
Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator
Enabling Large Design Space Exploration of Customized Architectures

Yakun Sophia Shao Brandon Reagen Gu-Yeon Wei David Brooks
Harvard University

{shao,reagen,guyeon,dbrooks}@eecs.harvard.edu

Abstract
Hardware specialization, in the form of accelerators that

provide custom datapath and control for specific algorithms
and applications, promises impressive performance and en-
ergy advantages compared to traditional architectures. Cur-
rent research in accelerator analysis relies on RTL-based
synthesis flows to produce accurate timing, power, and area es-
timates. Such techniques not only require significant effort and
expertise but are also slow and tedious to use, making large
design space exploration infeasible. To overcome this problem,
we present Aladdin, a pre-RTL, power-performance acceler-
ator modeling framework and demonstrate its application to
system-on-chip (SoC) simulation. Aladdin estimates perfor-
mance, power, and area of accelerators within 0.9%, 4.9%,
and 6.6% with respect to RTL implementations. Integrated
with architecture-level core and memory hierarchy simulators,
Aladdin provides researchers an approach to model the power
and performance of accelerators in an SoC environment.

1. Introduction
As we near the end of Dennard scaling, traditional perfor-
mance and power scaling benefits based on technology im-
provements no longer exist. At the same time, transistor den-
sity improvements continue; the result is the dark silicon prob-
lem in which chips now have more transistors than a system
can fully power at any point in time [18, 52]. To overcome
these challenges, hardware acceleration in the form of datap-
ath and control circuitry customized to particular algorithms
or applications has surfaced as a promising approach, as it
delivers orders of magnitude performance and energy benefits
compared to general purpose solutions. Customized architec-
tures composed of CPUs, GPUs, and accelerators are already
seen in mobile systems and are beginning to emerge in servers
and desktops.

The natural evolution of this trend will lead to a growing
volume and diversity of customized accelerators in future
systems (Figure 1), where a comprehensive assessment of
potential benefits and trade-offs across the entire system will
be critical for system designers. However, current customized
architectures only contain a handful of accelerators, as large
design space exploration is currently infeasible due to the
lack of a fast simulation infrastructure for accelerator-centric
systems.

GPGPU

Big Core

Shared LLC and NoC

Private L1$ Private L1$

Little
Core

Little
Core

Private L1$

Private L1$/
Scratchpad

reg_a reg_b

Accelerator
Specific

Datapath

Sea of Accelerators

Figure 1: Future Heterogeneous Architecture.

Computer architects have long been developing and lever-
aging high-level power [8, 37] and performance [3, 7] simula-
tion frameworks for general-purpose cores and GPUs [5, 36].
In contrast, current accelerator-related research primarily re-
lies on creating RTL implementations, a tedious and time-
consuming process. It takes hours, if not days, to generate, sim-
ulate, and synthesize RTL to get the power and performance
of a single accelerator design, even with the help of high-level
synthesis (HLS) tools. Such a low-level, RTL infrastructure
cannot support architecture-level design space exploration that
sweeps parameters across traditional general-purpose cores,
accelerators, and shared resources such as cache hierarchies
and on-chip networks. Hence, there is a clear need for a
high-level design flow that abstracts RTL implementations
of accelerators to enable broad design space exploration of
next-generation customized architectures.

In this paper, we introduce Aladdin, a pre-RTL, power-
performance simulator designed to enable rapid design space
search of accelerator-centric systems. This framework takes
high-level language descriptions of algorithms as inputs, and
uses dynamic data dependence graphs (DDDG) as a repre-
sentation of an accelerator without having to generate RTL.
Starting with an unconstrained program DDDG, which cor-
responds to an initial representation of accelerator hardware,
Aladdin applies optimizations as well as constraints to the
graph to create a realistic model of accelerator activity. We
rigorously validated Aladdin against RTL implementations of
accelerators from both handwritten Verilog and a commercial
HLS tool for a range of applications, including accelerators
in Memcached [38], HARP [55], NPU [19], and a commonly
used throughput-oriented benchmark suite, SHOC [17]. Our
results show that Aladdin can model performance within 0.9%,
power within 4.9%, and area within 6.6% compared to accel-
erator designs generated by traditional RTL flows. In addition,
Aladdin provides these estimates over 100× faster.

978-1-4799-4394-4/14/$31.00 c© 2014 IEEE

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000 1200
Execution Time (uS)

0

20

40

60

80

100

120

140

Po
w

er
(m

W
)

Datapath + Memory
Datapath Only

Figure 2: GEMM design space w/ and w/o memory hierarchy.

Aladdin captures accelerator design trade-offs, enabling
new architectural research directions in heterogeneous sys-
tems composed of accelerators, general-purpose cores, and
the shared memory hierarchy seen in today’s mobile SoCs
and for future customized architectures; we demonstrate this
capability by integrating Aladdin with a full cache hierarchy
model and DRAMSim2 [46]. Such infrastructure allows users
to explore customized and shared memory hierarchies for ac-
celerators in a heterogeneous environment. In a case study
with the GEMM benchmark, Aladdin uncovers significant,
high-level, design trade-offs by evaluating a broader design
space of the entire system. Such analysis results in more than
3× performance improvements compared to the conventional
approach of designing accelerators in isolation.

2. Background and Motivation

Hardware acceleration exists in many forms, such as analog
accelerators [6, 50], static [13, 19, 28, 38, 43, 52, 55] and
dynamic datapath accelerators [14, 25, 27], and programmable
accelerators, such as GPUs and DSPs. In this work, we focus
on static datapath accelerators. Here we discuss the design
flow, design space, and state-of-the-art research infrastructure
of datapath accelerators, all in order to illustrate the challenges
associated with current accelerator research and why a tool like
Aladdin opens up new research opportunities for architects.

2.1. Accelerator Design Flow

The current accelerator design flow requires multiple CAD
tools, which is inherently tedious and time-consuming. It
starts with a high-level description of an algorithm, then de-
signers either manually implement the algorithm in RTL or
use HLS tools, such as Xilinx’s Vivado HLS [2], to compile
the high-level implementation (e.g., C/C++) to RTL. It takes
significant effort to write RTL manually, the quality of which
highly depends on designers’ expertise. Although HLS tools
offer opportunities to automatically generate the RTL imple-

Novel Accelerator Design
Accelerator
Datapath
Trade-offs

Heterogeneous
SoC

Trade-offs

handwritten
RTL

Buffer-int-Cache [20],
Memcached [35, 38],
Sonic Millip3De [47],
HARP [55]

Inadequate Inadequate

HLS
LINQits [12],
Convolution Engine [43],
Conservation Cores [52]

Cong [16],
Liu [40],
Reagen [45]

Inadequate

Table 1: Accelerator Research Infrastructure

mentation, extensively tuning C-code is still necessary to meet
design requirements. After generating RTL, designers must
use commercial CAD tools, such as Synopsys’s Design Com-
piler and Mentor Graphics’ ModelSim, to estimate power and
cycle counts.

