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......The past decade has witnessed

the reemergence of a connectionist

approach to solving several classes of

challenging artificial intelligence prob-

lems. This family of strategies is collec-

tively known as representation learning,

hierarchical learning, or, most popularly,

deep learning. The success of deep

learning, like many facets of cognitive

computing, is the result of a confluence

of progress in three separate areas,

rather than a single, monumental break-

through. These three areas include the

collection and curation of massive data-

sets, advances in machine learning algo-

rithms, and the ever-increasing power of

computational hardware. These three

phenomena form a virtuous cycle. Suc-

cess in one area facilitates growth in the

other two, along with increasing demand

for it. For instance, the landmark win of a

deep neural network at the ImageNet

Large Scale Visual Recognition Challenge

in 2012 was the result of a massive new

set of training data1 (two orders of mag-

nitude larger than its closest predeces-

sor), several clever novel modifications

to a many-layer convolutional neural net-

work,2 and use of high-performance

hardware (among the first to leverage

GPUs for deep learning).

That cognitive computing should be

characterized as much by data and hard-

ware as algorithms is not surprising: the

very definition involves learning by exam-

ple at scale. However, it does suggest

that carrying out research in this field is

perhaps unique, in that one cannot make

ample headway without considering all

three aspects. This multidimensional

constraint is felt keenly in the creation

and curation of representative workloads

for deep learning problems. Benchmarks

and proxy applications must strike a bal-

ance between simplicity and faithful

reproduction, accurately capturing all fun-

damental aspects of the programs they

represent while remaining easy to under-

stand, use, and transform. Doing this

across several axes is challenging, even

more so given the frenetic pace of inno-

vation and upheaval in the field. We

believe the right approach is first to

design workloads that capture the

unique aspects of deep learning models,

data, and implementations, and then to

embrace change and plan for continuous

evolution.

Design
Building good deep learning benchmarks

means getting three things right: choos-

ing the right models, respecting the

impact of data, and faithfully reproducing

unique implementation details. We
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present our case in the context of our

experience in designing Fathom, a set of

reference workloads for deep learning

(see Table 1).3

Models
The most visible decision for a workload

suite is the choice of which models to

include. In Fathom, we used three criteria

to select eight models from a wide array

of candidates: representativeness, diver-

sity, and impact. The first is clear: our

choices should reflect the best of what

the deep learning community has come

up with. Because there are many models

that could rightly claim this status, the

need to limit the size implies a need for

diversity; each model should bring some-

thing unique to the table. Finally,

“impact” reflects the degree to which a

particular technique has changed the

landscape of deep learning research. We

cannot predict the future of deep learning,

so we instead tried to choose methods

that have imparted fundamental lessons

to the work that came after—lessons that

will continue to be relevant even as sub-

sequent research builds on them.

Datasets
Data also plays a central role in machine

learning workloads, even for architects

and system designers. Although it is

true that some fundamental deep learn-

ing techniques (such as matrix math,

convolution, and backpropagation) are

somewhat agnostic to the values of

their inputs, the role of data is broader.

Many problem domains are heavily

affected by how their data is being

used. For instance, most supervised

learning problems have two different

operational modes: training, which

involves massive amounts of fixed data

and an emphasis on throughput, and

inference, which involves a stream of

unseen data and a lean toward latency.

The same model can exhibit different

computational characteristics depend-

ing on which environment it is used in.

Additionally, much of the research in

executing deep learning problems cen-

ters around exploiting features unique

to neural networks or a specific model

structure. Sparsity in weight values,

batchsize-convergence tradeoffs, and

the degree of downsampling in pooling

operations are just a few features that

depend heavily on the characteristics of

the inputs under consideration.

Implementation
Writing reference workloads involves a

balancing act between faithfully mim-

icking praxis while preserving ease of

use for researchers. One example of

this is the widespread adoption of high-

level programming frameworks such as

TensorFlow or Torch. These frame-

works provide two main benefits: they

abstract the underlying hardware inter-

face away from the programmer, and

they provide tested libraries of kernels

that act as a productivity multiplier.

They have changed the development

landscape, largely for the better, and it

is no longer possible to create a realistic

set of deep learning workloads without

taking them into account. All eight

Fathom models are written on top of

TensorFlow. On the other hand, no

such consensus has been reached on

the layout of learning models, the stag-

ing and preprocessing of data, or the

mechanisms that drive high-level con-

trol flow. It is common to see two

implementations of the same model

that are almost unrecognizable.

Because these choices are more a mat-

ter of taste than any fundamental prop-

erty of deep learning models, Fathom

imposed a standard structure and set of

interfaces over all its workloads. This

greatly simplified cross-model instru-

mentation, data collection, and experi-

mentation for its users.

Table 1. The Fathom workloads

Model Dataset Style Purpose and legacy

Seq2Seq WMT-15 Supervised, recurrent Direct language-to-language sentence translation. State-of-the-art

accuracy with a simple, language-agnostic architecture.

MemNet bAbI Supervised, memory network Facebook’s memory-oriented neural system. One of two novel

architectures that explore a topology beyond lattices of neurons.

