1846

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

A High-Throughput Maximum a Posteriori
Probability Detector

Ruwan Ratnayake, Member, IEEE, Aleksandar Kavci¢, and Gu-Yeon Wei

Abstract—This paper presents a maximum a posteriori proba-
bility (MAP) detector, based on a forward-only algorithm that can
achieve high throughputs. The MAP algorithm is optimal in terms
of bit error rate (BER) performance and, with Turbo processing,
can approach performance close to the channel capacity limit.
The implementation benefits from optimizations performed at
both algorithm and circuit level. The proposed detector utilizes
a deep-pipelined architecture implemented in skew-tolerant
domino and experimentally measured results verify the detector
can achieve throughputs greater than 750 Mb/s while consuming
2.4 W. The 16-state EEPR4 channel detector is implemented in a
0.13 zm CMOS technology and has a core area of 7.1 mm?.

Index Terms—Architectures, BCJR algorithm, forward-only al-
gorithm, iterative processing, maximum a posteriori probability al-
gorithm, turbo, VLSI.

I. INTRODUCTION

IGH-SPEED detectors that combat inter-symbol inter-

ference (ISI) are of interest for a variety of communi-
cations applications such as magnetic recording systems. Typ-
ically, high-speed detectors use less computationally-intensive
algorithms such as the Viterbi algorithm [1]-[4]. Unfortunately,
such algorithms generate hard outputs, which constrain the re-
ceiver to non-iterative processing. On the other hand, iterative
processing utilizing MAP detection is likely to be used in the
next generation of systems due to the bit error rate (BER) per-
formance benefits. This paper describes the implementation de-
tails and experimental results of a 750 Mb/s MAP detector that
employs a modified near-optimal MAP algorithm.

In magnetic storage systems, areal density in the magnetic
medium has increased exponentially within the last few decades
and this trend is predicted to continue. The increase in density
adversely results in increased ISI and reduced signal-to-noise
ratio (SNR). Sophisticated signal processing methods can be
utilized to extract the data in such deteriorated signal environ-
ments. One method that has shown remarkable performance
is iterative or turbo detection [5]-[8]. A block diagram of
turbo processing is shown in Fig. 1. Iterative detection requires
soft outputs, which carry more information compared to hard
outputs. Algorithms such as the soft-output Viterbi algorithm

Manuscript received December 15, 2007; revised February 23, 2008. Pub-
lished July 23, 2008 (projected). This work was supported in part by Agere
Systems.

R. Ratnayake and G.-Y. Wei are with the School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA 02138 USA (e-mail:
ratnayak @fas.harvard.edu; guyeon@eecs.harvard.edu).

A. Kavci¢ is with the Department of Electrical Engineering, University of
Hawaii, Honolulu, HI 96822 USA (e-mail: kavcic@hawaii.edu).

Digital Object Identifier 10.1109/JSSC.2008.925404

channel MAP a-;:) C:J‘i;eurt'o" LDPC +decoded
——p outputs » output
u Channel ytp Detector "| Decoder P
a-priori
input

Fig. 1. Block diagram of iterative detection.

(SOVA) have been considered for iterative detection [9], [10],
but SOVA is a suboptimal algorithm in terms of BER perfor-
mance [11]. In contrast, MAP detection based algorithms offer
optimal BER performance. A MAP detector concatenated with
a low-density parity-check (LDPC) code decoder is seen as
a strong candidate for future high-density magnetic storage
systems. Due to high computational complexity, there has been
a dearth of VLSI implementations for MAP detectors that target
high-speed applications.

This paper presents the design, implementation, and ex-
perimental verification of a MAP detector that can perform
at very high throughputs. The detector targets a 16-state ex-
tended enhanced partial response class-4 (EEPR4) channel that
models high areal densities. The implementation benefits from
optimizations performed at several levels of system design.
First, we chose to implement a forward-only algorithm that
has several advantages over the traditional MAP algorithm.
One key feature of this forward-only algorithm is its inherent
pipelined structure, which we exploit to increase throughput.
Second, we leverage techniques to increase throughput at
the circuit level. The design uses three-phase, skew-tolerant,
dual-rail domino logic. In addition to reducing gate delay,
skew-tolerant domino obviates dedicated latches required for
traditional pipelining schemes. Removing these latches signif-
icantly reduces hardware overhead, eliminates latch delay, but
retains time borrowing via overlapped clocks. In order to fur-
ther increase throughput, computations that impose worst-case
bottlenecks, constraining throughput, are addressed at the algo-
rithmic level. We propose a modification to the algorithm that
minimally affects BER performance, verified by system-level
BER simulations, but speeds up the critical path.

The well-known algorithm by Bahl, Cocke, Jelinek and Raviv
(BCJR), which is traditionally considered for most MAP de-
tection/decoding applications, requires forward and backward
computations [12]. This is in contrast to the Viterbi or SOVA al-
gorithms, which allow computations to be performed only in the
forward direction. Once the input stream is fed into a Viterbi or
SOVA detector, the outputs are generated after a fixed latency
and retain the same order. On the other hand, the a posteriori
probability outputs (APPs) of the BCJR algorithm can only be
evaluated after both forward and backward metrics have been

0018-9200/$25.00 © 2008 IEEE

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

RATNAYAKE et al.: A HIGH-THROUGHPUT MAXIMUM a POSTERIORI PROBABILITY DETECTOR

t-5 t-4 t-3

1847

oy -3(1,0)

-2 t-1 t

Fig. 2. The trellis paths that contribute to the soft survivor for state 1 at time ¢, where each path has a branch with input 0 at time £ — 3. The soft survivor is denoted
by e;,;—3(1.0). The input corresponding to each branch is shown adjacent to the branch.