In contrast, Aladdin takes unmodified, high-level language
descriptions of algorithms, to generate a DDDG representation
of accelerators, which accurately models the cycle-level power,
performance, and area of realistic accelerator designs. As a
pre-RTL simulator, Aladdin is orders of magnitude faster than
existing CAD flows.

2.2. Accelerator Design Space

Despite the application-specific nature of accelerators, the
accelerator design space is large given a range of architecture-
and circuit-level alternatives. Figure 2 illustrates a large power-
performance design space of accelerator design points for the
GEMM workload from the SHOC benchmark suite. The
square points were generated from a commercial HLS flow
sweeping datapath parameters, including loop-iteration par-
allelism, pipelining, array partitioning, and clock frequency.
However, HLS flows generally provision a fixed latency for
all memory accesses, implicitly assuming local scratchpad
memory fed by DMA controllers.

Such simple designs are not well suited for capturing data
locality or interactions with complex memory hierarchies. The
circle points in Figure 2 were generated by Aladdin integrated
with a full cache hierarchy model and DRAMSim2, sweeping
not only datapath parameters but also memory parameters.
By doing so, Aladdin exposes a rich design space that incor-
porates the realistic memory penalties in terms of time and
power, impractical with existing HLS tools alone. Section 5
further demonstrates the importance of accelerator datapath
and memory co-design using Aladdin.

2.3. State-of-the-art Accelerator Research Infrastructure

The ITRS predicts hundreds to thousands of customized ac-
celerators by 2022 [1]. However, state-of-the-art accelerator
research projects still only contain a handful of accelerators
because of the cumbersome design flow that inhibits computer
architects from evaluating large accelerator-centric systems.
Table 1 categorizes accelerator-related research projects in the

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

Optimistic
IR

Sec 3.2.1

Initial
DDDG

Sec 3.2.2

Idealistic
DDDG

Sec 3.2.3

Program
Constrained

DDDG

Sec 3.3.1

Resource
Constrained

DDDG

Sec 3.3.2

Power
Model

Sec 3.3.4
C

Code

Realization PhaseOptimization Phase

Power
Activity

Time

Figure 3: The Aladdin Framework Overview.

computer architecture community over the past 5 years based
on the means of implementation (handwritten RTL vs. HLS
tools) and the scope of possible design exploration.

We see that researchers have been able to propose novel
implementations of accelerators for a wide range of applica-
tions, either writing RTL directly or using HLS tools despite
the time-consuming process. With the help of the HLS flow,
we have begun to see studies evaluating design trade-offs in
accelerator datapaths, which is otherwise impractical using
handwritten RTL. However, as discussed in Section 2.2, HLS
tools cannot easily navigate large design spaces of customized
architectures. This inadequacy in infrastructure has confined
the exploratory scope of accelerator research.

2.4. Contributions

In summary, this work makes the following contributions:
1. We present Aladdin, a pre-RTL, power-performance sim-

ulator for fixed-function accelerators using dynamic data
dependence graphs (Section 3).

2. We perform rigorous validation of Aladdin against hand-
written RTL implementations and a commercial HLS de-
sign flow. We show that Aladdin can model the behavior
of recently published accelerators [38, 55, 19] and typical
accelerator kernels [17] (Section 4).

3. We demonstrate a large design space exploration of cus-
tomized architectures, enabled by Aladdin, identifies high-
level accelerator design trade-offs (Section 5).

3. The Aladdin Framework

3.1. Modeling Methodology

The foundation of the Aladdin infrastructure is the use of
dynamic data dependence graphs (DDDG) to represent accel-
erators. A DDDG is a directed, acyclic graph, where nodes
represent computation and edges represent dynamic data de-
pendences between nodes. The dataflow nature of hardware
accelerators makes the DDDG a good candidate to model their
behavior. Figure 3 illustrates the overall structure of Aladdin,
starting from a C description of an algorithm and passing
through an optimization phase, described in Section 3.2, where
the DDDG is constructed and optimized to derive an ideal-
ized representation of the algorithm. The idealized DDDG
then passes to a realization phase, discussed in Section 3.3,
that restricts the DDDG by applying realistic program depen-
dences and resource constraints. User-defined configurations
allow wide design space exploration of accelerator imple-
mentations. The outcome of these two phases is a pre-RTL,
power-performance model for accelerators.

Aladdin uses a DDDG to represent program behaviors so
that it can take arbitrary C code descriptions of an algorithm—
without any modifications—to expose algorithmic parallelism.
This fundamental feature allows users to rapidly investigate
different algorithms and accelerator implementations. Due to
its optimistic nature, dynamic analysis has been previously
deployed in parallelism research exploring the limits of ILP
[4, 22, 44, 53] and recent modeling frameworks for multicore
processors [24, 31]. These studies sought to quickly measure
the upper bound of performance achievable on an ideal paral-
lel machine [33]. Our work has two main distinctions from
these efforts. First, previous efforts model traditional Von
Neumann machines where instructions are fetched, decoded,
and executed on a fixed, but programmable architecture. In
contrast, Aladdin models a vast palette of different accelerator
implementation alternatives for the DDDG; the optimization
phase incorporates typical hardware optimizations, such as
removing memory operations via customized storage inside
the datapath and reducing the bitwidth of functional units. The
second distinction is that Aladdin provides a realistic power-
performance model of accelerators across a range of design
alternatives during its realization phase, unlike previous work
that offered an upper-bound performance estimate.

In contrast to dynamic approaches, parallelizing compilers
and HLS tools use program dependence graphs (PDG) [15, 23]
that statically capture both control and data dependences [21,
26]. Static analysis is inherently conservative in its depen-
dence analysis, because it is used for generating code and
hardware that works in all circumstances and is built without
run-time information. A classic example of this conservatism
is the enforcement of false dependences that restrict algorith-
mic parallelism. For instance, programmers often use pointers
to navigate arrays, and disambiguating these memory refer-
ences is a challenge for HLS tools. Such situations frequently
lead to designs that are more sequential compared to what a
human RTL programmer would develop. Therefore, although
HLS tools offer the opportunity to automatically generate RTL,
designers still need to extensively tune their C code to expose
parallelism explicitly (Section 4). Thus, Aladdin is different
from HLS tools; Aladdin is simply a realistic, accurate rep-
resentation of accelerators, whereas HLS is burdened with
generating actual, correct hardware.

This section describes details of the optimization phase (Sec-
tion 3.2) and realization phase (Section 3.3) of Aladdin. We
then discuss how to integrate Aladdin with memory systems
(Section 3.4) and limitations of the approach (Section 3.5).

