11]. The dataset sets a

standard for basic activity recognition with minimal sensing

hardware. Each sample has 6 dimensions: the x, y, and z

components of acceleration and of angular speed. Experiments

44 to 50 were validation data, experiments 51 to 61 were test

data, and the remaining experiments were training data. Time-

series segmentation was applied to the data with a window size

of 2.56 seconds (128 samples) and 50% overlap.

Smartphone-based Human Activity Recognition:
Feature-extracted (FE) subset is the second subset of

the Smartphone-based HAR dataset. The feature-extracted

subset comprises very specific values derived from the raw

smartphone data (e.g., body acceleration, gravity acceleration,

mean, standard deviation) [11]. Each sample has 561

dimensions, and the FE subset is preprocessed and partitioned

as provided [11].

B. FC-NN Model Design

Keras, a Python deep learning framework with Theano

backend, was used to build the FC-NN models for the datasets.

Each model consists of an input layer, 2-4 hidden layers, and

an output layer. The exact topology was selected to maximize

the performance metrics, rather than minimizing operations or

model size.

For training, Adadelta was used with the default Keras

parameter values of: lr = 1.0, ρ = 0.95, ε = 1 × 10−8.

No learning rate decay was used. We used a batch size of

256 examples and trained the models for as many epochs as

it took for the accuracy to converge. Other hyperparameters

were chosen by performing a grid search. Table I summarizes

the models.
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TABLE I
APPLICATION DATASETS, MODELS, AND EVALUATED PERFORMANCE

Dataset Model Performance
Name Inputs Outputs Topology Size (MB) Acc (%) Mean F-score Weighted F-score
RM2 403 10 200-200 0.235 99.1 0.837 0.983
LFW 512 1 128-128-128 0.188 78.4 0.773 0.773
OPP 924 18 240-240-240-240 0.800 90.8 0.629 0.904

PAMAP2 936 13 220-220-220-220 0.710 72.2 0.665 0.716
DG 144 3 112-112-112-112 0.104 71.9 0.617 0.711

Smartphone (Raw) 384 13 256-256-256-256 0.599 80.3 0.703 0.800
Smartphone (FE) 561 12 280-280-280-280 0.794 93.6 0.817 0.935

C. Model Performance

Model performance was evaluated by test set accuracy,

mean F-score, and the weighted F-score (Table I). Since IoT

datasets are often heavily skewed2, test accuracy alone is not

a robust metric for performance. Instead, F-score, which is the

harmonic mean of precision3 and recall4, considers accuracy

for every class and is more suitable for skewed datasets. Mean

f-score Fm and weighted F-score Fw are defined as

Fm =
2

|c|
∑

c

precisionc × recallc
precisionc + recallc

Fw = 2
∑

c

Nc

NT

precisionc × recallc
precisionc + recallc

where Nc is the number of samples in class c, and NT is the

total number of samples [8].

III. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we present measured results of the seven IoT

applications running on a 28nm FC-NN hardware accelerator

test chip [2]. Optimal frequency-voltage requirements and

power consumption of the datasets are determined in each

case. For frequencies ranging from 200MHz - 1.3GHz, the

hardware accelerator can operate with a supply voltage as

low as 0.56V. Figure 2 shows the minimum clock frequency

required for a given accelerator voltage when evaluated on a

model for the MNIST dataset evaluated in [2]. From this data,

we can extrapolate the minimum power consumption for each

of our models.

B. Mapping to Hardware Accelerator

The hardware accelerator has a number of constraints that

must be met to execute the models. Firstly, there is only 1MB

of memory available on the accelerator for storing the model

parameters. Hence, the weights and biases must fit within that

space. These weights can be represented as either 8-bit or 16-

bit fixed-precision numbers. In the case of 16-bit, this allows

for no more than 500K parameters. Several of the models

(RM2, LFW, and DG) are far smaller than the allowed 1MB; in

2Most samples do not belong to a specific class and are labeled as “Other”.
3The percentage of samples belonging to a class out of all samples that

have been predicted to belong to that class.
4The percentage of samples correctly predicted to belong to a class out of

all samples that truly belong to that class.