TABLE I
COMPARISON OF ALGORITHMS
Algorithm FOMAP BCJR Viterbi
Updates parallel sequential parallel
Latency fixed variable fixed
(L) (2L to 4L) (L)
Order of ordered permuted ordered
outputs [1,2,...,L, | [L,L-1,..,1, | [1,2,...,L,
L+1,..] 2L, .. L+1,..]
Control simple complicated simple
Buffering not required not
chan. outputs | required required

L: Length of the window.

computed. Consequently, the outgoing symbols appear in a per-
muted order relative to the incoming symbols.

To overcome the complexities inherent to BCIR, we ex-
plore a recently developed algorithm that performs MAP with
computations only in the forward direction [13]. We call this
algorithm forward-only MAP (FOMAP). The FOMAP algo-
rithm has similarities to both Viterbi and BCJR algorithms. The
FOMAP algorithm keeps soft survivors (probabilities), which
are saved in a fixed-length sliding-window survivor memory.
A prominent feature of FOMAP is its ability to update all of
the (soft) survivors in parallel, similar to the Viterbi structure,
where the (hard) survivors are also updated in parallel. More-
over, the FOMAP algorithm is a sum-of-products algorithm
that, with soft survivors, generates APPs. This is in contrast to
SOVA, which only computes an approximation of the APPs.

One of the key drawbacks of traditional BCJR is its backward
computations, which only allows for sequential state metric up-
dates. After receiving a symbol the BCJR algorithm takes up
to four times the latency—pertaining to the window length—to
compute corresponding APPs. In contrast, the FOMAP algo-
rithm can perform parallel updates to generate APPs after a fixed
latency equal to the latency of a single window length and gen-
erate ordered outputs. Latency and ordering of outputs are sim-
ilar to the Viterbi algorithm. By retaining key attractive features
from both Viterbi and MAP algorithms, namely parallel survivor
updating and the ability to compute APPs, the FOMAP algo-
rithm can be implemented as a deep pipelined structure to offer
superior performance in terms of BER, throughput, and latency.
Comparisons of FOMAP to the BCJR and Viterbi algorithms are
summarized in Table I.

This paper is organized into several sections as follows.
First, a brief overview of the FOMAP algorithm is provided.
Then, Section III describes three schemes that improve the

throughput of the MAP detector at the algorithm level. After-
wards, Section IV introduces the proposed detector architecture
and describes circuit-level design mechanisms employed to
increase the throughput. Section V presents measurement
results of a test-chip prototype that verifies high-throughput
performance. Finally, Section VI concludes the paper.

II. FORWARD ONLY MAP ALGORITHM

FOMAP is a path-partitioning algorithm that computes
APPs by processing probabilities of paths. For brevity, we only
present a basic introduction to FOMAP with the aim of giving
the reader necessary information to understand the proposed
architecture. We defer the reader to [13] for detailed discus-
sions of the FOMAP algorithm. A soft survivor in the FOMAP
algorithm, denoted by a ;(s,w), is defined to be the sum of
the APPs of all paths that terminate at state s at time ¢ that
include a branch at time ¢ with input u. In essence, it is the joint
probability of S; and U; conditioned upon the received vector
Yi,ie., ari(s,u) = Pr(S; = s,U; = u|Y{), where S; and U;
are random variables denoting state at ¢ and input symbol at 4,
respectively. Y7 is the sequence of received symbols up to time
tie., Y} = {y1,...,y:}. Fig. 2 clarifies this concept with a
trellis diagram. The trellis shown consists of two states (0 and
1) and binary inputs. The figure shows all paths that contribute
to ay;—3(1,0)—the soft survivor for state 1 at time ¢, where
each path contains a branch at time ¢ — 3 that corresponds to
the input symbol 0.

The soft survivors of FOMAP are computed recursively. We
consider a sliding window version of the algorithm for imple-
mentation. The FOMAP algorithm computes the soft survivors
pertaining to the latest input symbol, based on the latest re-
ceived symbol y; and the soft survivors from the previous it-
eration. We call this operation extend, which implies extending
the sliding window by one step. This step is similar to the com-
putation of state metrics in the forward recursion of the BCJR
algorithm. Simultaneously, all the soft survivors pertaining to
previous input symbols are updated in parallel. We call this
step update. This step is similar to the update operation of hard
survivors in the Viterbi algorithm. Finally, by combining (col-
lecting) all of the appropriate soft survivors at the back of the
window, the FOMAP algorithm computes APPs for each input
symbol. This step is called collect. To explain this in graphical
form, a data flow diagram of the three operations is shown in
Fig. 3. The horizontal axis going from left to right depicts the
trellis index. The vertical axis corresponds to the clock cycles
where one trellis step is processed per cycle. The window con-
sists of an array of registers that contains all of the soft survivors

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

1848

L L+ tLl+2 ... t5 t4 t-3
O
t=2 e n n 44444444444444444 Bowon n
O O O
t-1- APP 44444 n ,,,,,,,,,,,,,,,,, Feteedr Attt n

clock cycle
<

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

trellis index
t-:2 oot ar—1t-10G) a—r410)
att(,) APP()
extend collect
at—l,’i,(7) at,i(v)
ari () w—140)
update registers

sliding window (L) >

Fig. 3. Data flow of sliding window FOMAP algorithm.

