

A Scalable Bayesian Inference Accelerator for Unsupervised Learning

Glenn Ko (Harvard University / Stochastic)

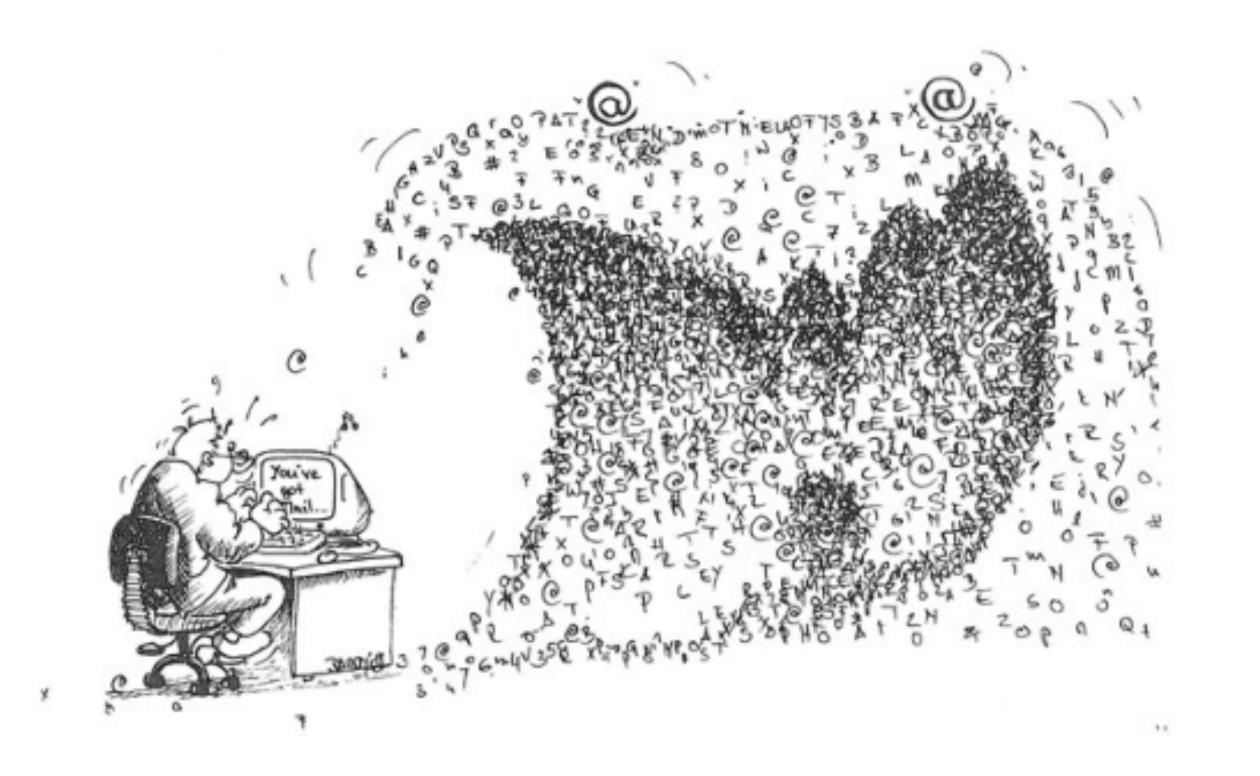
Yuji Chai¹, Marco Donato^{1,2}, Paul N. Whatmough^{1,3}, Thierry Tambe¹, Rob A. Rutenbar⁴, Gu-Yeon Wei¹ and David Brooks¹

Harvard University¹, Tufts University², Arm Research³, University of Pittsburgh⁴

The exponential data growth problem

Humans are generating data at an exponentially increasing rate.

Machine learning allows us to extract useful information from data without much human intervention.



Did we solve the problem?

Up to

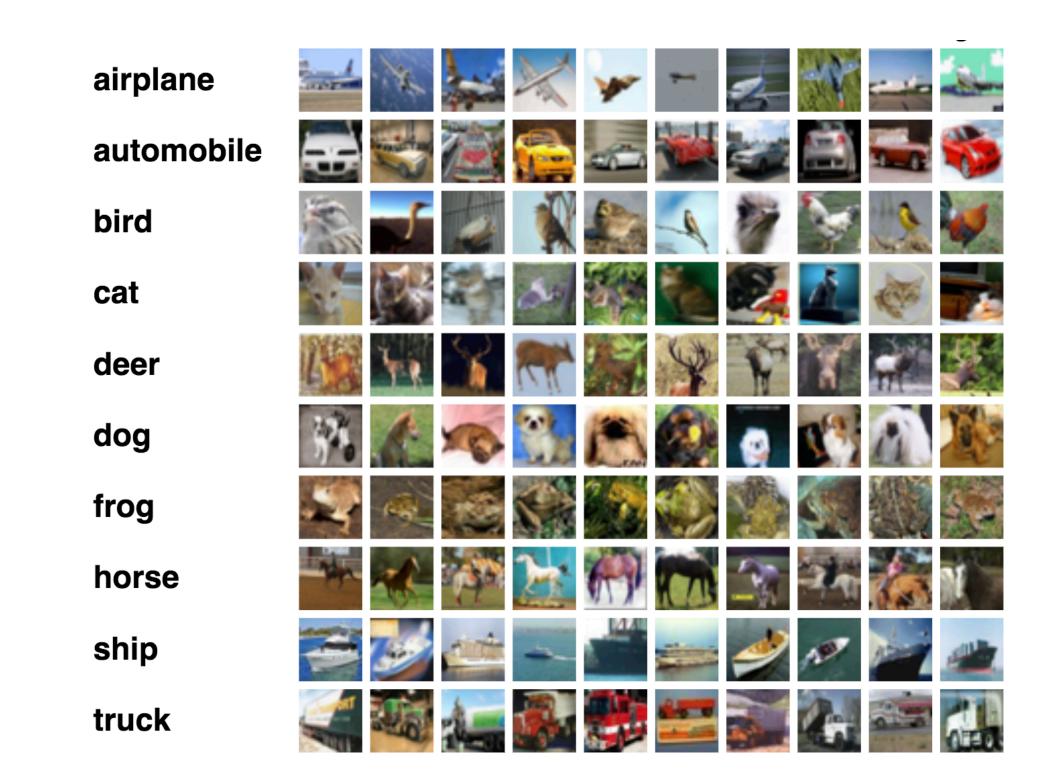
80% of time

of a data scientist is spent on sourcing and cleaning data

Deep learning requires

large labeled

datasets (via data annotation services)



"The future of AI will be about less data, not more"

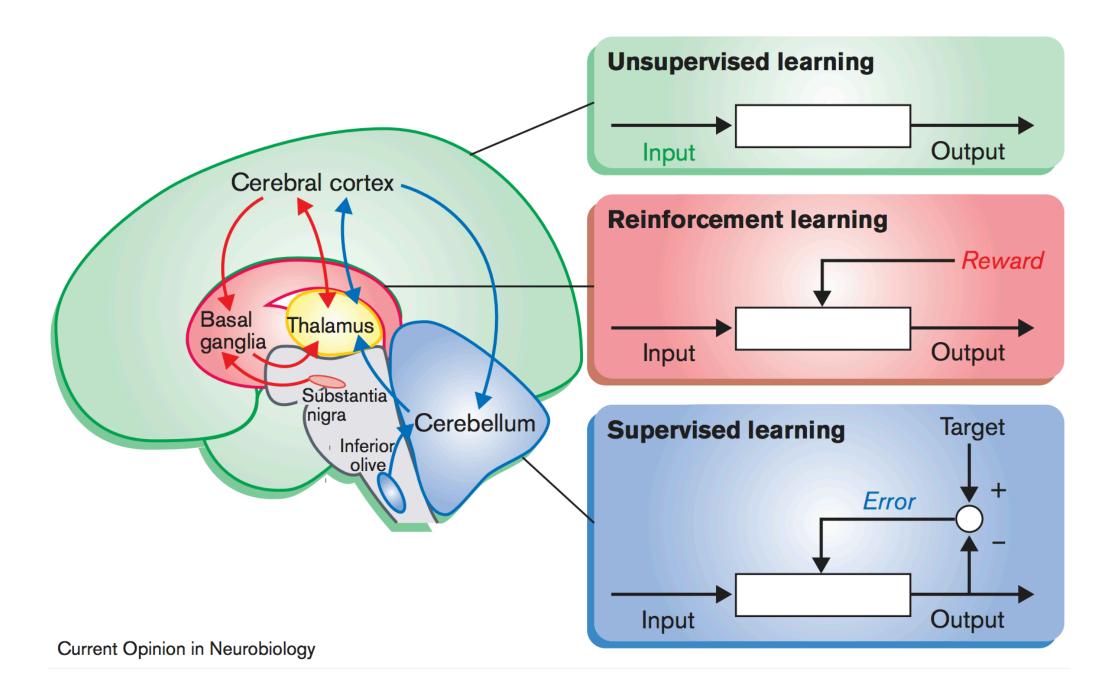
- Jan 19' Harvard Business Review

Ref: CIFAR-10

Humans need a lot less data than machines

to generalize about and draw conclusions.

Babies can learn by crawling around and playing with toys or simply observing the behavior of adults.



Probabilistic Machine Learning

Or also called Bayesian learning

Probability is used to represent uncertainty about the relationship being learned. Our beliefs about the true relationship are expressed in a probability distribution.