Fig. 2. Measured power and frequency of 28nm hardware accelerator test
chip [2] over a range of supply voltages. Each operating point corresponds to
the lowest error-free voltage at a given frequency.

these cases, increasing the number of free parameters did not

increase accuracy. This is likely due to the data preprocessing

preventing generalization of the data and the models became

prone to overfitting with larger capacity models.

Secondly, the number of elements in the activation vector

for each layer cannot exceed 1K. Therefore the input feature

lengths or hidden layer sizes must fit this constraint. This

influenced decisions regarding feature reduction techniques

applied to inputs of the models.

The first step of mapping the models into hardware is to

extract the weights and biases from the Keras model, and

to translate them from 32-bit floating point values to 16-bit

fixed point values which are used for computation by the

accelerator, which is done simply by quantizing the parameters

and storing them in the required format. The test vectors must

also be quantized. The weights are represented as fixed-point

numbers with 2 integer bits and 14 fractional bits, and the

input features as fixed-point numbers with 4 integer bits and 12

fractional bits. This reduction in precision from 32-bit to 16-bit

does contribute some small amount of error during inference.

However this contribution is found to be insignificant, and so

we did not retrain the models after they had been quantized.

When evaluated on the hardware accelerator, the accuracies

and weighted F-scores of all the models varied by less than 1%
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TABLE II
APPLICATION POWER REQUIREMENTS

Dataset Inference Rate (RI ) Clock Cycles Freq (kHz) Power (nW) Energy per Inference (nJ)
RM2 100.00 16,138 1,613.8 4,070.4 40.7
LFW 10.00 13,075 130.8 330.4 33.0
OPP 5.56 51,368 285.6 722.0 129.9

PAMAP2 1.62 51,420 83.3 210.6 130.0
DG 4.17 7,092 29.6 74.8 17.9

Smartphone (Raw) 1.56 37,979 59.2 149.7 96.0
Smartphone (FE) 0.78 50,662 39.5 99.9 128.1

in comparison to the floating point versions. The mean F-score

for the OPPORTUNITY model dropped by slightly more than

1%, due to a change in accuracy in a highly underrepresented

class. Because the weighted F-score considers the number of

test examples in each class, the loss in accuracy of that single

class proved to have an insignificant impact on the overall

accuracy of the model.

C. Real-time Energy

To calculate the minimum power consumption required by

a real-time IoT application utilizing one of these models,

we first determine the minimum clock frequency required

for each of the workloads. Then from that frequency we

determine the minimum supply voltage required for correct

operation of the accelerator without introducing faults into the

system that could compromise inference accuracy. Once we

have determined the supply voltage and clock frequency, we

can then determine the expected power consumption for each

workload.

The minimum clock frequency can be determined simply

by considering two attributes of the model: the number of

inferences required per unit time by the application, and

the number of clock cycles per inference a model takes to

complete on the accelerator. For LFW, we estimate the number

of required inferences per second to be 10 for standard facial

recognition applications that could be used to unlock mobile

devices. The other models use sliding, overlapping windows to

produce input features, and the real-time constraint for these

models is

RI =
1

w(1− o)

where the inference rate RI is determined by the dataset

preprocessing window size w and overlap fraction o.

The number of cycles per inference is determined by using

on-chip performance counters, which report various statistics,

including the total number of clock cycles consumed per

inference. The clock frequency required for all the applications

is lower than the critical frequency at the minimum supply

voltage Vmin, and so we assume Vmin for power measurement

of all workloads. This operating point has a clock frequency

of 443MHz and a power consumption of 1.12mW. Using

this optimal operating point, we derived the estimated power

consumption for each of the models given their real-time

constraints, which are provided in Table II.

IV. CONCLUSION

This paper presents seven distinct deep learning IoT ap-

plications. On these workloads we have demonstrated high

prediction accuracy while also achieving ultra low energy

consumption utilizing a FC-NN accelerator. The energy con-

sumption per inference for each of our models is on the order

of 100nJ or lower. These results demonstrate the benefits of

specialized hardware and their potential to contribute in the

IoT domain. Future work may include exploring different

datasets, evaluating FC-NN models with different latencies,

and deploying an end-to-end IoT system.
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