at a given time instance. As the figure shows, at each time in-
stance the window extends and slides to the right by one step.
At the same time, all contents of the window are updated by in-
corporating the latest received symbol. The APPs are driven out
the back of the window with a latency of L cycles. Assuming
all soft survivors within the window for previous iteration are
available, i.e., a;—1 (s, u) fort — L < ¢ < ¢t —1, the three steps
of FOMAP are evaluated as follows:

A. Extend

The extend operation, first computes state metrics for a
new time instance based on soft survivors from the previous
iteration:

Gi1(s) = Pr(Si_1 = s|Y{™1)
=Y Pr(Si—1 =5, Uy = ulY{ ™)
ueU

= a1ma(s,u). ()

ueU

Then it evaluates the soft survivors for the latest input symbol
based on these state metrics and the latest received symbol

Qg (s, u)
= Pr(S; = s,U; = ulY})
Z Pr(S;_1=s|Y") Pr(S; =5, y:|Si_1=5")
s'€S,U(s",s)=u

>

s'€S, (s ,s)=u

:pl

=m r—1(s")n(s', 5). 2

Here, S and U are sets of all possible states and inputs, re-
spectively, and s and u are elements of these two sets. p; is
a scaling factor that normalize the soft survivor across s and
u. y(s',8) = Pr(Sy = s,4:|Si—1 = ') is the branch metric
(based on the latest received symbol y;) connecting states s’ and

s at time t; e.g., if the system noise is Gaussian, then y;(s’, s) is
simply a Gaussian probability density function conditioned on
the state transition (s’, s). [(s’, s) is a function that indicates the
input symbol u corresponding to a branch connecting state s’
and s; e.g., in the system defined by the trellis shown in Fig. 2,
[(1,0) = 0and(0,1) = 1. Since o ; depends on cv¢_1 ¢_1, this
operation contains a feedback loop, which can limit throughput.
Section III shows how the extend step can be simplified to alle-
viate this throughput bottleneck.

B. Update

The update operation updates the soft survivors for the re-
maining length of the window, i.e.,t — L+ 1 <7<t —1.

ai(s,u)
= Pr(S; = 5,U; = u|Y})
=po Z Pr(S;_1=5",U; :u|Y1t_1) Pr(S;=s,y:|St_1=45")
s'eS

=p2 Z at—l,i(slvu)')/t(sl73) 3)

s’eS

where p» is a scaling factor. All of the soft survivors are updated
in parallel across the length of the window. Thus, within one
cycle the latest received symbol is incorporated into all of the
soft survivors. The data flow for this operation occurs in a feed-
forward manner from the front of the window towards the back.
Hence, this operation is amenable to pipelining.

C. Collect

Since soft survivors are joint APPs corresponding to states s
and inputs u, summing up (or collecting) all of the survivors at
the back of the window for a given input across the states gives
the APP corresponding to the input.

Pr(Us_py1 = ulY]) = APP(u) = > aysr41(s,u). (4)
seES

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

RATNAYAKE et al.: A HIGH-THROUGHPUT MAXIMUM a POSTERIORI PROBABILITY DETECTOR 1849
received Branch Metric Comp.
symbols
soft survivor
v(,) processor
A 4 \ 4 \ 4 \ 4 Register
3| ai0.0) (] I: ar-1(0.0) [T 3] o.1-2(0,0) o 1410.0) —>|F] : 5 AerO)
age-1(1,0) o] @i—2(1,0) :LVL,L—L+1(170)_.D_
> at,t—l(os 1) _’D —>] Oét7t_2(o, 1) —p at,LfL—O—l(O: 1 _’D_}K-D_-’APP“)
3 e 1) o Pl o1 P] T3 acea(1,1) [ITRERCRS o
Extend Update 1 Update 2 Update L-1 Collect

Fig. 4. Block diagram of FOMAP architecture for a two-state system defined by trellis in Fig. 2. Soft survivors at, o, ; (s,) foreachindex ¢,t — L+1 <i <t

are shown.

7t(s1,5)

op—1,4(s1,u)

az—1,i(s2,u)

Yt(s2,5)

Fig. 5. FOMAP ACSLA soft survivor computation unit.

A block diagram of FOMAP for the simple trellis system with
two states, considered in Fig. 2, is shown in Fig. 4. Each soft
survivor « is computed by a dedicated processing unit. Each up-
date column contains a number of processing units equal to the
number of states times the number of inputs. For this example,
there are four soft survivors per trellis index and, hence, four
processing units per column. Certain soft survivors have zero
probability and can be ignored, e.g., o (0, 1) and v +(1, 0).