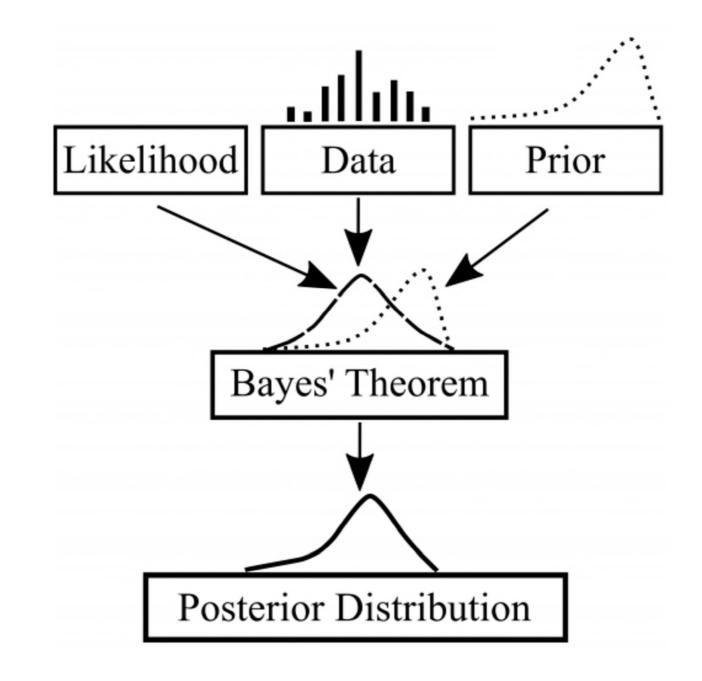
For learning and prediction,

Bayesian Inference:

How one should update one's beliefs upon observing data.

Bayes' theorem:

$$P(Hypothesis|Data) = \frac{P(Data|Hypothesis)P(Hypothesis)}{P(Data)}$$



Known to be More Powerful for

1. Online learning from small chunks of scarcely or unlabeled data

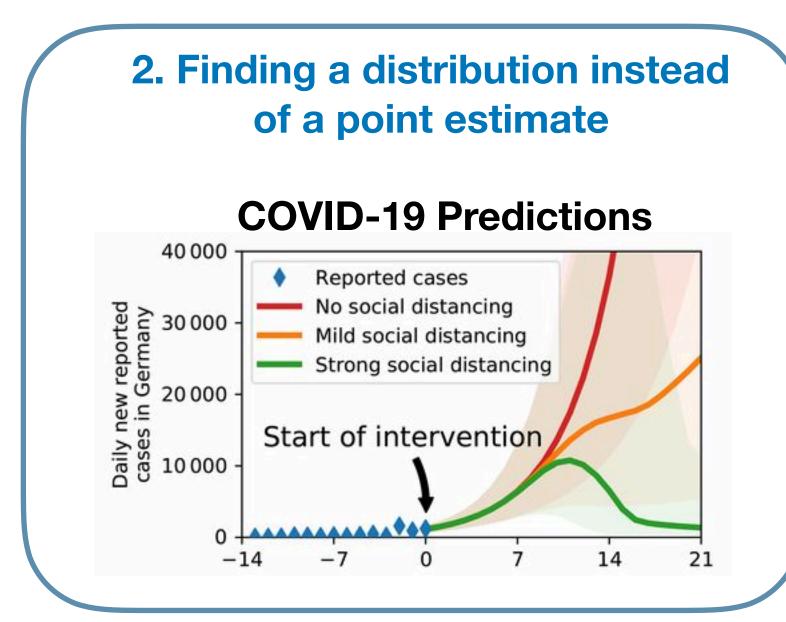
COVID-19 Predictions

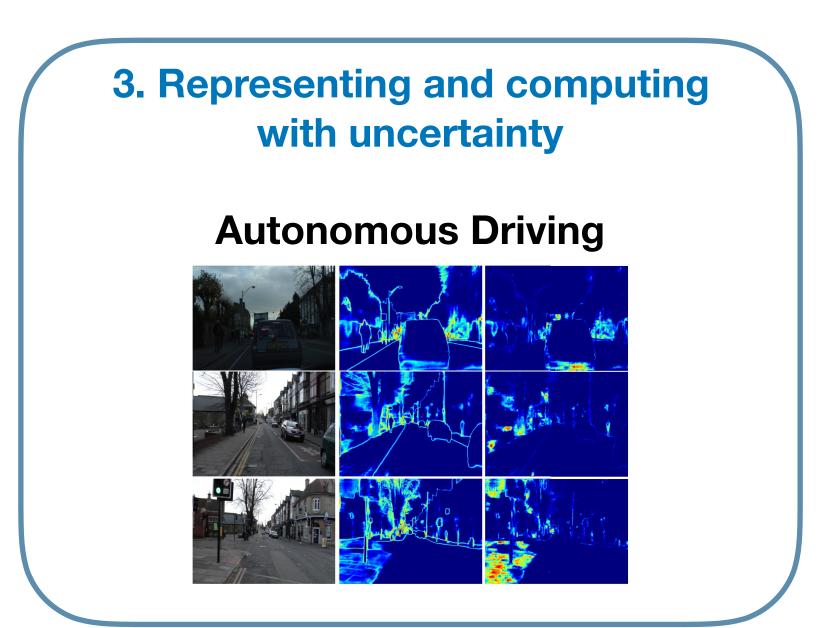
Output

Data
Fit
Fit
Forecast

Output

Nar 8 Mar 22 Apr 5 Apr 19 May 3





Applications

- Biomedical
- Robotics
- Autonomous driving
- Finance

Problem

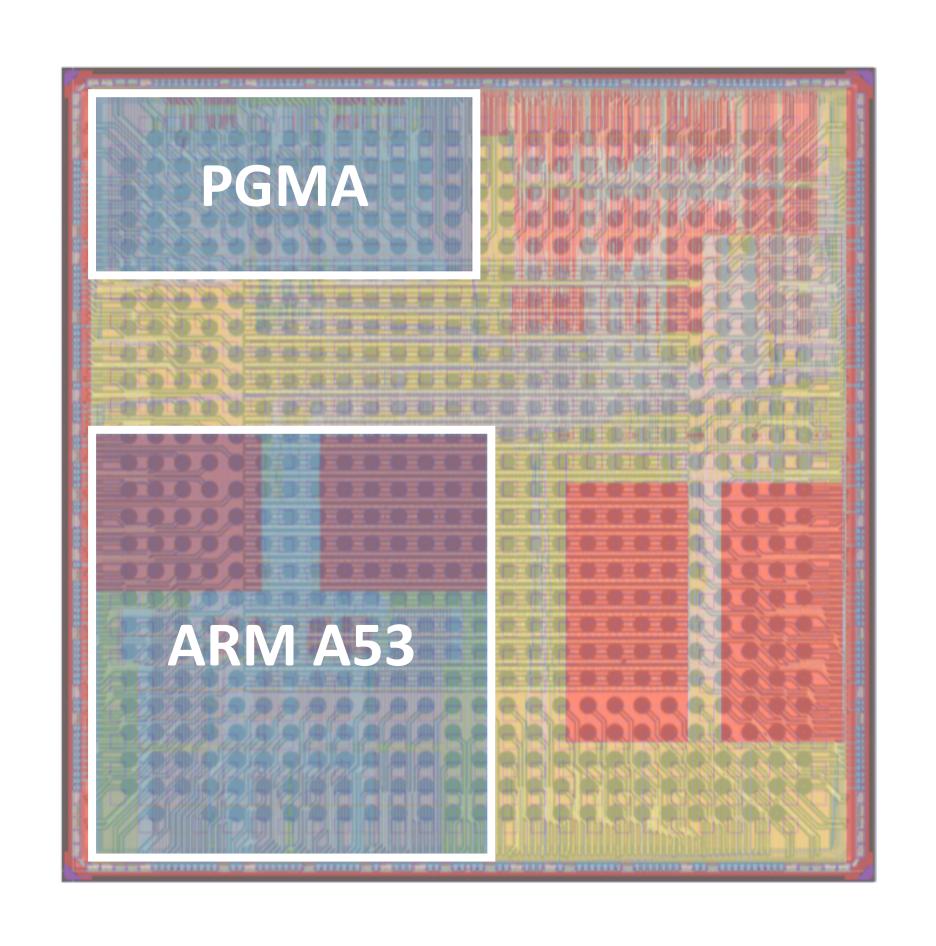
CPUs and GPUs are inefficient for Bayesian inference

Ref: Dehning et al. Science 2020, Kendell et al. NeurlPS 2017

PGMA: Probabilistic Graphical Models Accelerator

- First silicon accelerator for Bayesian inference
- Algorithm-hardware co-design for parallel MCMC inference
- To demonstrates efficient mobile implementation of Bayesian inference using unsupervised perceptual tasks
 - Stereo matching
 - Image restoration
 - Image segmentation
 - Sound source separation

SM5: A 16nm SoC for ML-Powered IoT Devices



- •TSMC 16nm FFC
- •25mm² (5mm x 5mm) SoC
- •PGMA die area: 2.3mm x 1.3mm
- Designed using CHIPKIT
- •Short design cycle: RTL to tape-out in 3 months by 5 people (2 postdocs + 3 PhDs)