3.2. Optimization Phase

The optimization phase forms an idealized DDDG that only
represents the fundamental dependences of the algorithm. An
idealized DDDG for accelerators must satisfy three require-
ments: (a) only express necessary computation and memory
accesses, (b) only capture true read-after-write dependences,
and (c) remove unnecessary dependences in the context of cus-

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

tomized accelerators. This section describes how Aladdin’s
optimization phase addresses these requirements.
3.2.1. Optimistic IR Aladdin builds the DDDG from a dy-
namic instruction trace, where the choice of the ISA signif-
icantly impacts the complexity and granularity of the nodes
in the graph. In fact, a trace using a machine-specific ISA
contains instructions that are not part of the program but pro-
duced due to the artifacts of the ISA [49], e.g., register spills.
To avoid such artifacts, Aladdin uses a high-level, machine-
independent intermediate representation (IR) provided by the
ILDJIT compiler [10]. ILDJIT IR is optimistic because it al-
lows an unlimited number of registers, eliminating additional
instructions generated due to stack overheads and register
spilling. The IR contains 80 opcodes ranging from simple
primitives, e.g., add and multiply, to complex operators, e.g.,
sine and square root, so that we can easily detect the func-
tional units needed based on the program’s IR trace and model
them using pre-characterized hardware. We use a customized
interpreter for the ILDJIT IR to emit fully-optimized IR in-
structions in a trace file. The trace includes dynamic instruc-
tion information such as opcodes, register IDs, parameter data
types, and parameter data values. We also profile the dynamic
addresses of memory operations.
3.2.2. Initial DDDG Aladdin analyzes both register and mem-
ory dependences based on the IR trace. Only true read-after-
write data dependences are respected in the initial DDDG con-
struction. This DDDG is optimistic enough for the purpose
of ILP limit studies but is missing several characteristics of
hardware accelerators; the next section discusses how Aladdin
idealizes the DDDG further.
3.2.3. Idealized DDDG Hardware accelerators have consider-
able flexibility to customize datapaths for application-specific
features, which is not modeled in the initial DDDG. Such cus-
tomization can change the attributes of the datapath, as in the
case of bitwidth reduction where functional units can be tuned
to the value range of the problem. Aladdin also removes oper-
ations that are not required for hardware implementations. For
example, to reduce memory bandwidth, small, frequently ac-
cessed arrays, such as filters, can be stored directly in registers
inside the datapath instead of in external memory. Cost models
are used to automatically perform all of these transformations.

We categorize our optimizations into node-level, loop-level,
and memory-level transformations to produce an idealized
DDDG representation.

Node-Level Optimization. In addition to bitwidth analysis,
we also model other node-level optimizations, such as strength
reduction and tree-height reduction, by changing the nodes’
attributes and performing standard graph transformations [29].

Loop-Level Optimization. The initial DDDG captures the
true dependences between successive iterations of the loop
index variables, which means each index variable can only be
incremented once per cycle. Such dependence constraints do
not apply to hardware accelerators or parallel processors since
it is entirely possible that they can initiate multiple iterations of

Parameters Example Range
Loop Rolling Factor [1::2::Trip count]
Clock Period (ns) [1::2::16]
FU latency Single-Cycle, Pipelined
Memory Ports [1::2::64]

Table 2: Realization Phase User-Defined Parameters, i::j::k de-
notes a set of values from i to k by a stepping factor j.

a loop simultaneously [51]. Aladdin removes all dependences
between loop index variables, including basic and derived
induction variables, to expose loop parallelism.

Memory Optimization. The goal is to remove unnecessary
load/store operations. In addition to the memory-to-register
conversion example described above, Aladdin also performs
store-load forwarding inside the DDDG, which eliminates
load operations by buffering data in internal registers within
hardware accelerators. This is different from store-load for-
warding in general-purpose CPUs, where the load operation
must still be executed [48].

Extensibility Hardware design is open-ended, and Aladdin
can be extended to incorporate other accelerator-specific opti-
mizations, analogous to adding new microarchitectural struc-
tures to CPU simulators. We demonstrate this extensibility
by considering CAM hardware to optimize data matching. A
CAM is an example of a custom circuit structure that is often
used to accelerate hash tables in network routers and datatype
specific accelerators [56]. Unlike software, CAMs can auto-
matically compare a key against all of the entries in one cycle.
On the other hand, large CAMs are power hungry, resulting
in an energy trade-off when hash tables reach a certain size.
Aladdin incorporates CAMs into its customization strategy by
automatically replacing software-managed hash tables with
CAM. Aladdin can detect a linear search for a key by look-
ing for chained sequential memory look-ups and comparison.
Section 4.2.2 demonstrates an example with a Memcached
accelerator in which CAMs are used as a victim cache to a
regular hash table during hash conflicts [38].

3.3. Realization Phase

The realization phase uses program and resource parameters,
defined by users, to constrain the idealized DDDG generated
in the optimization phase.
3.3.1. Program-Constrained DDDG The idealized DDDG
optimistically assumes that hardware designers can eliminate
all control and false data dependences at design time. Al-
addin’s realization phase models actual control and memory
dependences to create the program-constrained DDDG.

Control Dependence. The idealized DDDG does not in-
clude control dependences, assuming that branch outcomes
can be known in advance and operations can start before
branches are resolved, which is unrealistic even for hardware
accelerators. The costs and benefits of control flow specula-
tion for accelerators have not been extensively studied yet,

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

Resource ActivityResource Constrained DDDG

IR Trace:
0. r0 = 0
1. r4 = load (r0 + r1) //load a[i]
2. r5 = load (r0 + r2) //load b[i]
3. r6 = r4 + r5
4. store(r0 + r3, r6) //store c[i]
5. r0 = r0 + 1 // ++i
6. r4 = load (r0 + r1) //load a[i]
7. r5 = load (r0 + r2) //load b[i]
8. r6 = r4 + r5
9. store(r0 + r3, r6) //store c[i]
10. r0 = r0 + 1 // ++i
...

C code:

for (i = 0; i < N; ++i)
 c[i] = a[i] + b[i];

1.ld a

0. i=0

2.ld b

3.+

4.st c

6.ld a

5.i++

7.ld b

8.+

9.st c

11.ld a

10.i++

12.ld b

13. +

14.st c

16.ld a

15.i++

17.ld b

18.+

19.st c

20.i++ 25.i++

MEM MEM MEM MEM

+

+ +

MEM MEM

+ +

MEM MEM MEM MEM

+ +

MEM MEM

+ +

Cycle

Figure 4: C, IR, Resource Constrained DDDG, and Activity.

and one solution to minimize control dependences relies on
predicated execution to simultaneously execute both taken
and not taken paths until branch resolution [34]. While this
approach minimizes serialization, the cost of speculation is
very high—it requires hardware resources that grow expo-
nentially with the number of outstanding branches. Aladdin
models control dependence by bringing code from the not-
taken path into the program-constrained DDDG to account for
additional power and resources. Aladdin is flexible enough to
model the costs of different mechanisms for handling control
flow. For energy efficiency, Aladdin models one outstanding
branch at a time, serializing control dependences for multiple
simultaneous branches.