As shown by (1), (2), and (3), extend and update opera-
tions are essentially sum-product operations. Since computing
products is expensive in terms of required computational
power and complexity, the algorithm is implemented in
the log domain. Thus, a product is mapped to an addi-
tion. A summation is mapped to a special operation which
is denoted by HH. This special addition H is defined as
a @b = In(e + e*) = max(a,b) + In(1 + e~l*=*). The
correction term, In(1 + e~1*~°l), can be implemented as a
look-up table (LUT) to simplify implementation. The bottle-
neck of a FOMAP algorithm is this sum-product computation
in extend and update, which is implemented by a concatenation
of arithmetic functions: addition, comparison, selection, LUT,
and another addition. We call this unit illustrated in Fig. 5, the
add/compare/select/LUT/add (ACSLA) unit.

at,i(sa 'U.)

d = In(1 4 elo—bh)

III. INCREASING THROUGHPUT

Applications such as magnetic storage systems require very
high throughputs. In this section, we investigate three schemes
that can increase the maximum achievable throughput of the
FOMAP detector. First, we can speed up the ACSLA unit by re-
ordering the operations. Second, we can consider a higher order
radix system by processing multiple received symbols within a
single clock cycle, which results in an increase in the delay of
the critical path, but also increases throughput. Finally, we pro-
pose a slight modification to the algorithm that only minimally
affects BER, but significantly reduces delay for the throughput
bottleneck. A comparison of these techniques show that the third
method yields the best tradeoffs between throughput and hard-
ware cost. We implement the detector based on this method.

A. Compare Select Add LUT Add

Lee et al. show that the critical path delay in the Viterbi algo-
rithm can be decreased by reorganizing the add/compare/select
(ACS) unit to a compare/select/add (CSA) unit [4]. Similarly,
the ACSLA unit for a FOMAP algorithm can be reorganized
such that addition and comparison are performed in parallel. We

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

1850
@ 7t(s1,8)
(a)
ap—1i(s1,u) +7v(s1,8) oy—1i(s2,u) + v(s2,5)
1 ///::7'

Vs \

/¥ v v o\

F\21 / / .1

/
Ye+1(8,53) Y4108 84)
opi(s,u) +v4108,83) o i(s,u) + 4105, 54)

(b)
Fig. 6.

explain this in terms of state transitions shown in Fig. 6(a). The
soft survivors in log domain are given by ACSLA operation:

api(s,u) = {o—1,i(s1,u) + 7(s1.9)}
B{a 1:(s2,u) +7:(s2,8)}. (5)

Adding v¢11(s,s”), s” € {s3, 54} to both sides of the equality
yields

{at,i(57“) + %+1(87 8”)} = {at71,i(81,u) + %(817 8)}
H {at—l,i(527 w) + ve(52,8) } + Ve (s, 5”)- (6)

Thus, if soft survivors {a;—1,:(s’,u) + 7:(s’,s)} — taken as
single entities — for s’ € {s1, s2} previous states are already
known, then soft survivors {ay;(s,u) + Yi41(s,s”)} for
s" € {s3,s4} next states can be obtained recursively. This
is illustrated in Fig. 6(b). This does not reduce the delay for
the sum-product operation but simply reorganize the add/com-
pare/select/LUT/add into compare/select/LUT/add/add oper-
ation. However, the final addition in (6) can be performed in
parallel with comparison as shown in Fig. 6(c). This is referred
to as a compare/select/add/LUT/add (CSALA) unit. If both
extend and update operations are based on CSALA, then the
delay in the critical path of the system is reduced by the delay
of one addition operation.

B. Radix4-Sum2

Another approach to increase throughput is to concatenate
and process multiple trellis steps within a single clock cycle.
We consider a radix-4 system where two input symbols are
considered within one cycle. This is achieved by combining
two successive radix-2 trellis steps into a single radix-4 trellis
step. Fig. 7(a) shows two consecutive trellis steps of a radix-2

v(s2,8) Vet1(s,s4) @
| “//,+1(5% é'_><]

O‘t,z’(sa u) + Yi+1 (s,83)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

ar—14(s1,u) + 7 (s1,5) ayp—14(s2,u) + 7 (s2,5)

A A
\ 2:1

o (s,u) + Y108, 54)

(c)

(a) State transitions. (b) Compare/select/LUT/add/add computation unit. (c) Reorganized compare/select/add/LUT/add (CSALA) computation unit.

system. A radix-4 system combines these two trellis steps into
one step as shown in Fig. 7(b). The trellis index axis in radix-2
is compressed by half since radix-4 ignores the odd trellis steps
(...t —=3,t —1,t + 1...) of the radix-2 system. The aim is
that computational time taken for the state updates with radix-4
would be less than twice the time taken for state updates in a
radix-2 system.

This method has been exploited to increase throughput in
Viterbi systems [14]. However, this scheme is not very attrac-
tive for MAP detectors since four paths must be combined to-
gether instead of merely obtaining the maximum of four paths
as in the Viterbi algorithm. Combining four paths requires a
three-ACSLA-unit tree with two levels and the delay through
the critical path is only one addition less than twice the delay
for ACSLA.

Combining four paths in a radix-4 system is described by

aBbHcHd = max(a,b,c,d) + A @)

where the correction term A is not as simple an expression
for implementation. However, if the two most significant paths
are combined instead of all four paths, then the computation
becomes simpler. Assume m; and moy are the largest two
values among the four paths. Then the soft survivor update step
becomes

my B my = max(mq, my) + In(1 4+ e~ m17m2l) - (8)

This computation is similar to a radix-2 update. This new
scheme is shown in Fig. 7 and is called radix4-sum?2 since it
is based on radix-4, but only effectively combines two paths.
There are (3) = 6 possible comparison pairs drawn from four
values. Logicl and Logic2 compute the maximum value and
the difference between the maximum and the next largest value

based on the six comparisons, respectively.