Harvard ML Research Platform + CHIPKIT

Arm M-class

2.4mm

DNN ENGINE

SM₂

256KB

W-MEM

256KB

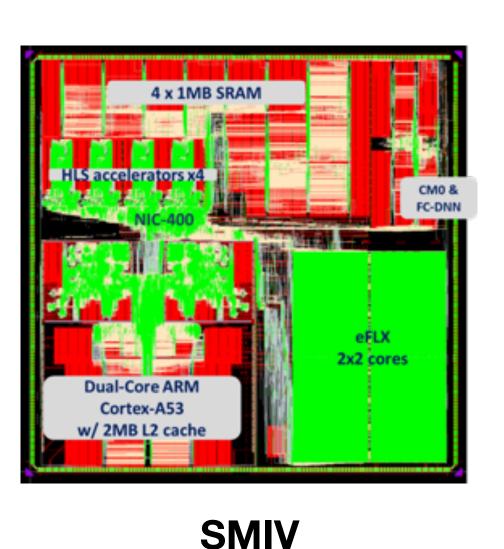
W-MEM

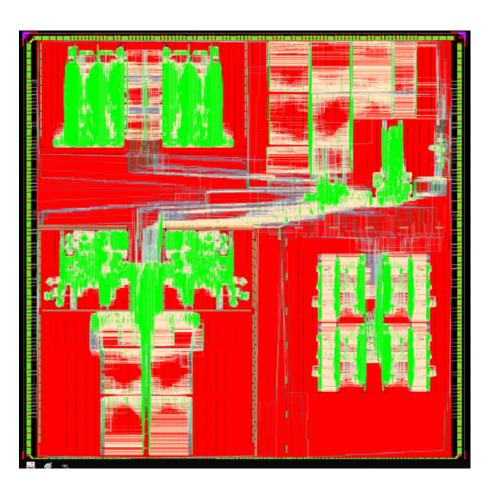
256KB

W-MEM

Weight SRAM Weight SRAM

Arm A-class



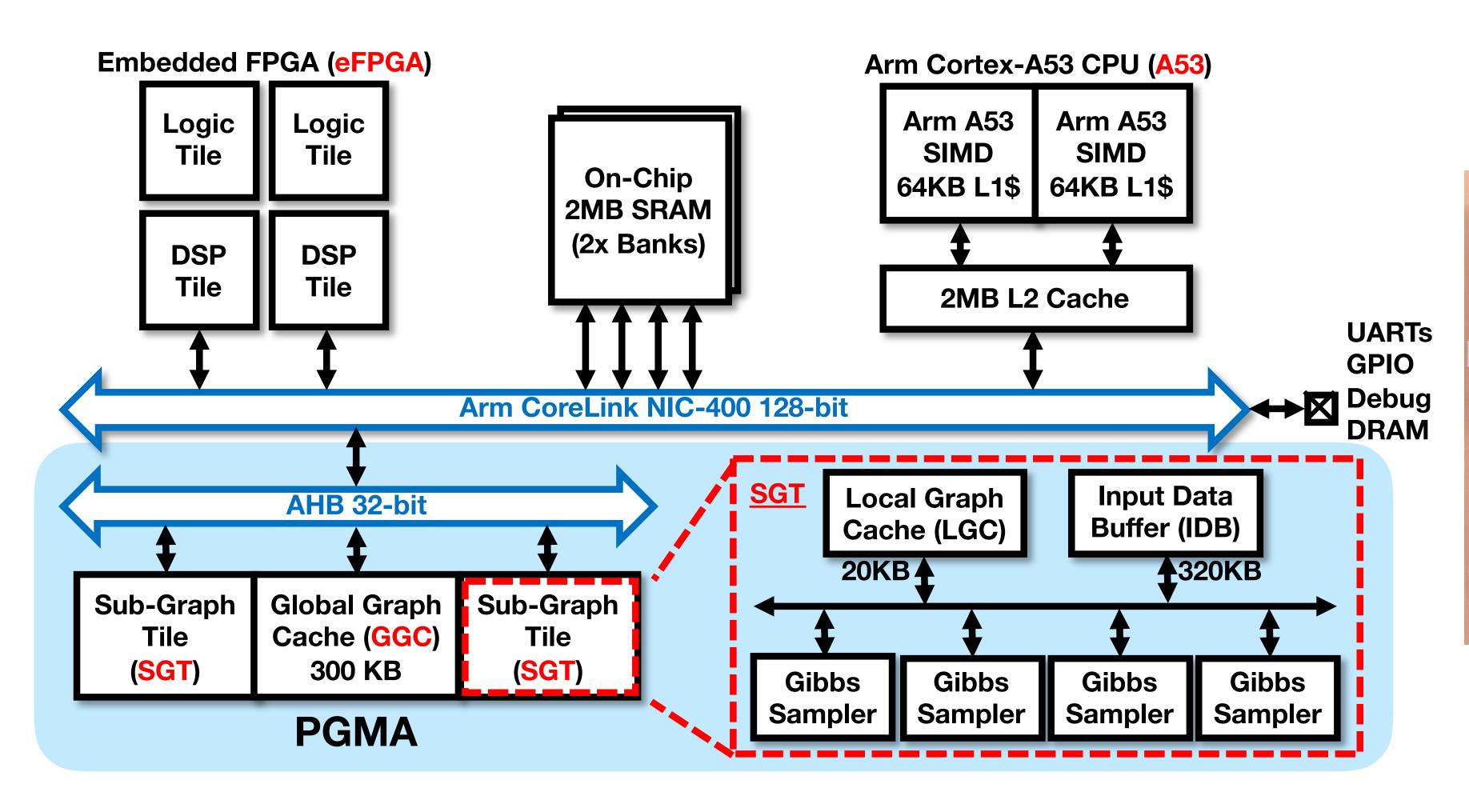


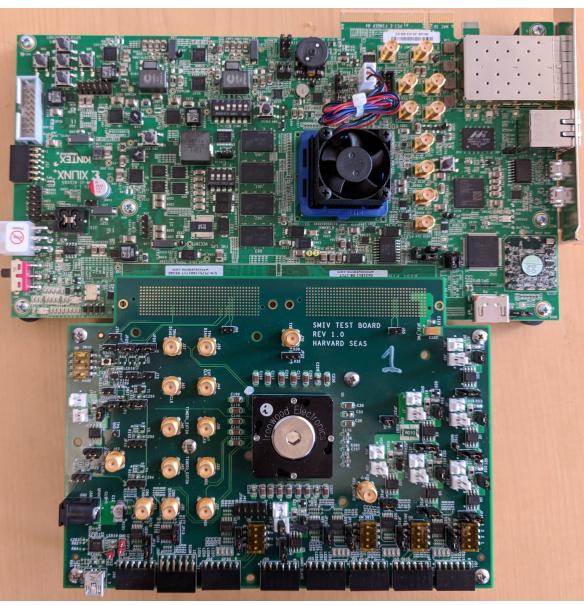
SM5

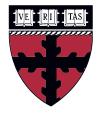
- SoC platform for architecture and systems research
- CHIPKIT: Agile research test chip design methodology

Ref: Whatmough et al., VLSI, 2019. Whatmough et al., HotChips, 2018. Whatmough et al. IEEE Micro, 2020.

SM5 SoC Architecture







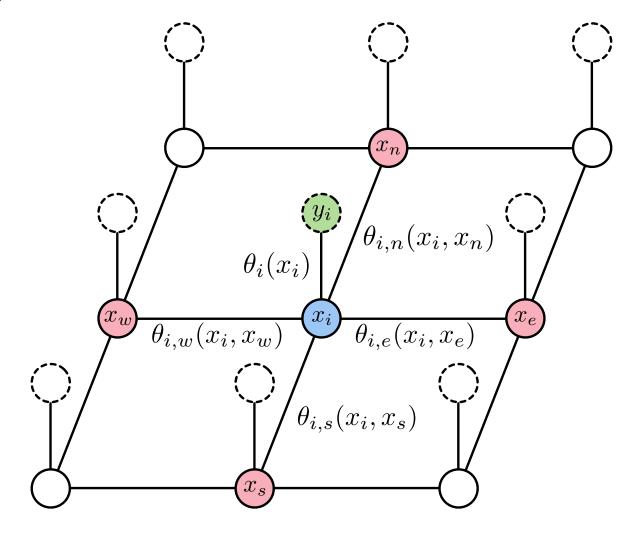
Ref: Ko et al., VLSI 2020

Models, Inference and Applications

Model

Markov Random Field (MRF) - A generalization over Ising model

Various other probabilistic models (HMM, regression, etc.)

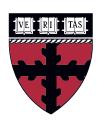


Inference

Gibbs sampling - A Markov Chain Monte Carlo (MCMC) algorithm derived from statistical physics