Memory Dependence. The idealized DDDG optimistically
removes all false memory dependences between dynamic in-
structions, keeping true read-after-write dependences. This
is realistic for memory accesses with addresses that can be
resolved at design time. However, some algorithms have input-
dependent memory accesses, e.g., histogram, where different
inputs result in different dynamic dependences. Without run-
time memory disambiguation support, designers have to make
conservative assumptions about memory dependences to en-
sure correctness. To model realistic memory dependences, the
realization phase includes memory ambiguation that constrains
the input-dependent memory accesses by adding dependences
between all dynamic instances of a load-store pair, as long as
a true memory dependence is observed for any pair. This is

similar to the dynamic dependence profiling approach adopted
by parallelization efforts [24, 32].

3.3.2. Resource-Constrained DDDG Finally, Aladdin ac-
counts for user-specified hardware resource constraints, a
subset of which are shown in Table 2. Users specify the
type and size of hardware resources in an input configuration
file. Aladdin then binds the program-constrained DDDG onto
the hardware resources, leading to the resource-constrained
DDDG. Aladdin can easily sweep resource parameters to ex-
plore the design space of an algorithm, which is fast because
only resource constraints need to be applied for each design
point. These resource parameters are set with respect to the
following three factors: loop rolling, loop pipelining, and
memory ports.

Loop Rolling. The optimization phase removes depen-
dences between loop index variables, assuming completely
unrolled loops that execute all iterations in parallel. In reality,
for loops with large trip counts, this leads to large resource
requirements. Aladdin’s loop rolling factor re-rolls loops by
adding dependences between loop index variables.

Loop Pipelining. The DDDG representation fully pipelines
loop iterations by default, though sometimes pipelined imple-
mentation leads to high resource requirements as well as high
power consumption. Aladdin offers users the option to turn
off loop pipelining by adding dependences between the entry
and exit nodes of successive loop iterations.

Memory ports. The number of memory ports constrains
the data transfer rate between the accelerator datapath and
the closest memory hierarchy, generally either a scratchpad
memory or L1 cache. Aladdin uses this parameter to abstractly
model the number of memory requests the datapath can issue
concurrently, and Section 3.4 discusses how the memory ports
interface with memory simulators.

3.3.3. An Example Figure 4 illustrates different phases of
Aladdin transformations using a microbenchmark as an ex-
ample. After the IR trace of the C code has been produced,
the optimization and realization phases generate the resource-
constrained DDDG that models accelerator behavior. In this
example, we assume the user wants an accelerator with a
factor-of-2 loop-iteration parallelism and without loop pipelin-
ing. The solid arrows in the DDDG are true data dependences,
and the dashed arrows represent resource constraints, such as
loop rolling and turning off loop pipelining. The horizontal
dashed lines represent clock cycle boundaries. The correspond-
ing resource activities are shown to the right of the DDDG
example. We see that the DDDG reflects the dataflow nature
of the accelerator. Aladdin can accurately capture dynamic
behavior of accelerators without having to generate RTL by
carefully modeling the opportunities and constraints of the
customized datapath in the DDDG.
3.3.4. Power and Area Models We now describe the con-
struction and application of Aladdin’s power and area models
to capture the resource requirements of accelerators.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800
Time (Cycles)

0

50

100

150

200
N

um
be

ro
fA

ct
iv

e
Fu

nc
tio

na
lU

ni
ts

an
d

B
an

dw
id

th

FFT8

Twiddle

Shuffle

FFT8

Twiddle

Shuffle

FFT8

Active Functional Units
Memory Bandwidth

Figure 5: Cycle-by-Cycle FU and Memory Activity of FFT.

Power Model. To accurately model the power of acceler-
ators, we need: (a) precise activities and (b) accurate power
characterization of different DDDG components. We uniquely
characterize switching, internal, and leakage power from De-
sign Compiler for each type of DDDG node (multipliers,
adders, shifters, etc.) and registers. The characterization ac-
counts for different timing requirements, bitwidths, and switch-
ing activity. Switching and internal power are due to capacitive
charging/discharging of output load and internal transistors
of the logic gates, respectively. While switching and internal
power are both dynamic, we found internal power weakly de-
pendent on activity because internal nodes can switch without
the gate output switching.

We construct a detailed power model by synthesizing mi-
crobenchmarks that exercise the functional units. Our mi-
crobenchmarks cover all of the compute instructions in IR
so that there is a one-to-one mapping between nodes in the
DDDG and functional units in the power model. We synthesize
these microbenchmarks using Synopsys’s Design Compiler
in conjunction with a commercial 40nm standard cell library
to characterize the switching, internal, and leakage power of
each functional unit. This characterization is fully automated
in order to easily migrate to new technologies.

Aladdin’s power modeling library also accounts for cell
selection variances during netlist synthesis. Different pipeline
stages within a datapath contain varying amounts of logic
and, in order to meet timing requirements, different standard
cells and logic implementations of functional units are often
selected at synthesis time. Aladdin approximates the impact
of cell selection by training the model for a variety of timing
constraints and using a first-order model to choose the correct
design. This also accounts for logic flattening that Design
Compiler performs across small collections of functional units.

Area Model. To accurately model area, we construct an
area library similar to the previously described power library
for each DDDG component. This model was obtained using

the same set of microbenchmarks to characterize the area for
each functional unit as well as for registers.

Cycle-Level Activity. Figure 5 shows the cycle-level re-
source activity for one implementation of the FFT benchmark.
Aladdin accurately captures the distinct phases of FFT. The
number of functional units required is estimated using the
maximum number of parallel functional units per cycle for
each program phase; this approximation provides the power
and area models with the total resources allocated to the ac-
celerators. The cycle-level activity is an input to the power
model to represent the dynamic activity of the accelerators.

3.4. Integration with Memory System

Aladdin can easily integrate with architectural cache and mem-
ory simulators to model their behavior with a particular mem-
ory hierarchy. Within the context of memory hierarchy for
accelerators, we discuss three types of memory models with
which Aladdin can integrate.

Ideal Memory guarantees that all memory requests can be
serviced in one cycle, which is only realistic for a system with
small memory size. Aladdin models the ideal memory system
by assuming load and store nodes in the DDDG take one cycle.

Scratchpad Memory is commonly used in accelerator-
centric systems where accelerator designers explicitly manage
memory accesses so that each request has a fixed latency.
However, this approach requires a detailed understanding of
workload memory characteristics. This potentially increases
design time but leads to more efficient implementation. Al-
addin can take a parametrized memory latency as an input to
model the latency of load and store operations matching the
characteristics of scratchpad memory.