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

RATNAYAKE et al.: A HIGH-THROUGHPUT MAXIMUM a POSTERIORI PROBABILITY DETECTOR

oy —1,(s51,u)

0N
N

t-1

t-1
O ©
O &

O ¢

radix-4
(b)

)
O

radix-2

(@)

O
O
O

~t(s1,5)

1851

op—14(82,u) op14(s3,u)
oy—1,i(54,u)

+
7t(s2,5) vt (53, 8) T t(s4, s)

b
[Logic1 | &—

(c)

<
<

Logic2

o1 (s,)

Fig.7. (a)Radix-2 trellis. (b) Radix-4 trellis. v (s;,), € {1,2, 3,4} are branch metrics from state s; to state s in radix-4 system. (c) Radix4-sum2 computation

unit.

The delay of this new scheme is only moderately larger
than the radix-2 system (due to the logic operation), but since
two symbols are decoded within one cycle the throughput is
increased compared to ACSLA. Moreover, the effect of com-
bining two paths instead of four paths is shown to have only
a marginal impact on BER performance, which is verified by
simulation results presented in the next section.

C. CSA-Extend and Deep Pipelined Update

The two methods discussed so far, CSALA and radix4-sum?2,
consider reducing the critical path delay in the sum-product
computation. We propose yet another method to increase the
throughput that exploits the architecture of the FOMAP as
shown in Fig. 4. This method gives the best throughput and
hardware cost tradeoff. The FOMAP detector is implemented
based on this method. As explained previously, the extend
operation has a single cycle feedback loop that cannot be
pipelined and limits detector throughput. In order to reduce its
delay, computation for extend can be simplified by ignoring
the correction term, which effectively reduces this operation
to add/compare/select (ACS). We further reduce the delay for
extend by reordering the ACS operation to a CSA operation.
Thus, the critical path delay for extend is simply an addition
and a selection. This simplification has minimal impact on
overall BER performance, again verified by simulation results
presented in the next section.

It is important to note that the update operation must not
be simplified, but remain a full sum-product operation. Other-
wise, the algorithm would reduce to a suboptimal algorithm.
If the correction term in the update operation were to be ig-
nored, then instead of combining the probabilities of paths, it
chooses the path with the maximum probability. In essence, the
algorithm is no longer a log-MAP algorithm but is equivalent
to max-log-MAP algorithm [11] with much larger BER perfor-
mance loss. In order to effectively increase the throughput of

the system as a whole, the delay for the ACSLA unit in the
update operation need not be comparable to the delay of the
modified extend operation. Since data flow of the update opera-
tion does not have a loop-back path, its amenable to pipelining.
Hence, we break the ACSLA unit of the update operation into
two pipeline stages where the delay for each pipe stage is com-
parable to the delay of a CSA operation. This scheme is further
discussed in Section IV. We call this method CSA-extend deep
pipelined-update.

D. Comparison of the Schemes

Table II presents a comparison of these three methods in terms
of the approximate number of computational units and storage
devices. Delay of the sequential operation through the critical
path is also shown for each method. The normalized throughput
(CSALA normalized to 1) is based on schematic simulations
using a 0.13 yum CMOS technology.

Even though the CSALA and radix4-sum2 methods improve
throughput compared to a ACSLA-based FOMAP, they re-
quire significantly more computational units compared to other
methods. Among the three FOMAP methods, CSA-extend-deep
pipelined-update requires less hardware (ignoring the latches
needed since synchronization is achieved by multi-phase clocks
in the implementation, see Section IV) and enables higher
throughput.

For comparison purposes, a high-throughput version of
BCIJR algorithm is included in the table. In order to increase
the throughout this BCJR has two sliding windows that run
in parallel. Detailed description of this scheme is given in the
Appendix. Comparing the hardware requirements given in
the table, it is evident that FOMAP base on CSA-extend deep
pipelined-update is computationally expensive compared to
BCJR. On the other hand, BCJR requires more storage and
has lower throughput. Moreover, BCJR needs complex control
mechanisms to control the forward, backward computational

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

TABLE II
COMPARISON OF THROUGHPUT INCREMENT SCHEMES
Method FOMAP BCJR
CSALA Radix4-Sum?2 CSA-extend
Deep-pipelined up.
No. Adders ext. : 0.5n:n,7 ext. & up. : ().5L'n,\7),?‘,11 ext. : 0.5nnu5 «: 2nd
up. : (L — 1)nen.7 col. : (ns — 1)n32 up. : (L —1)nsn.4 B 2n44d
col. :+ (ns — 1)n,2 col. + (ns — 1)nu2 path concat.: 2n.n,2
path col.: 2n,(ns — 1)2
(5548) (8860) (3212) (512)
No. MUXs ext. @ 0.5nsnu2 ext. & up. : 0.5Lnn22 ext. : 0.5nsnu3 @ 2ns
up. : (L — 1)nn.2 col. : (ng — l)nﬁ up. = (L —1)nn, B 2ng
col. : (ng — 1)ny col. = (ng — 1)ny path col.: 2n,(ns — 1)
(1598) (1660) (846) (128)
No. LUTs ext. : 0.5nny ext. & up. : U..'—)L’H,,\’H,?, ext. : 0.5nsnNy o 2ns
up. : (L —1)nsny col. : (ng — 1)n? up. : (L —1)nny B 2n,
col. : (ng — 1)ny col. : (ng — 1)ny path col.: 2n,(ns — 1)
(814) (860) (814) (128)
No. Storage ext. : 0.5n:1,2 ext. & up. : 0.5Ln.n? ext. : 0.5n:nu3 BM : 11Lnp
clements? up. : (L — 1)nen,2 col. = (ns — 1)n2 up. : (L — 1)nsng3’ a: 12Lng
col. : (ns — 1)na col. : (ns — 1)nu
(1598) (860) (2382) (8100)
Critical path delay 2Da+ Drur 3Da + Drogic Di+ Dyux 3Da+ Drur
+Drur + Dymux
Normalized 1 1.1 1.7 1.1
Throughput

ns: No. of states, n,: No. of inputs, L: Length of the training segment, np: No. of different branch metrics.