Application

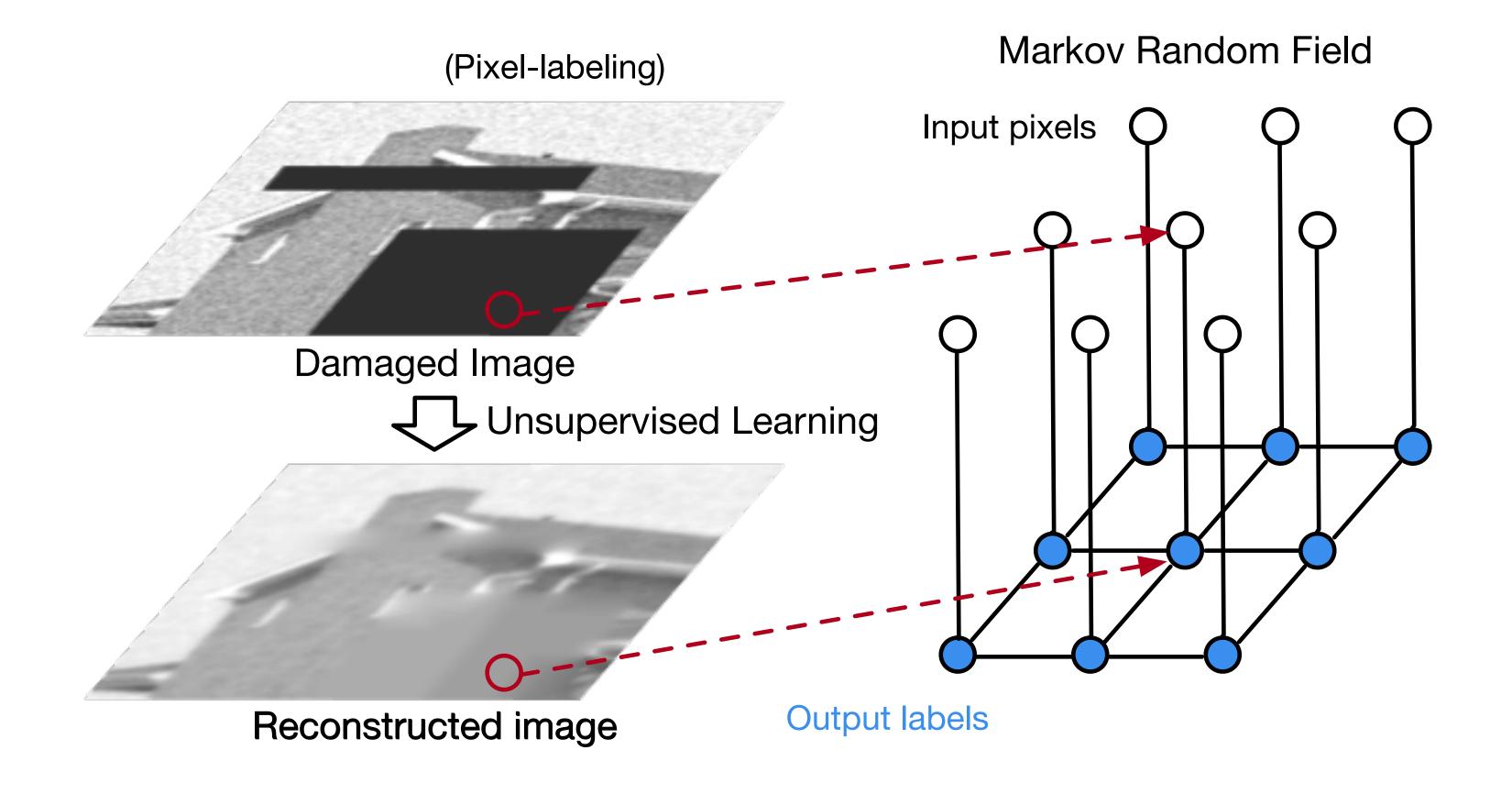
computer vision, audio processing, combinatorial optimization, computational biology, recommender system, topic modeling, etc.



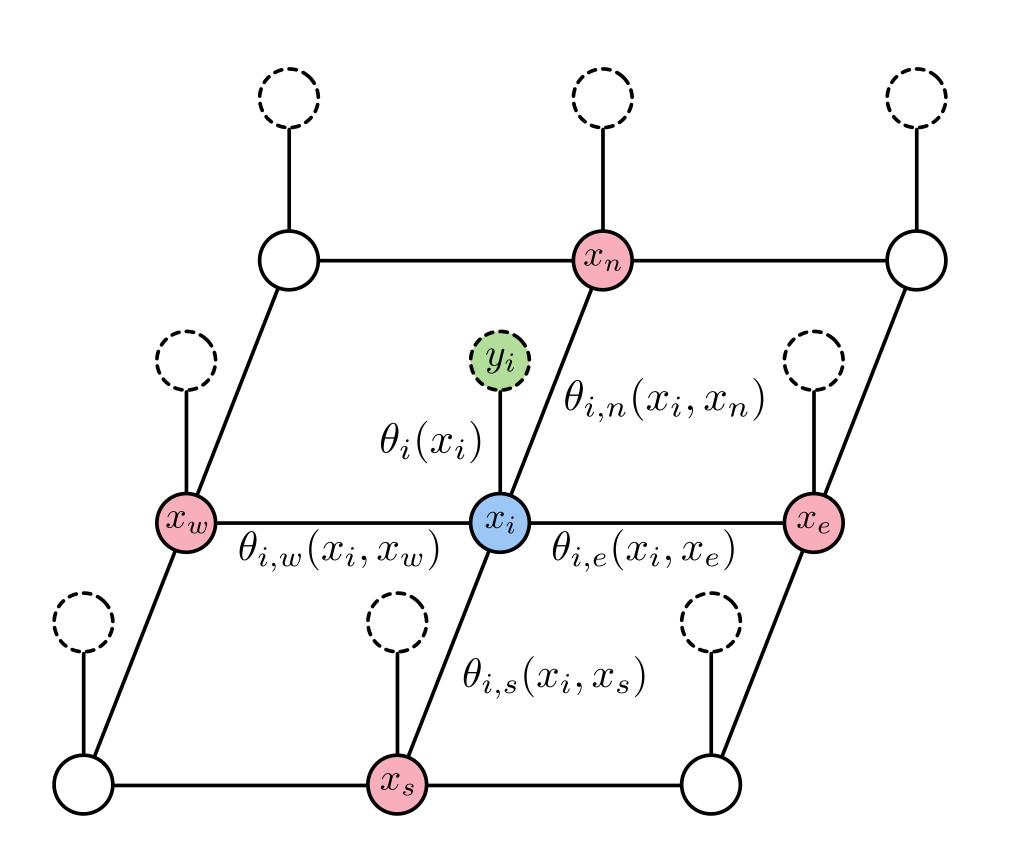
Example: Image restoration



Mapping to Markov Random Field (MRF)



Gibbs sampling on MRF



- Node being sampled
- Observed node
- Neighbor Node

Sequential Gibbs Sampling

while (< max Gibbs sampling iterations) for each node in an image sample()

Why is it hard to accelerate?

Gibbs sampling on MRF

6: end for

7: return x

```
1: Initialize x^0

2: for t = 0 to T do

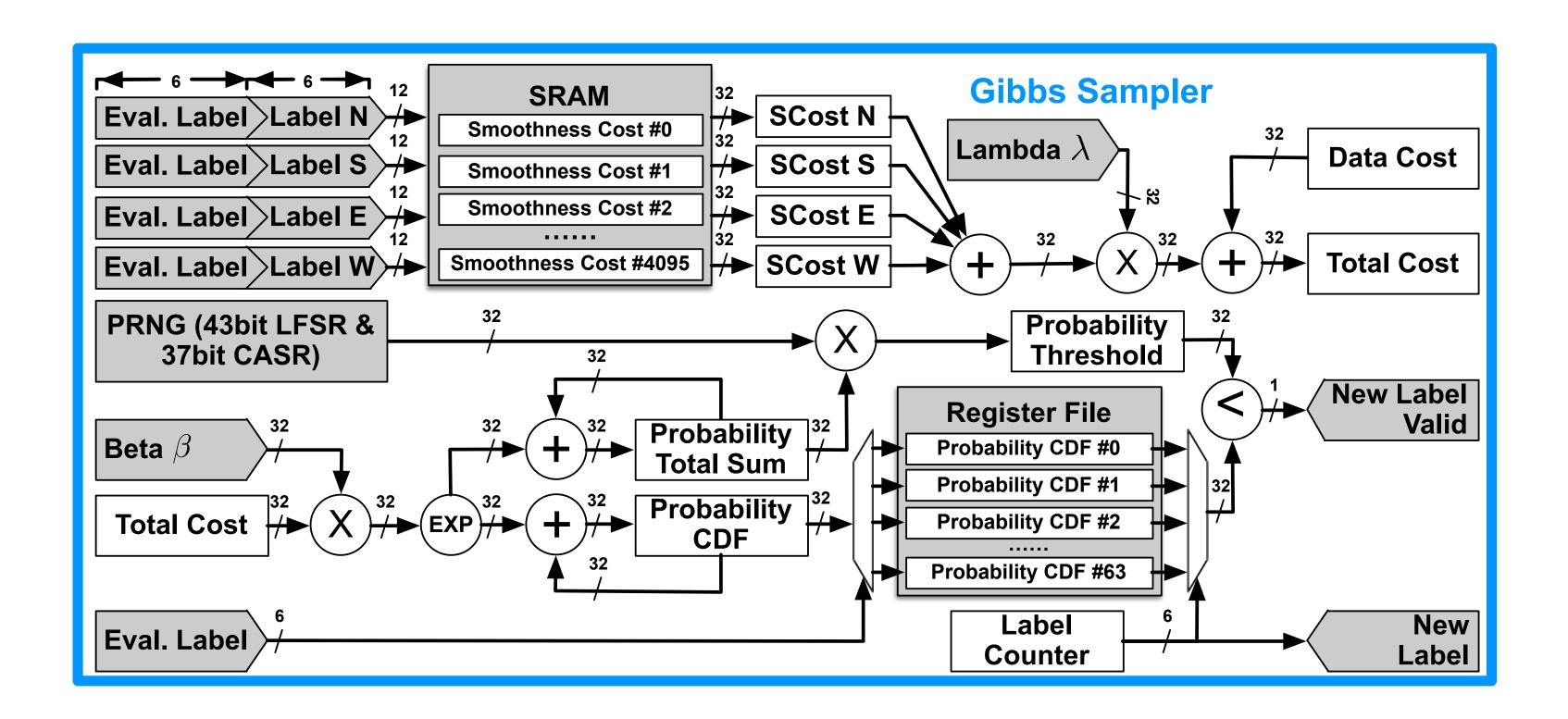
3: for i = 0 to N do

4: x_i^{(t+1)} \sim P(x_i|x_{north}^{(t)}, x_{south}^{(t)}, x_{west}^{(t)}, x_{east}^{(t)})

5: end for
```

Sampling depends on the previous state and the dependency on previous loop iteration makes parallel programming hard

Gibbs Sampler (GS)