Cache Hierarchy applies a hardware-managed cache sys-
tem to capture locality of the accelerated workload. Such a
cache hierarchy relies on the hardware to exploit the locality
of the workload, potentially easing the design of systems with
a large number of accelerators. On the other hand, a cache
introduces variable memory latency. Existing cache simula-
tors can be integrated with Aladdin to evaluate how variable
latency memory accesses affect accelerator behaviors.

In order to integrate with a cache hierarchy, the accelerator
must include certain mechanisms to react to possible cache
misses. Aladdin models several approaches to handle this
variable latency, which resemble pipeline control mechanisms
in general-purpose processors. The simplest policy is local
or global pipeline stalls on miss events. We also consider a
more complex mechanism for non-blocking behavior in which
a new loop iteration is started when a miss occurs, and only
the loop ID is stored for re-execution when the miss resolves.

Memory Power Model. The memory power model is
based on a commercial register file and SRAM memory com-
piler that accompanies our standard cell library. We have
compared the memory power model to CACTI [54] and found
consistent trends, but we retain the memory compiler model
for consistency with the standard cell library.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

C Code

Aladdin (Figure 3)

RTL
Designer

HLS C
Tuning

Design
Compiler

ModelSim

Power Performance

Vivado HLS

Verilog Activity

Design Iteration

Figure 6: Validation Flow.

3.5. Limitations

Algorithm choices. Aladdin does not automatically sweep dif-
ferent algorithms. Rather, it provides a framework to quickly
explore various hardware designs of a particular algorithm.
This means designers can use Aladdin to quickly and quan-
titatively compare the design spaces of multiple algorithms
for the same application to find the most suitable algorithm
choice.

Input Dependent. Like other dynamic analysis frame-
works [30, 41], Aladdin only models operations that appear in
the dynamic trace, which means it does not instantiate hard-
ware for code not executed with a specific input. For Aladdin
to completely model the hardware cost of a program, users
must provide inputs that exercise all paths of the code.

Input C code. Aladdin can create a DDDG for any C code.
However, in terms of modeling accelerators, C constructs
that require resources outside the accelerator, such as system
calls and dynamic memory allocation, are not modeled. In
fact, understanding how to handle such events is a research
direction that Aladdin facilitates.

4. Aladdin Validation
We begin this section with a detailed description of the tradi-
tional RTL design flow and workloads used to validate Aladdin.
Validation results show Aladdin has modest error rates within
0.9% for performance, 4.9% for power, and 6.5% for area.
Aladdin generates the design space more than 100× faster
than the traditional RTL-based flow.

4.1. Validation Flow

Figure 6 outlines the methodology used to validate Aladdin.
The power and area estimates of Aladdin are compared against
synthesized Verilog generated by Design Compiler using com-
mercial 40nm standard cells. Aladdin’s performance model is
validated against ModelSim Verilog simulations. The SAIF ac-
tivity file generated from ModelSim is fed to Design Compiler
to capture the switching activity at the gate level. To generate
Verilog, we either hand-code RTL or use Xilinx’s Vivado HLS
tool. The RTL design flow is an iterative process and requires
extensive tuning of both RTL and C code.
4.1.1. HLS Tuning We use HLS to generate the accelerator
design space for SHOC benchmarks to demonstrate Aladdin’s
ability to explore a large design space of an accelerator’s data-
path, which is infeasible with handwritten RTL. To produce

0 1 2 3 4 5 6 7 8
Execution Time (KCycles)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
w

er
(m

W
)

Tuned C Code
Unoptimized C Code

Figure 7: Unoptimized vs. Tuned Scan.

high-quality Verilog, HLS requires significant tuning of the
input C code to expose parallelism and remove false depen-
dences. In contrast, Aladdin produces the power-performance
optimal design points without modifying the input C code.

Figure 7 demonstrates the quantitative difference that code
quality can have on power and performance by comparing
Pareto frontiers of optimized and unoptimized versions for
the Scan benchmark. Both curves were generated by sweep-
ing loop unrolling factors, memory bandwidth, and resource
sharing and applying loop pipelining, similar to the parame-
ters discussed in Section 3. The unoptimized C code hits a
performance wall at around 4000 cycles where neither increas-
ing bandwidth nor loop parallelism yields better performance
but continues to burn more power. The reason is that when
striding over a partitioned array being read from and written
to in the same cycle, though accessing different elements of
the array, the HLS compiler conservatively adds loop-carried
dependences. This in turn increases the iteration interval of
loop pipelining, limiting performance. To overcome HLS’s
conservative assumptions, we partition the array differently
which consequently simplifies the access patterns to resolve
false dependences. Similar tuning was necessary to generate
well-performing designs for each of the SHOC benchmarks,
which are then used to validate Aladdin in Section 4.3.

4.2. Applications

We implemented a collection of benchmarks, both by hand and
using HLS, to validate Aladdin. HLS enabled the validation
of the Pareto optimal designs for the SHOC benchmarks, over-
coming the impracticality of hand coding each design point.
We also validate Aladdin against handwritten RTL for bench-
marks ill-suited for HLS. Examples are taken from recently
published accelerator research: NPU [19], Memcached [38],
and HARP [55].
4.2.1. SHOC The SHOC benchmark suite is representative of
many typical accelerator workloads, which includes compute
intensive benchmarks where functional units often dominate
execution time and power, e.g., Stencil, as well as memory-
bound workloads, e.g., Sort, stressing Aladdin’s modeling
capabilities across multiple dimensions. To ensure valid, well

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

MD
STENCIL FFT

GEMM TRIAD SORT SCAN
REDUCTION

0

2

4

6

40

50

60

Ti
m

e
(K

C
yc

le
s)

1.9%
1.2%

0.6%
2.6%

0.9%
0.2%

0.3%
0.9%

Avg Error
0.9%

Aladdin
RTL Flow

NPU
HASH

HARP
0

1

2

3

4

5

Ti
m

e
(K

C
yc

le
s)

0.4
%

0.2
%

0.6
%

MD
STENCIL FFT

GEMM TRIAD SORT SCAN
REDUCTION

0
20
40
60
80

100
120
140

Po
w

er
(m

W
)

4.8%
6.7%

6.5%
5.1%

2.3%
6.6%

8.3%
4.4%

Avg Error
4.9%

Aladdin
RTL Flow

NPU
HASH

HARP
0

1

2

3

Po
w

er
(m

W
)

3.3
%

0.2
%

5.7
%

MD
STENCIL FFT

GEMM TRIAD SORT SCAN
REDUCTION

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a
(m

m
2
)

7.1%
5.5%

4.5%
10.6%

4.5%
9.6%

4.3%
7.9%

Avg Error
6.5%

Aladdin
RTL Flow

NPU
HASH

HARP
0

5

10

15

A
re

a
(m

m
2
)

10−3

5.3
%

4.7
%

6.5
%

Figure 8: Performance (top), Power (middle), and Area (bottom) Validation.

performing HLS results, we carefully tuned each implementa-
tion as described earlier. By sweeping loop unrolling factors
and resource constraints such as memory bandwidth, a large
design space of accelerator datapaths for each benchmark is
generated.