«: forward recursions, 3: backward recursions

path concat.: path concatenation (ay/3), path col. : path collection, BM : branch metrices.

All col. operations are assumed to be compare/sel/LUT /add units.

Convention - e.g. ext.: 0.5n:n.,7 indicates 0.5nsn. ext. units which has 7 adders within this unit.

. Th-Latches for FOMAP for synchronization and Th-registers/memory cells for BCJR for buffering.

. Assumes buffer the values at a<bs e see Fig. 5.

(.): Values are for EEPR4 channel ns = 16,n, = 2, L = 25,np = 12.
D 4: Delay of a adder, Dpyr: Delay of LUT, Dyux: Delay of a MUX, Dpgic: Delay for logic.

units and to combine their results appropriately. Further, for-
ward and backward recursions and APP computations in the
BCIR algorithm all process different channel outputs at a given
instance, requiring multiple memory accesses per cycle.

Hardware requirements for both FOMAP and BCJR algo-
rithms are governed by their respective window lengths. The
storage requirements for BCJR is a linear function of its window
length. Similarly the number of computational units required for
FOMAP algorithms is proportional to its window length. For a
given memory order, the FOMAP window length is about six
times the constraint length of the channel or the encoder. This
is equal to the length of the training segment (L) for forward or
backward recursions of the BCJR algorithm. Typically BCJR
window length is considered to be a multiple of L. A larger
window length and having multiple windows sliding concur-
rently increase the throughput of the BCJR system with a cost
of increase in storage capacity and latency.

Storage requirements for the BCJR algorithm can be imple-
mented using area efficient multi-ported SRAM cells. Thus,
for a given memory order and comparable window lengths
a reasonable conjecture is that BCJR algorithm would be
more area and power efficient. On the other hand FOMAP

algorithm has significantly less input to output latency which
is important for time critical applications. Another advantage
of the FOMAP algorithm is its ability to increase throughput
by reducing the sum-product operation throughput bottleneck.
Simplifying sum-product operation in BCJR algorithm will
lead to max-log-MAP with compromised BER performance.
However, FOMAP algorithm can be modified to increase
the throughput with minimal effect on BER performance as
explained in the next section.

E. BER Performance

We now investigate the impact the throughput-enhancing
methods described above have on BER performance. The
radix4-sum2 method has a simplification in its sum-product
operation. It only sums up two leading contenders among four
paths. The CSA-extend deep pipelined-update method has a
simplification in the extend operation. It ignores the correction
term in the extend operation. We examine the effects of these
simplifications on BER performance. Fig. 8 presents simulated
BER results for the proposed methods assuming an EEPR4
channel. The BER for the original FOMAP algorithm is also
shown for comparison.

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

RATNAYAKE et al.: A HIGH-THROUGHPUT MAXIMUM a POSTERIORI PROBABILITY DETECTOR

10 T
107} :
w107} 1
107 ‘ 1
—8— Original FOMAP
—¥— Radix4-Sum2 FOMAP
_s|| —90— CSA-Extend FOMAP
10 : :
6.5 7 7.5 8

SNR (dB)

Fig. 8. BER performance of FOMAP for original algorithm, radix-4-sum and
CSA-extend methods. EEPR4 channel.

The simulation system consists of the FOMAP detector con-
catenated with a LDPC code decoder as shown in Fig. 1. The
system has finite resolution where the FOMAP detector takes in
6-bit channel outputs and 6-bit a priori probabilities. The soft
survivors are capped to 7 bits. The frame length of 5120 bits
with code rate 0.8 and window length L = 25 are considered.
The BER results are for 20 LDPC iterations, where for every five
LDPC iterations, the FOMAP detector performs one iteration.
As the results indicate, neither the simplification in radix4-sum?2
method nor simplification in CSA-extend deep pipelined-update
method has any significant affect on BER performance.!

Further, we investigate the BER performance gain of FOMAP
over SOVA, for different partial response channel models for
this fixed-point iterative system. The window length (trace-back
path length) for SOVA is also 25 trellis steps. Figs. 9-11 show
the performance for PR4, EPR4, and EEPR4 channels, respec-
tively. The performance gain of FOMAP over SOVA is about
0.15 dB for PR4, 0.25 dB for EPR4, and 0.35 dB for EEPR4 at
aBER of 10~%. These results suggest that the BER performance
gain of FOMAP over SOVA increases with increasing IS1.2

IV. CSA-Extend DEEP PIPELINED-Update FOMAP
IMPLEMENTATION

The FOMAP algorithm was implemented using the CSA-
Extend Deep Pipelined-Update architecture. The detector tar-
gets EEPR4 channel, which consists of 16 states. The detector
takes 6-bit quantized channel symbols from an analog-to-dig-
ital converter (A/D) at the receiver input and 6-bit quantized a
priori log-likelihood ratios from previous iterations to generate
8-bit a posteriorilog-likelihood ratios for the next iteration. The

IFig. 11 shows the BER performance gap between SOVA and FOMAP algo-
rithms. This indicates that the LDPC decoder does not mask the performance
difference resulting from different detection methods.