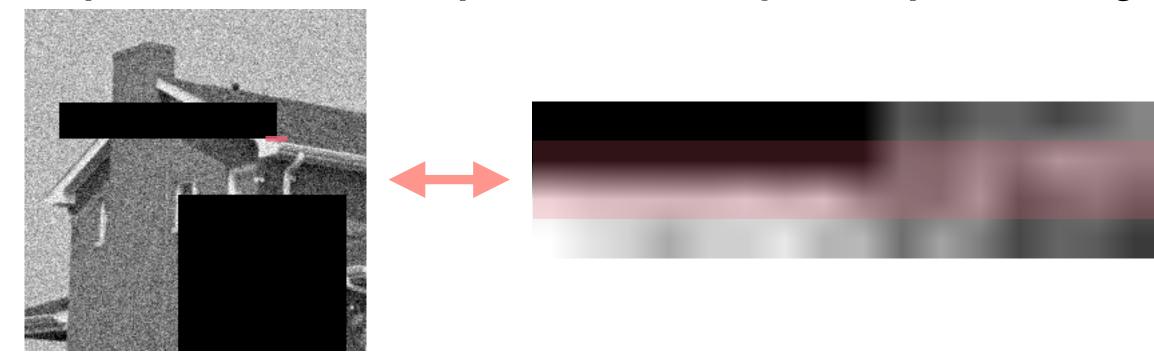
- Supports up to 64 states (labels) per node
- 32b variable fixed point arithmetic
- Tightly coupled PRNG
- Iterative architecture for minimal footprint

Two-levels of parallelism

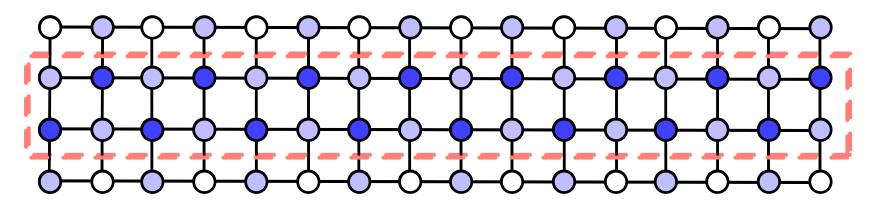
Two-level Parallel Gibbs Sampling

while (< max Gibbs sampling iterations)
 for each tile in an image
 while (< max tile sampling iterations)
 for each node in a tile
 sample()</pre>

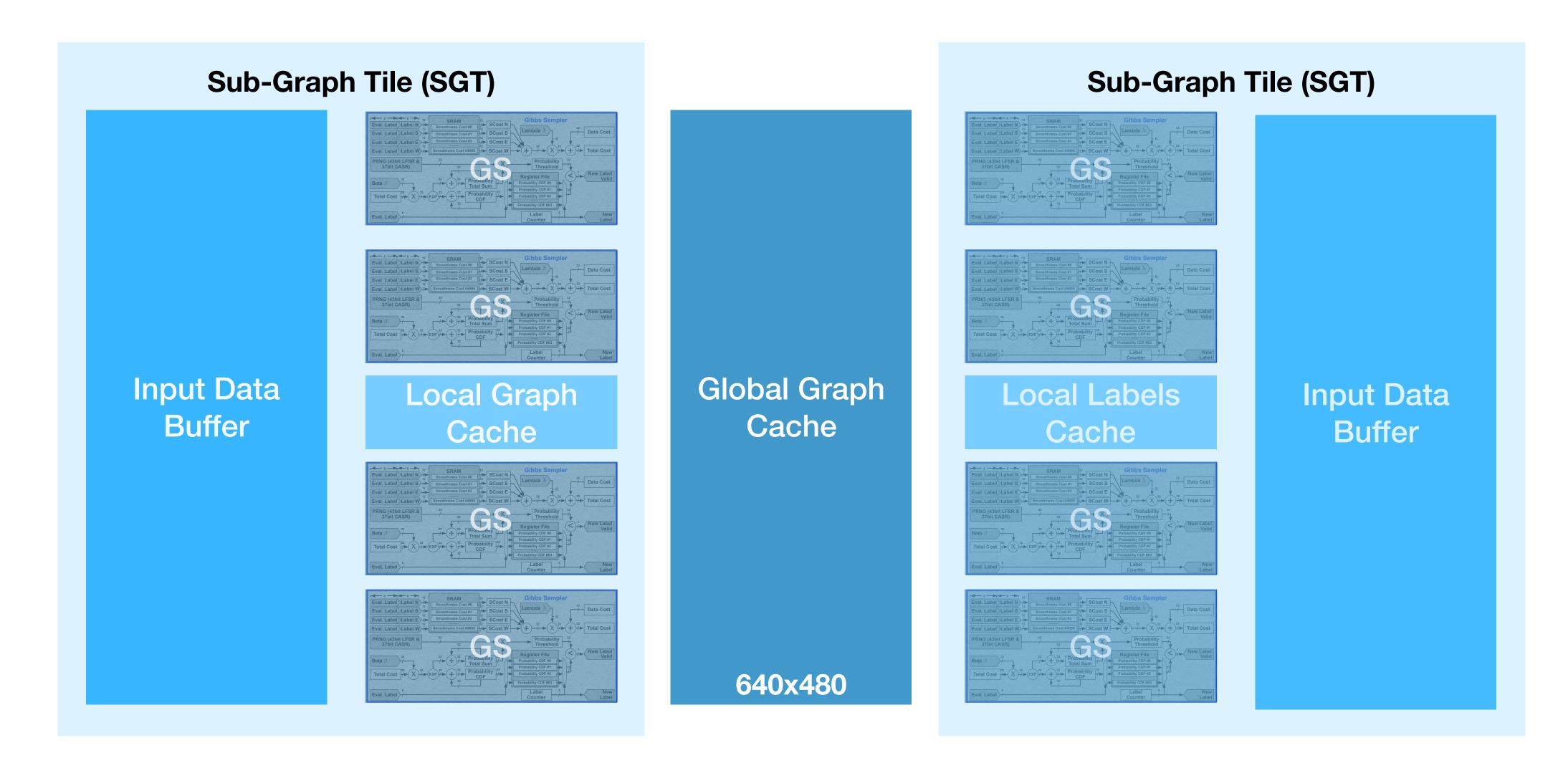
Asynchronous Gibbs sampling: Sample different tiles in parallel as if they are separate images



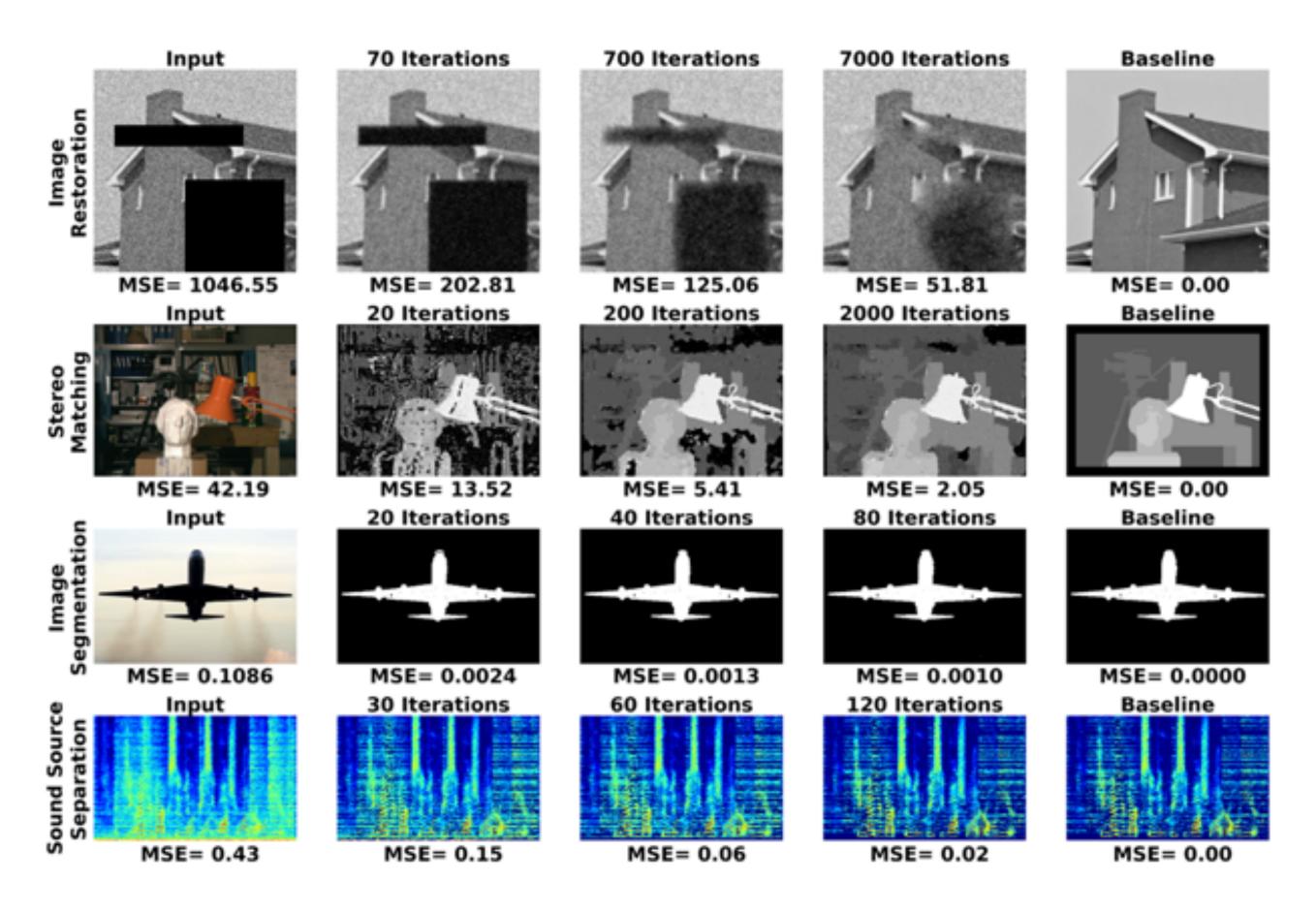
Chromatic Gibbs sampling: Sample conditionally independent nodes concurrently