4.2.2. Single Accelerators In some instances, the expressive-
ness of C limits the ability for HLS to reasonably match hand-
coded RTL. Therefore, we hand coded RTL for HARP, NPU,
and Memcached to further demonstrate Aladdin’s modeling ca-
pabilities. For Aladdin, we rely on generic C implementations
that describe the behavior of each accelerator.

HARP is a partitioning accelerator for big data [55]. Es-
sentially, given a stream of inputs, it uses a pipeline of com-
parators to check each input against a splitter value at each
stage and categorize the inputs. HARP is a control-intensive
workload where its activity highly depends on the input values,
which makes it a good candidate to exercise Aladdin’s ability
to model control behavior. Our handwritten Verilog for HARP
properly expresses the pipelined comparisons. Aladdin was
able to match the Verilog implementation through the loop
rolling and pipelining parameters.

NPU is a network of individual neurons connected through
a shared bus, which communicates with each other in a care-
fully orchestrated, compiler-generated pattern. The design
hinges on an input FIFO to buffer computations. Although
HLS has FIFO support, the ability to finely share data effi-
ciently between compute engines is a shortcoming of most
HLS tools. An individual neuron was implemented in Ver-
ilog, and a synthetic input was used to stimulate the neuron.
Aladdin’s memory-to-register transformation successfully cap-
tures such FIFO-type structure.

Memcached is a distributed key-value store system, the
central of which is a hash function and CAM lookup. Given
an input key, a hash accelerator computes the value using a
hash algorithm described in [11]. The value is then used to
index four SRAMs whose content is compared against the
input key to determine a hit. If one of the SRAMs returns
a match, it returns that SRAM’s data. On a miss, the value
is sent to a CAM where all possible locations of the key are
checked in parallel and the correct value is returned. This
benchmark serves two purposes—to demonstrate Aladdin’s
ability to model variable bitwidth computations (the hash func-
tion) and to model a different customization strategy (CAM).

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

Most
Parallel

Most
Serial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

E
ne

rg
y

REG
ADD
MUL

(a) Triad

Most
Parallel

Most
Serial

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

E
ne

rg
y

REG
ADD
MUL

(b) Sort

Most
Parallel

Most
Serial

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

E
ne

rg
y

REG
ADD
MUL

(c) Stencil

Figure 9: Energy Characterization of SHOC.

4.3. Validation

Figure 8 shows that Aladdin accurately models performance,
power, and area compared against RTL implementations
across all of the presented benchmarks with average errors of
0.9%, 4.9%, and 6.5%, respectively. For each SHOC work-
load, we validated six points on the Pareto frontier, e.g., points
in Figure 7. The SHOC validation results show Aladdin accu-
rately models entire design spaces, while for single accelerator
designs, Aladdin is not subject to HLS shortcomings and can
accurately model different customization strategies.

Pareto Analysis The Pareto optimal designs of the SHOC
benchmarks reveal interesting program characteristics in the
context of hardware accelerators. Bars in Figure 9 correspond
to six designs along each benchmark’s Pareto frontier, which
were also used for validation. In each graph, the leftmost
bar is the most parallel, highest performing design while the
rightmost bar is the most serial and lowest performing design.
For each design, we calculate energy using power and per-
formance estimates from Aladdin. Aladdin’s detailed power
model enables energy breakdowns for adders, multipliers, and
registers. The six bars of each benchmark are normalized to
the leftmost bar to facilitate comparisons.

Each of the three benchmarks in Figure 9 exhibits differ-
ent energy trends across the Pareto frontier. Triad, shown in
Figure 9a, demonstrates good energy proportionality, meaning
more parallel hardware leads to better performance with a
proportional power cost. In contrast, Sort has a strong sequen-
tial component such that energy increases for more parallel

Hand-Coded RTL HLS Aladdin
Programming Effort High Medium

N/A
RTL Generation Designer Dependent 37 mins
RTL Simulation Time 5 mins
RTL Synthesis Time 45 mins

Time to Solution
per Design

87 mins 1 min

Time to Solution
(36 Designs)

52 hours 7 mins

Table 3: Algorithm-to-Solution Time per Design.

designs without improving performance. Finally, while the
multiplier energy for Stencil shows similar energy propor-
tionality to Triad, the adders and registers required for loop
control are amortized with more parallelism. Non-intuitively,
this leads to better energy efficiency for these faster designs.

4.4. Algorithm-to-Solution Time

Aladdin enables rapid design space exploration of accelerator
designs. Table 3 quantifies the differences in algorithm-to-
solution time to explore a design space of the FFT benchmark
with 36 points. Compared to traditional RTL flows, Aladdin
skips the time-consuming RTL generation, synthesis, and sim-
ulation process. On average, it takes 87 mins to generate a
single design using the RTL flow but only 1 min for Aladdin,
including both of Aladdin’s optimization phase (50 seconds)
and realization phase (12 seconds). However, because Aladdin
only needs to perform the optimization phase once for each al-
gorithm, this optimization time can be amortized across large
design spaces. Consequently, it only takes 7 mins to enumer-
ate the full design space with Aladdin compared to 52 hours
with the RTL flow. The HLS RTL generation time per design
is comparable to that reported by other researchers [39].

5. Case Study: GEMM Design Space

We now present a case study that demonstrates how Aladdin
enables architecture research and why it is invaluable to future
heterogeneous SoC designs. We focus our analysis on GEMM
as it has complex memory behavior and consider a problem
size of 196 KB. In this case study, we present:
1. Execution Time Decomposition: Understand design trade-

offs of an accelerator’s execution time with respect to com-
pute time and memory time.

2. Accelerator Design Space: Characterize the design space
of GEMM accelerators, including memory hierarchy, to un-
derstand how different parameters affect the design space.

3. Heterogeneous SoC: Demonstrate the impact of resource
contention in an SoC-like system of a single accelerator, re-
sulting in different optimal designs that would be unknown
without system-level analysis.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(M

ill
io

n
C

yc
le

s)

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

L1 BW=
4B/Cycle 16B/Cycle 64B/Cycle

Memory Time
Compute Time

0

10

20

30

40

50

Po
w

er
(m

W
)

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

4K
B

8K
B

16
K

B
32

K
B

L2 Power
L1 Power
Acc Core Power

Figure 10: GEMM Time and Power Decomposition

5.1. Execution Time Decomposition

So far, Aladdin has been evaluated as a standalone accelerator
simulator with an ideal memory hierarchy (one cycle mem-
ory access latency). However, it is not always possible to
retrieve data in one cycle in real designs with large problem
sizes. The efficiency of accelerators highly depends on the
memory system. To quantify the impact of a memory system
on accelerators, we integrate Aladdin with a standard cache
simulator and the DRAMSim2 memory simulator [46].