2The essence of partial response channel for magnetic storage systems is to
accept ISI in a controlled manner. The channel is a linear combination of re-
sponses of known individual symbol transitions. The channel is known a priori
and hence the ISI affect can be anticipated and accommodated in the detection
process. PR4, EPR4, and EEPR4 consider the ISI affects of 3, 4, and 5 adjacent
symbols, respectively, where higher number of symbols reflects the higher den-
sities of the magnetic medium.

1853

BER

107

—8— FOMAP
_s/|~P—SOVA

10 ' ‘

5 5.5 6
SNR (dB)

BER performance for FOMAP and SOVA based for PR4 channel.

6.5

Fig. 9.

-1

10

BER
S

—8— FOMAP
——SOVA

5.5 6 6.5 7
SNR (dB)

BER performance for FOMAP and SOVA based for EPR4 channel.

Fig. 10.

1

10

BER
S

—8— FOMAP
/| —P—SOVA
10

6.5 7 75 8
SNR (dB)

Fig. 11. BER performance for FOMAP and SOVA based for EEPR4 channel.

window length of the detector is set to 25, which balances hard-
ware requirements versus performance. Branch metrics are 6-bit
values while state metrics and soft survivors are 7-bit binary
values.

The FOMAP architecture for EEPR4 is an expanded version
of the block diagram shown in Fig. 4. The detector has 32 sur-
vivor-updating processors per column corresponding to the 16

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

1854

i
=
@
=
i
=
c
=
-]

Fig. 12. Die microphotograph and floor plan overlay.

states and two input levels. There are a total of 32 x 25, 7-bit
processors. Fig. 12 presents a die micrograph of the test chip,
implemented in 0.13 pm CMOS, with the detector’s floor plan
superimposed onto the same figure. Extend, update and collect
blocks are laid out as columns. The branch metric unit shown on
the left computes the relevant branch metrics for each received
symbol utilizing a look-up table.

The detector relies on high-speed, dual-rail domino logic to
minimize gate delays and maximize throughput. Keepers in-
serted into each domino stage prevent discharge due to leakage
and allow low-speed testing. The domino gates operate with re-
spect to three equally spaced, overlapping clocks (1, g2, d3),
shown in Fig. 13(b), which make the circuit skew tolerant and
facilitate time borrowing [15]. Soft survivors are temporarily
stored in domino stages, obviating explicit latches, alleviating
latch delay, and significantly reducing hardware. Otherwise, the
prohibitively large number of latches that would be required
(2382, 7-bit latches) makes such memory-intensive detector de-
signs impractical to implement.

Fig. 13(c) shows the ACSLA unit used in the update opera-
tion, divided into multiple pipeline stages. Simple Manchester
carry chain adders are used for the 7-bit additions. Logic for
propagate, generate, and the carry chain evaluates during ¢ and
domino XOR gates that compute the sum evaluate on ¢o. The
MUXs and LUT evaluate during ¢3. To prevent overflow, nor-
malization circuitry is needed at the end of each update opera-
tion. The update operations are pipelined into two pipe stages
with respect to ¢ as illustrated in the figure.

One of the challenges associated with this architecture is the
large number of wires connecting each column. Propagating
the signals between update columns (each column consisting
of 32 different soft survivors and each survivor represented
by 7 bits) requires 224 wires. Generally, dual-rail domino
circuits need monotonically rising signals and monotonically
rising complements of the signals. Hence, propagating the
complementary signals would double the required number of
wires. This wiring complexity significantly increases the area
overheard of the layout and reduces the area utilization.

An alternative approach to reduce the required number of
wires is to generate the complementary signal locally by uti-
lizing a complementary signal generator (CSG) [16]. The circuit

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

Yt (81, 8) — Lyt
sign
oy—1,(s1,u) \:t/
ay—1,4(s2,u) Ki) ay (s, u)
(52, 8) (a)
1
$2
¢3

(b)

(52,5
Yt (82, S
P12
Add Compare Mux/LUT Add Normalize
" O\ J
2 \'
pipe stage 1 pipe stage 2

Fig. 13. Update processor. (a) ACSLA unit. (b) Overlapping clocks. (c) Deep-
pipelined ACSLA circuit. The pipe stages respect to ¢, are also shown.

il T
N LI Z x i .

* =

(a) (b)

Fig. 14. (a) Complementary signal generator. M is significantly stronger than
M. (b) Input, intermediate and output signals.

schematic of the CSG is shown in Fig. 14(a). The CSG gener-
ates monotonically rising complementary signals that are suit-
able inputs for domino logic. Fig. 14(b) illustrates the waveform
diagram where a monotonically rising input signal A results in
monotonically rising complementary signal Z. CGS alleviates
the need to propagate the complementary signal and only the
true signals connect between the update columns.

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

RATNAYAKE et al.: A HIGH-THROUGHPUT MAXIMUM a POSTERIORI PROBABILITY DETECTOR

g w0 .
ELLLN

Fig. 15. Photograph of the detector test board. The chip under test on the
left operates at low frequencies, and the chip on the right operates at high
frequencies.