PGMA: Probabilistic Graphical Models Accelerator



Unsupervised perceptual tasks



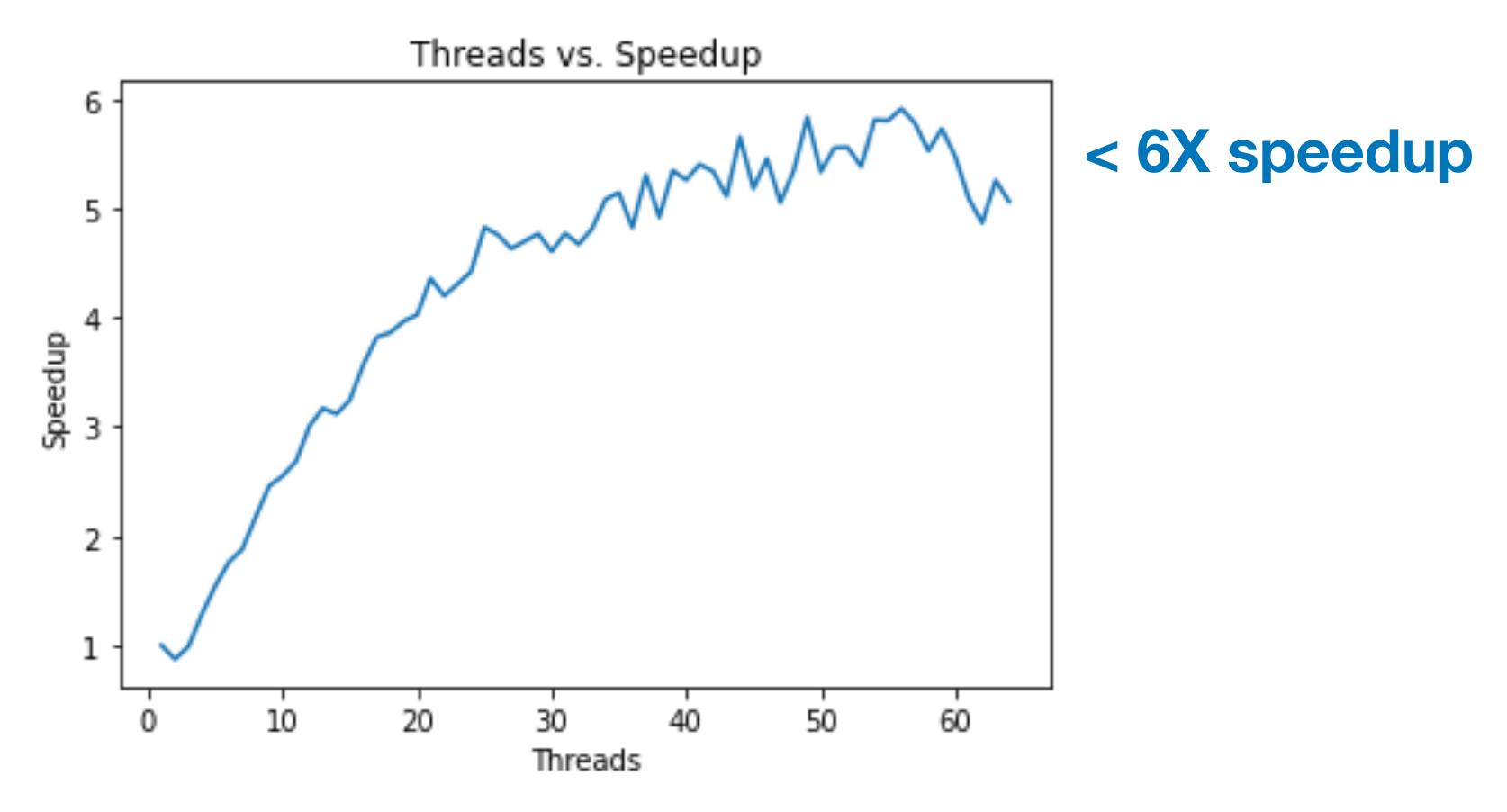
Four example applications:

- Image restoration
- Stereo matching
- Image segmentation
- Sound source separation

Features:

- No labeled dataset
- Completely unsupervised
- Both training and inference on-the-fly