We divide the accelerator’s execution time into compute
time and memory time. Compute time is defined as the ex-
ecution time of an accelerator when there is only one cycle
memory latency. Memory time is defined as cycles lost to a
non-ideal memory, which includes both memory bandwidth
and memory latency constraints.

In order to decompose the accelerator’s execution time,
we run simulations with both an ideal memory and a realistic
memory hierarchy including L1, L2, and DRAM. The compute
time is the execution time with ideal memory; the delta of
execution times between the two simulations is the memory
time to get data into accelerators [9].

Table 4 lists all of the parameters in the design space. In
this section, we focus on the bandwidth and size of L1. Fig-
ure 10 shows the execution time and power breakdown of the

Type Parameters Values
Core Blocking Factor [16, 32]

L1
L1 Bandwidth (Bytes/Cycle) [4::2::128]
L1 Size (KB) [4::2::32]
MSHR Entries [4::2::64]

L2
L2 Bandwidth (Bytes/Cycle) [4::2::128]
L2 Size (KB) [64::2::256]
L2 Assoc 16

Table 4: Single Accelerator Design Space, where i::j::k de-
notes a set of values from i to k by a stepping factor of j.

0

20

40

60

80

100

120

140

160

Po
w

er
(m

W
)

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Million Cycles)

L1 BW

L1 BW

L2 Size

L1 Size

Blocking

L2 BW

256 B/Cycle
128 B/Cycle

64 B/Cycle
32 B/Cycle
16 B/Cycle

8 B/Cycle
4 B/Cycle

Figure 11: GEMM design space.

GEMM benchmark when sweeping L1 size and bandwidth.
On the left of Figure 10, we observe that memory time takes
a significant portion of the execution time, especially as L1
bandwidth increases. With the same L1 bandwidth, execution
time decreases as the L1 size increases from 8 KB to 16 KB;
this phenomenon occurs because 8 KB is not large enough to
hold the blocked data size (a 32×32 matrix).

The plot on the right shows the power breakdown of the ac-
celerator datapath, L1, and L2. The accelerator datapath power
increases with L1 bandwidth, because higher bandwidth en-
ables more-parallel implementations. As L1 size increases, its
power also increases as accesses become more expensive. At
the same time, L2 power decreases because more accesses are
coalesced by the L1, lowering the L2 cache’s activity. In fact,
cache power consumes more than half of the total power, even
for more parallel designs where datapath power is significant.
Therefore, design efforts focusing on the accelerator datapath
alone do not alleviate memory power, which dominates the
overall power cost.

5.2. Accelerator Design Space

Section 5.1 explored a subset of the design space for accelera-
tors and memory systems. Here, we use Aladdin to explore
the comprehensive design space with parameters in Table 4.
Figure 11 plots the power and execution time of the GEMM
accelerator designs resulting from the exhaustive sweep. The
design space contains several overlapping clusters of simi-
lar designs. The arrows in Figure 11 identify correlations in
power/performance trends with respect to each parameter. For
example, GEMM experiences substantial performance bene-
fits from a larger L1 cache, but with a significant power penalty.
In contrast, increasing L2 size only modestly increases both
power and performance.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

100

120

140

160

Po
w

er
(m

W
)

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Million Cycles)

Without Memory Contention

block=16
block=32

0

20

40

60

80

100

120

140

160

Po
w

er
(m

W
)

0 0.5 1.0 1.5 2.0 2.5 3.0
Time (Million Cycles)

With Memory Contention

block=16
block=32

Figure 12: Design Space of GEMM without and with contention in L2 cache.

5.3. Resource-Sharing Effects in Heterogeneous SoC

In a heterogeneous system, shared resources, such as a last-
level cache, can be accessed by both general-purpose cores
and accelerators. We consider the case of a heterogeneous
system consisting of a shared 256 KB L2 cache, one general-
purpose core, and a GEMM accelerator with a private 16 KB
L1 cache. From an accelerator designer’s perspective, an im-
portant algorithmic parameter is the blocking factor of GEMM;
a larger blocking factor exposes more algorithmic parallelism,
however, achieving good locality requires a larger cache.

Figure 12(left) shows the accelerator design space without
memory contention from the general purpose core. We modu-
late the algorithmic blocking factor and find that a blocking
factor of 16 is always better than 32 with respect to both power
and performance. This occurs because a 16 KB L1 cache is
large enough to capture the locality of the blocking factor 16
but not 32. Therefore, it is preferable to build the accelerator
with blocking factor 16 when there is no contention for shared
resources.

To model resource contention between the general-purpose
core and the accelerator, we use Pin [42] to profile an x86
memory trace and then use the trace to issue requests that
pollute the memory hierarchy while simultaneously running
the accelerator. The design space for the accelerator under
contention is shown in Figure 12(right). We see that perfor-
mance degrades for both blocking factors of 16 and 32 due to
pollution in the L2 cache; however, blocking factor 32 suffers
much less than blocking factor 16. When there is contention,
capacity misses increase for the shared L2 cache, which incurs
large main memory latency penalties. With a larger blocking
factor, the accelerator requires fewer references to the matrices
in total and, thus, fewer data requests from the L2 cache. Con-
sequently, the effects of resource contention suggest building
an accelerator with a larger blocking factor, where the accelera-
tor performance can achieve around 0.5 million cycles. On the
other hand, without considering the contention, designers may

pick a design with blocking factor 16, the highest performance
of which is 1.5 million cycles in the contention scenario. Such
design choice leads to a 3× performance degradation. Aladdin
can easily evaluate these types of system-wide accelerator de-
sign trade-offs, a task that is not tractable with other current
accelerator design tools.

6. Conclusion
We have presented Aladdin, a pre-RTL, power-performance
accelerator simulator offering architects the ability to quickly
and accurately model accelerators without generating RTL.
Validation of Aladdin with respect to designs generated by
handwritten RTL and a commercial HLS flow confirmed high
accuracy with average power, performance, and area errors
within 0.9%, 4.9%, and 6.5%, respectively. Furthermore, Al-
addin runs more than 100× faster than traditional RTL design
flows. Aladdin’s speed and accuracy open up opportunities
for large design space exploration of customized architec-
tures. Our case study shows that Aladdin can highlight how
system-level parameters affect accelerator design trade-offs
when integrated with a standard cache and DRAM simulator.