Speech TIMIT Supervised, recurrent,

fully connected

Baidu’s speech-recognition engine. Proved purely deep-learned

networks can beat hand-tuned systems.

Autoenc MNIST Unsupervised, fully connected Variational autoencoder. An efficient, generative model for feature learning.

Residual ImageNet Supervised, convolutional Image classifier from MSR Asia. Dramatically increased the depth of

convolutional networks. ILSVRC 2015 winner.

VGG ImageNet Supervised, convolutional,

fully connected

Image classifier demonstrating the power of small convolutional filters.

ILSVRC 2014 winner.

AlexNet ImageNet Supervised, convolutional,

fully connected

Image classifier. Watershed for deep learning by beating hand-tuned

image systems at ILSVRC 2012.

DeepQ Atari ALE Reinforcement, convolutional,

fully connected

Atari-playing neural network from DeepMind. Super-human performance

on many Atari2600 games, without any preconceptions.
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Evolution
Deep learning is a field in flux, and a work-

load suite designed for such an environ-

ment must have a plan for adapting.

Graceful evolution is an extension of good

design: the core principle is to understand

which aspects of a workload are intrinsic

to the field and which are a product of the

current state of the art. For instance,

although it’s likely that the set of models

included in Fathom will change, their

selection criteria will not. One convenient

way to understand this idea is to look

backwards at the developments leading

to the present—that is, to understand

what changes Fathom would have had to

weather had it been released earlier.

Models
All but one of the current Fathom work-

loads were published since 2014, but

most have predecessors that would have

been replaced. For instance, DeepSpeech

was a breakthrough in pure deep learning

speech recognition, but many prior state-

of-the-art systems used a combination of

hidden Markov models and neural net-

works. The more interesting change

would have been the introduction of read-

write networks. Memory networks and

neural Turing machines both arrived in

2014, and while no work is built in a vac-

uum, it is unlikely Fathom would have had

something similar. The same is probably

true for reinforcement learning: the con-

cept has a long history, but it needed a

champion, DeepMind, to make it a core

theme in deep learning. Fathom would

probably have grown in size over the past

several years, in addition to needing to

replace its speech model. This is a trend

that is almost certain to continue. Even

now, it seems likely that additional advan-

ces in speech and language processing

will require both of Fathom’s recurrent

models to evolve, and new architectures

like binary-valued networks are on the

horizon.

Datasets
Surprisingly, most of Fathom’s current

datasets are relatively stable. ImageNet

has not seen radical changes since its

introduction, and MNIST and TIMIT have

long histories. The largest change would

have been the introduction of the Arcade

Learning Environment—the Atari emula-

tor used by Fathom’s DeepQ model.

Although ALE’s inputs are not substan-

tially different from older image datasets,

its use and integration are. Training and

inference with deep-Q learning is a sub-

stantially different beast because it

requires two-way, online communica-

tion. The underlying trend here is refresh-

ingly optimistic: datasets change

because deep learning is improving.

While ImageNet will probably remain in

Fathom, it seems likely that a new

source of visual data will augment it,

because recent models have surpassed

human performance. Additionally, it

seems likely that new datasets using

video, graphs, or mixed-mode inputs

could merit inclusion.

Implementation
Superficially, an older Fathom would

appear substantially different, because

TensorFlow was not made public until

late 2015. However, the use of high-level

frameworks has been a clear trend for

several years, so it is likely that Theano,

Caffe, or Torch would have been used

instead. All four frameworks share simi-

larity in their designs and interfaces. The

largest difference would have been the

effort required to implement some of the

models. Although today’s frameworks

are all converging on support for most of

the techniques Fathom uses, that was

not true three years ago. Many of the

primitives were implemented in only one

library, and most of the analysis tools

constructed to characterize the Fathom

workloads would have been substantially

more difficult. This is largely a result of

maturity. Today, deep learning frame-

works have larger user bases and more

developers, and most common opera-

tions are well-supported in all platforms.

Given this convergent evolution, it is

unlikely that Fathom will need to change

its implementation framework in the

future. On the other hand, Fathom is fac-

ing a clear need to adapt to another

trend: fixed-precision and packed arith-

metic. The use of non-floating-point

math and limited precision has been

known for decades, but most of the

work in deep learning has been focused

on improving accuracy, discovering new

models, and applying them to new prob-

lems. As deep learning applications are

deployed in mainstream scenarios, how-

ever, efficiency and speed have become

a central concern. Many frameworks

have introduced some form of packed

arithmetic, supported by vector instruc-

tions on CPUs and more recently by dou-

ble-speed, half-width operations on

GPUs. This trend is only increasing in

importance, and Fathom will need to

adopt some form of it to keep up.

D eep learning is a protean field,

and workloads for it must be liv-

ing projects. This is a challenge for

maintainers as well as researchers, but

it also reflects the success of the virtu-

ous cycle that drives it. Evolution

implies that all three facets—models,

data, and hardware—are still moving

forward in lockstep. Moreover, our

experience with Fathom suggests that

there are consistent principles under-

pinning the process that can guide the

requisite adaptation. We look forward

to the bright future of deep learning,

and we believe that accurate, practical,

and fluid workloads will continue to play

an important role in its progress. MICRO
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