Multi-threaded Server-Class CPU

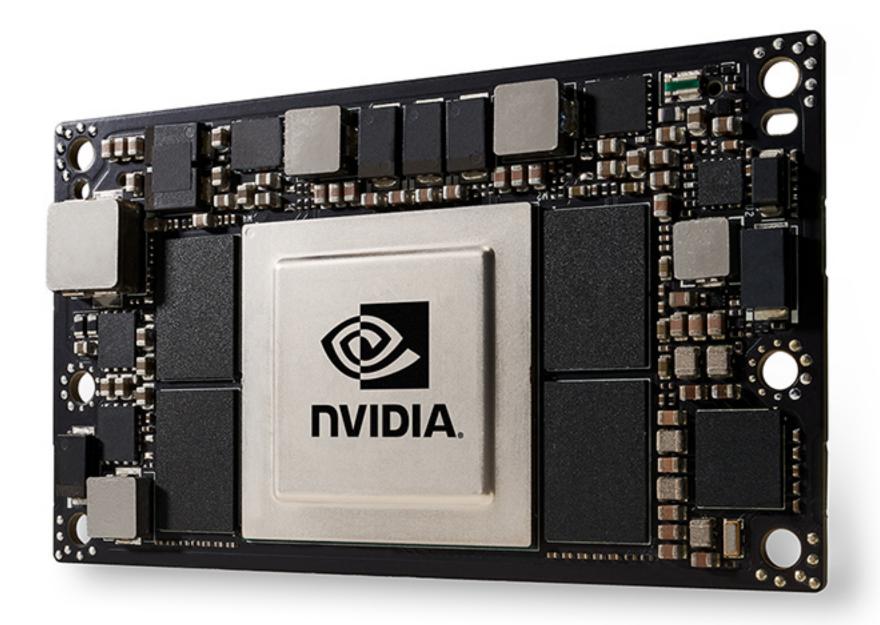


Machine: Intel(R) Xeon(R) CPU E5-2697A v4

Parallelism: Chromatic Gibbs sampling Application: Stereo matching - 16 labels

Comparison with off-the-self embedded platforms

Nvidia Jetson TX2



Xilinx Zynq ZCU102

48x throughput improvement per Watt

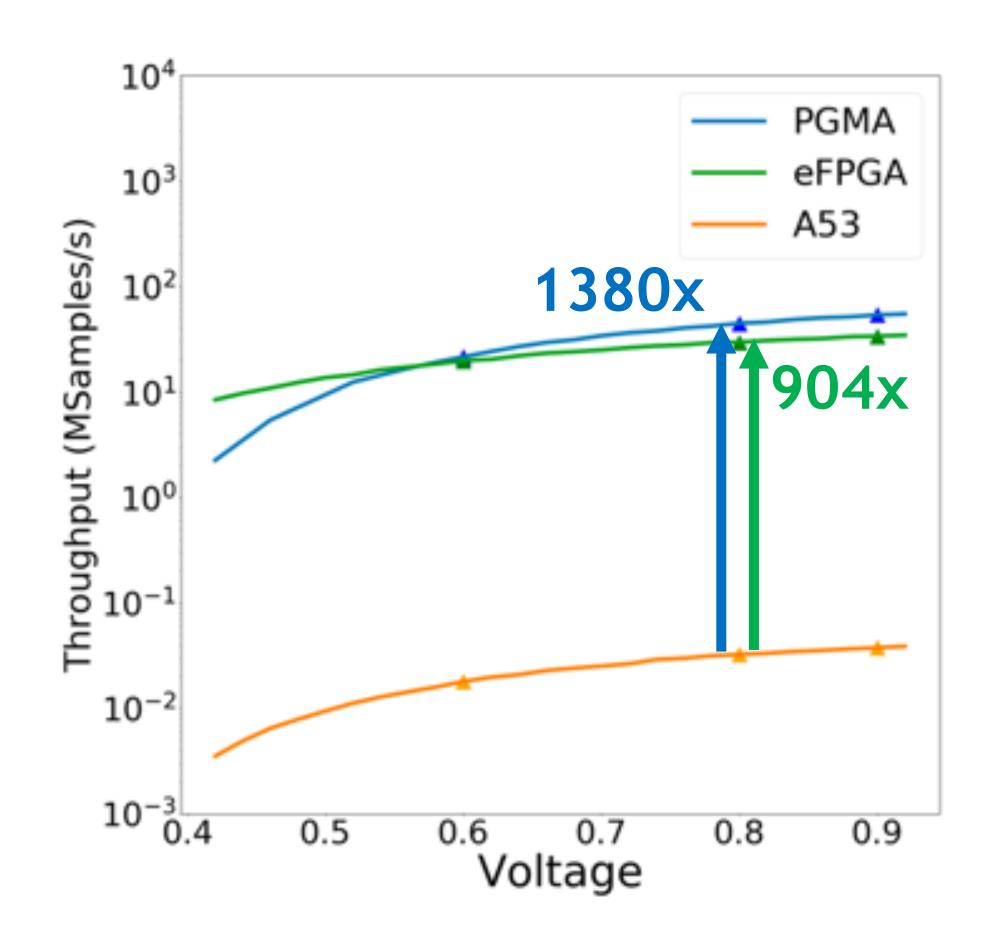
247x throughput improvement per Watt

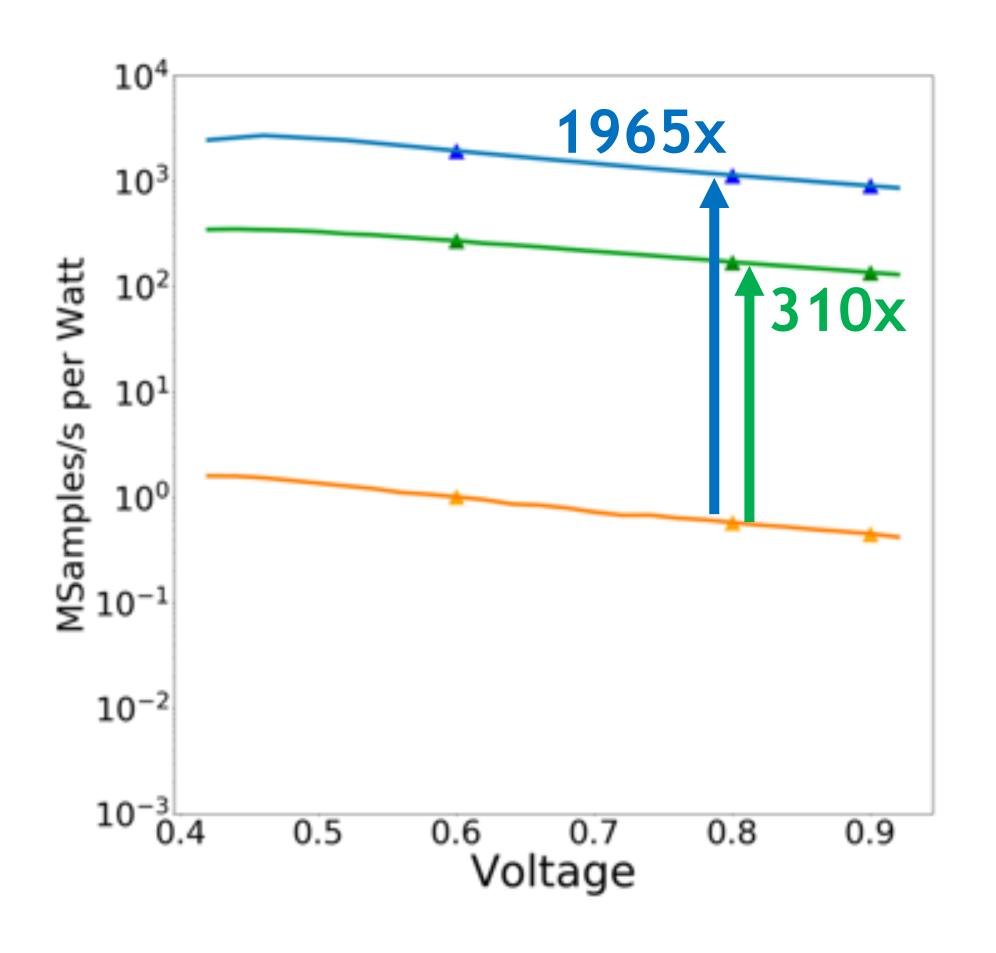
(2108x vs Arm A57, single-thread)

Parallelism: Chromatic Gibbs sampling

Ref: Ko et al., FPL, 2020. Ko et al. VLSI, 2020

SoC Results: vs. A53 and eFPGA



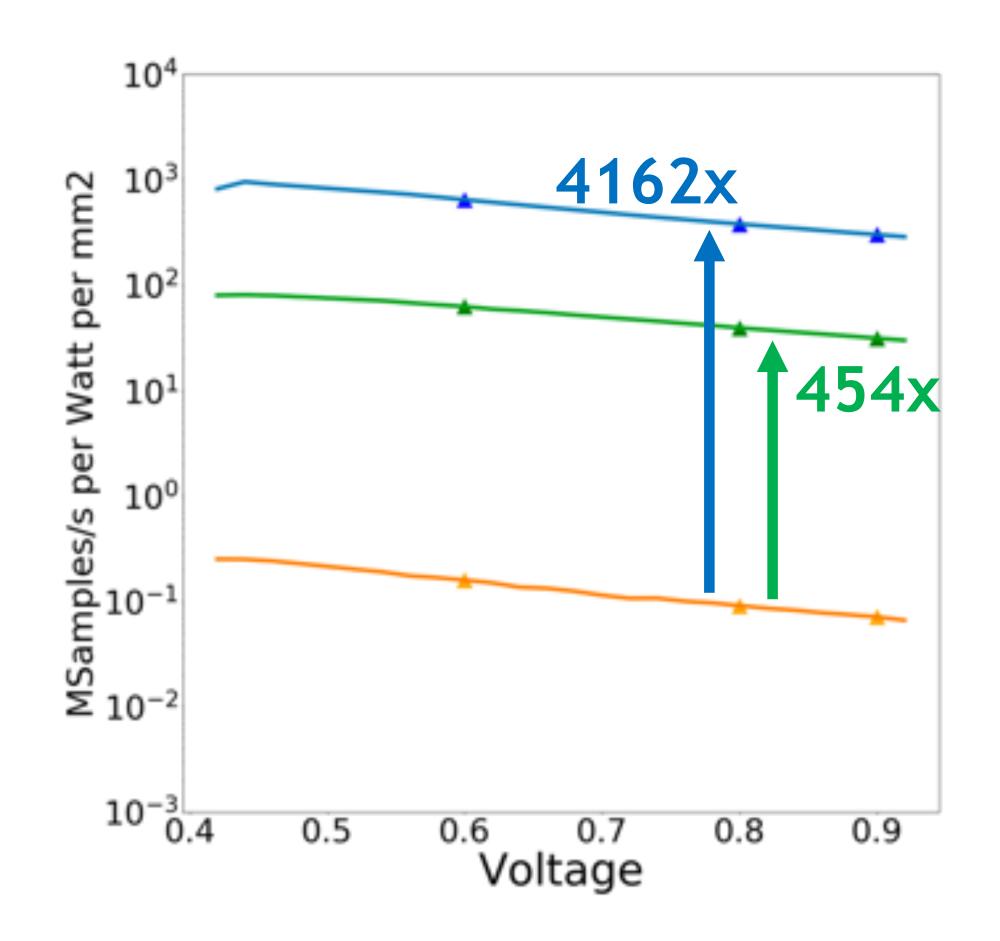


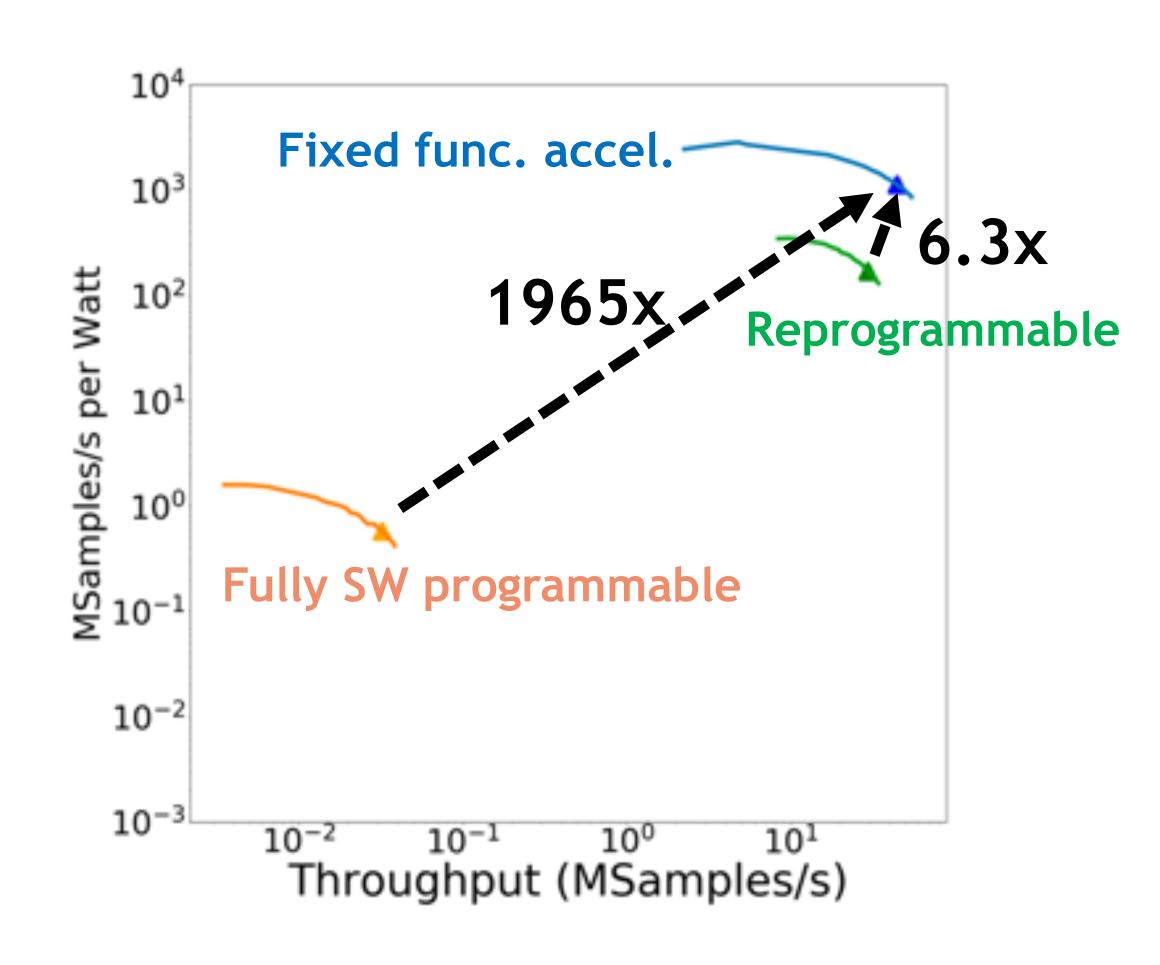
Achieves 1380x throughput improvements over Arm A53