Acknowledgments
We would like to thank Glenn Holloway for his help revis-
ing this work. This work was partially supported by C-FAR,
one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA,
the National Science Foundation (NSF) Expeditions in Com-
puting Award #: CCF-0926148, DARPA under Contract #:
HR0011-13-C-0022, and a Google Faculty Research Award.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

References
[1] “The international technology roadmap for semiconductors (itrs), sys-

tem drivers, 2007, http://www.itrs.net/.”
[2] “Xilinx vivado high-level synthesis,” http://www.xilinx.com/products/

design-tools/vivado/.
[3] T. M. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure

for computer system modeling,” IEEE Computer, 2002.
[4] T. M. Austin and G. S. Sohi, “Dynamic dependency analysis of ordinary

programs,” in ISCA, 1992.
[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,

“Analyzing cuda workloads using a detailed gpu simulator,” in ISPASS,
2009.

[6] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous
real-world inputs can open up alternative accelerator designs,” in ISCA,
2013.

[7] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Computer Architecture News, 2011.

[8] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA, 2000.

[9] D. Burger, J. R. Goodman, and A. Kagi, “Memory bandwidth limita-
tions of future microprocessors,” in ISCA, 1996.

[10] S. Campanoni, G. Agosta, S. Crespi-Reghizzi, and A. D. Biagio, “A
highly flexible, parallel virtual machine: Design and experience of
ildjit,” Software Practice Expererience, 2010.

[11] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An fpga memcached appliance,” in FPGA, 2013.

[12] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: big data on little clients,”
ISCA, 2013.

[13] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip hetero-
geneous computing: Does the future include custom logic, fpgas, and
gpgpus?” in MICRO, 2010.

[14] N. Clark, A. Hormati, and S. A. Mahlke, “Veal: Virtualized execution
accelerator for loops,” in ISCA, 2008.

[15] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific instruc-
tion generation for configurable processor architectures,” in FPGA,
2004.

[16] J. Cong, K. Gururaj, and G. Han, “Synthesis of reconfigurable high-
performance multicore systems,” in FPGA, 2009.

[17] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous com-
puting (shoc) benchmark suite,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, 2010.

[18] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” Micro,
IEEE, 2012.

[19] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO, 2012.

[20] C. F. Fajardo, Z. Fang, R. Iyer, G. F. Garcia, S. E. Lee, and L. Zhao,
“Buffer-integrated-cache: a cost-effective sram architecture for hand-
held and embedded platforms,” in DAC, 2011.

[21] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program depen-
dence graph and its use in optimization,” in Symposium on Program-
ming, 1984.

[22] B. A. Fields, R. Bodík, and M. D. Hill, “Slack: Maximizing perfor-
mance under technological constraints,” in ISCA, 2002.

[23] M. Fingeroff, High-Level Synthesis Blue Book, 2010.
[24] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: rethinking

and rebooting gprof for the multicore age,” in PLDI, 2011.
[25] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,

K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
2012.

[26] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking simd
shackles with an exposed flexible microarchitecture and the access
execute pdg,” in PACT, 2013.

[27] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing,” in MICRO, 2011.

[28] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ISCA, 2010.

[29] W. Hunt, B. A. Maher, D. Burger, and K. S. Mckinley, “Optimal huff-
man tree-height reduction for instruction-level parallelism,” Technical
Report TR-08-34, Department of Computer Sciences The University of
Texas at Austin, 2008.

[30] H. C. Hunter and W. mei W. Hwu, “Code coverage and input variability:
effects on architecture and compiler research,” in CASES, 2002.

[31] D. Jeon, S. Garcia, C. M. Louie, and M. B. Taylor, “Kismet: parallel
speedup estimates for serial programs,” in OOPSLA, 2011.

[32] M. Kim, H. Kim, and C.-K. Luk, “Sd3: A scalable approach to dynamic
data-dependence profiling,” in MICRO, 2010.

[33] M. Kumar, “Measuring parallelism in computation-intensive scien-
tific/engineering applications,” IEEE Trans. Computers, 1988.

[34] M. S. Lam and R. P. Wilson, “Limits of control flow on parallelism,”
in ISCA, 1992.

[35] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line accel-
erator for memcached,” IEEE Computer Architecture Letters, 2013.

[36] J. Leng, T. H. Hetherington, A. ElTantawy, S. Z. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “Gpuwattch: enabling energy optimiza-
tions in gpgpus,” in ISCA, 2013.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
2009.

[38] K. T. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: designing soc accelerators for mem-
cached,” in ISCA, 2013.

[39] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in DAC, 2013.

[40] H.-Y. Liu, M. Petracca, and L. P. Carloni, “Compositional system-level
design exploration with planning of high-level synthesis,” in DATE,
2012.

[41] S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas, “Pathexpander:
Architectural support for increasing the path coverage of dynamic bug
detection,” in MICRO, 2006.

[42] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized pro-
gram analysis tools with dynamic instrumentation,” PLDI, 2005.

[43] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: balancing efficiency &
flexibility in specialized computing,” in ISCA, 2013.

[44] L. Rauchwerger, P. K. Dubey, and R. Nair, “Measuring limits of paral-
lelism and characterizing its vulnerability to resource constraints,” in
MICRO, 1993.

[45] B. Reagen, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Quantifying ac-
celeration: Power/performance trade-offs of application kernels in
hardware,” in ISLPED, 2013.

[46] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., 2011.

[47] R. Sampson, M. Yang, S. Wei, C. Chakrabarti, and T. F. Wenisch,
“Sonic millip3de: A massively parallel 3d-stacked accelerator for 3d
ultrasound,” in HPCA, 2013.

[48] T. Sha, M. M. K. Martin, and A. Roth, “Nosq: Store-load communica-
tion without a store queue,” in MICRO, 2006.

[49] Y. S. Shao and D. Brooks, “Isa-independent workload characterization
and its implications for specialized architectures,” in ISPASS, 2013.

[50] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in ISCA, 2012.

[51] K. B. Theobald, G. R. Gao, and L. J. Hendren, “On the limits of
program parallelism and its smoothability,” in MICRO, 1992.

[52] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” ASPLOS, 2010.

[53] D. W. Wall, “Limits of instruction-level parallelism,” in ASPLOS, 1991.
[54] S. J. E. Wilton and N. P. Jouppi, “Cacti: An enhanced cache access and

cycle time model,” IEEE Journal of Solid-State Circuits, 1996.
[55] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating big

data with high-throughput, energy-efficient data partitioning,” in ISCA,
2013.

[56] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. Hoe, L. Pileggi,
and F. Franchetti, “A 3d-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in 3DIC, 2013.

Authorized licensed use limited to: Harvard Library. Downloaded on April 25,2022 at 14:51:15 UTC from IEEE Xplore. Restrictions apply.