Achieves 1965x throughput per Watt improvements over Arm A53

Ref: Ko et al., VLSI 2020

SoC Results: vs. A53 and eFPGA





Achieves 4162x throughput per Watt per mm2 over Arm A53

PGMA achieves 1965x throughput per Watt improvements over Arm A53

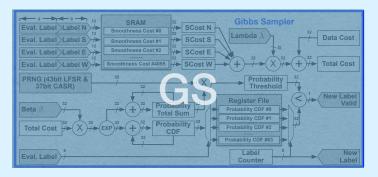
Ref: Ko et al., VLSI 2020

Scaling within SGT

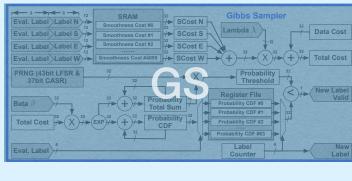
Sub-Graph Tile (SGT)

Input Data
Buffer



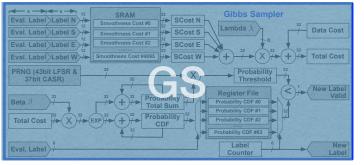


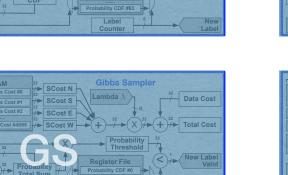
Local Graph Cache

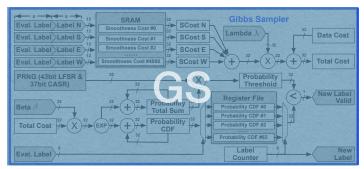


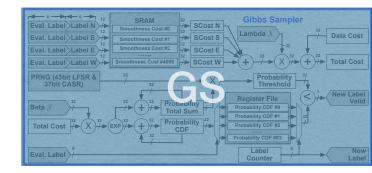


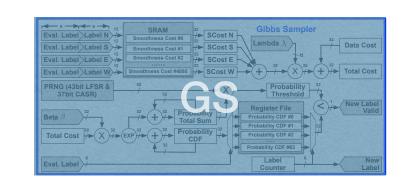
Can add GS's for linear increase in throughput

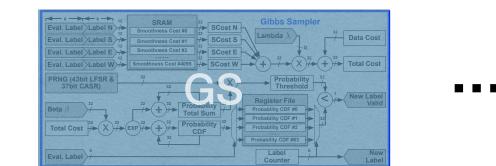


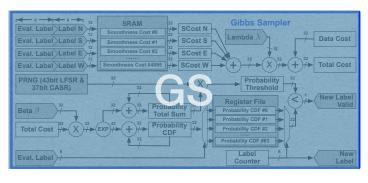


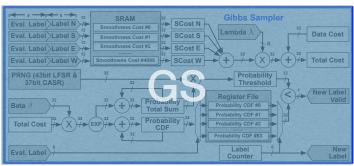


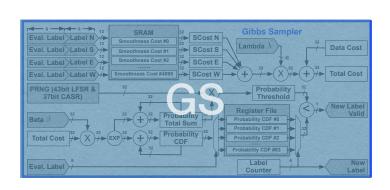


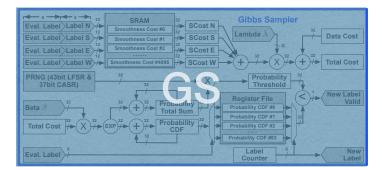


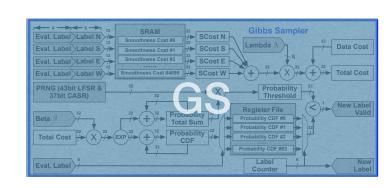


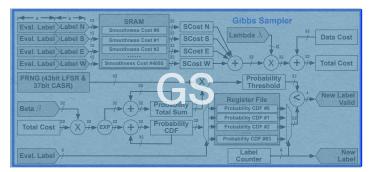




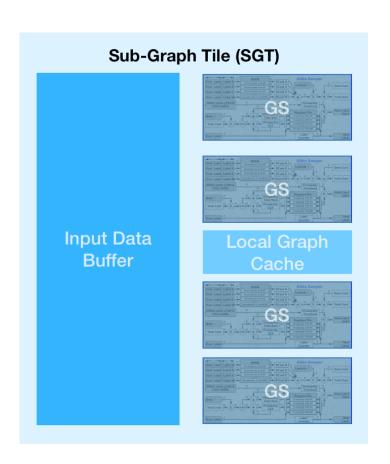








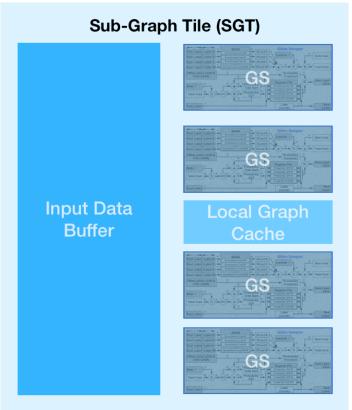
Scaling with more SGT

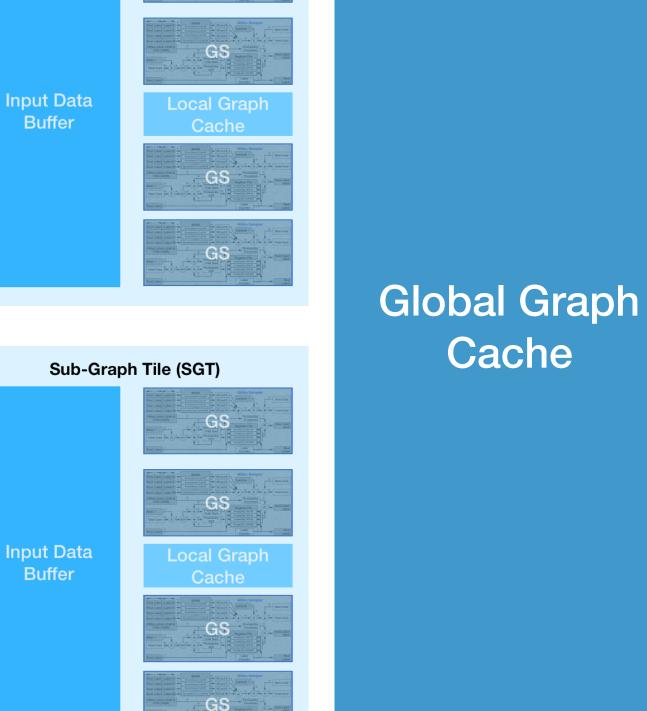


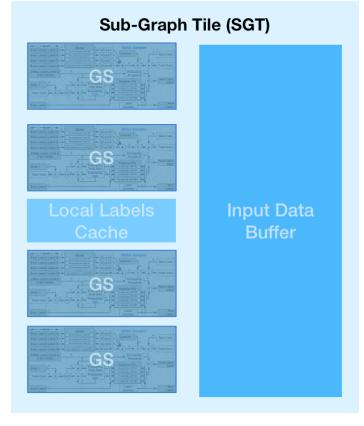
Sub-Graph Tile (SGT)

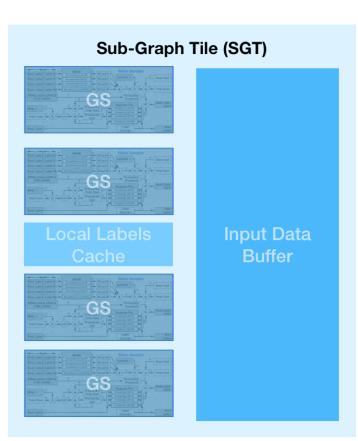
Input Data

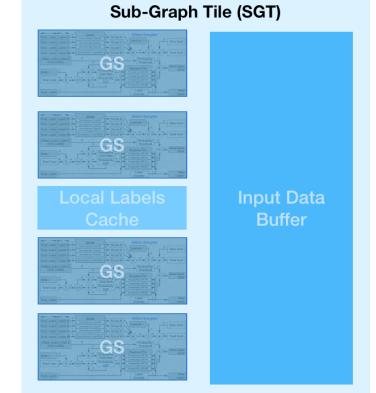
Buffer











Sub-Graph Tile (SGT)

Input Data

Can add SGT's for linear increase in throughput

Summary

•PGMA - Probabilistic Graphical Models Accelerator

- First silicon Bayesian inference accelerator.
- Can run various probabilistic models including MRF, HMM and more.
- Solves various applications including computer vision, audio processing, recommender systems, topic modeling, combinatorial optimization, etc.

Scalable Bayesian inference accelerator architecture

- Algorithm-hardware co-design to enable parallelism in natively sequential algorithm.
- Hierarchical architecture with two-levels of parallelism.
- Energy-efficient mobile implementation for real-time unsupervised perceptual tasks.
- Stay tuned for server-class version for cloud applications.

·Rapid research SoC design and implementation using CHIPKIT

- Harvard's open-source framework for chip design and testing.

Acknowledgments

- Contributors: Yuji Chai, Marco Donato, Paul N. Whatmough, Thierry Tambe, Rob A. Rutenbar, David Brooks and Gu-Yeon Wei
- Research sponsored by DARPA CRAFT and DSSoC programs, SRC JUMP ADA, Intel and Arm