The input signal to the CSG must be stable before the clock
signal goes high. This imposes a hard edge on the input signal
wherever this generator is used. Thus, the signals propagating
between update columns are constrained by a hard edge and,
hence, the last domino gate in the update computation cannot
borrow time in a subsequent stage. However, all other domino
gates in the pipeline can borrow time across stages within an
update column.

V. MEASUREMENT RESULTS

The test-chip prototype was implemented in a 0.13 pm
CMOS logic process and was experimentally verified in two
stages. First, intermediate values generated by extend, update
and collect blocks were tested for correctness while operating
at low frequencies. The inputs at each time instant, namely
6-bit channel symbols and 6-bit a priori log-likelihood ratios
were fed to the detector through a scan chain and outputs
at each intermediate stage were compared with the expected
vectors. Then, the detector was tested for maximum achievable
throughput. Given the difficulty of externally feeding two sets
of 6-bit inputs at high speeds, pseudo-random inputs gener-
ated by an on-chip linear feedback shift register were used to
feed the detector and the corresponding outputs were verified.
Lastly, in order to alleviate output buffer speed constraints, the
outputs operate at half rate. The test fixture for the two-stage
testing is shown in Fig. 15, with two test chips mounted on
the board. The left and right halves are designed for low- and
high-frequency testing, respectively.

Fig. 16 presents the experimentally measured average fre-
quency plotted with respect to supply voltage. The averages
were taken across three prototype chips. For each supply
voltage, clock frequency is increased until the outputs become
invalid. As shown in the figure, the slope of the frequency
curve decreases with increasing supply voltage and flattens
out. There are several reasons for this behavior. First, it is well
known that the speed of logic gates does not scale linearly
with supply voltage. Second, wire delays significantly impact
the maximum achievable frequency. As described earlier, the
detector requires a large number of long wires in order to
connect blocks across the update columns. As supply voltages
increase, the domino gates and inverter repeaters speed up,

1855

800

Frequency (MHz)

» » ~ ~
o [$)] o a
o o o o

[¢)]
(6]
o

80070 1 1.2 1.4
vdd (V)

Fig. 16. Experimentally measured throughput.

3.5
3 [4
2.5+ 1
=3
s 2 .
=
(o)
a
15}]
1T —d— Measurements ||
- 'Vdd2xFreq
0.5 L L
0.8 1 1.2 1.4

vdd (V)

Fig. 17. Experimentally measured power dissipation and corresponding V2, f
curve.

TABLE III
SUMMARY OF CHIP CHARACTERISTICS

> 750Mb/s
2.4W (at 750MHz, 1.3V)
2.054M (w/o I/0 buffers)

Max throughput

Power dissipation

Transistor count

Die Dimensions 2633x3793um
Die Area 9.9mm?
Core Area 7.1mm?
Technology 0.13um CMOS, 7 metal

but wire delays remain relatively constant. Thus, the fraction
of the delay due to propagation through the wires increases
with increasing frequency, reducing the slope of the frequency
curve. On average, the detectors achieve clock speeds greater
than 750 MHz which corresponds to maximum throughput
rates over 750 Mb/s.

Fig. 17 shows the experimentally measured average power
consumption plotted with respect to supply voltage. The
measurements were obtained at ambient temperature of ap-
proximately 25 °C, but the on-die temperature can be higher
while operating at higher power levels. The corresponding
Vde f trend (normalized to the measured power at 1.2 V) is

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

1856

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

TABLE IV

COMPARISON TO PRIOR WORK

Proposed? E. Yeo! S. Lee! P. Urard® | M.Bickerstaff? C. Wong? B.Bougard?
et al. et al. et al. et al. et al. et al.
9 [17) 18] [19] [20] 21]
Algorithm FOMAP SOVA BCJR BCJR BCJR Max-log-MAP BCJR
Technology 0.13pm 0.18pm 0.18um 0.13um 0.18um 0.13um 0.18um
Application HDD HDD W.Comm | W.Comm W.Comm W.Comm W.Comm
Frequency 750MHz 500MHz 285MHz 350MHz 145MHz 80MHz 160MHz
Throughput:
MAP core 750Mb/s | 500Mb/s | 285Mb/s | 350Mb/s 290Mb/s
Turbo Dec. 350Mb/s 24Mb/s 160Mb/s 75.6Mb/s
(iteration) (5) (6) (8) (~4)
Power 2400mW 400mW 300mW 2464mW 1450mW 275mW N/A
Energy 6.4" 1.6f 4.8(est) 1.4 10 0.22 2.2
nJ/b/iter | nJ/b/iter | nJ/b/iter | nJ/b/iter nJ/b/iter nJ/b/iter nJ/b/iter
Core Area 7.1mm? 0.5mm? 4.3mm? 10mm? 14.5mm? 17.8mm? 7.1mm?
No.Tr.(Gates) 2M 170K 150K N/A (410K) (2.67M) (373K)
No.States 16 8 8 16 8 8 8

Max-log-MAP method is based on BCJR (simplified) algorithm.

!: Tmplement a single MAP component detector or decoder.

2; Implement turbo decoder with multiple MAP component decoders and memory banks.

T

-per iteration.
HDD: Hard Disk Drives.

W.Comm: Wireless Communications.

superimposed on the plot. Here, f is the maximum attainable
frequency for a given Vyq. The figure shows that the power
requirement increases significantly with frequency and voltage.
The measured power curve tracks V.2, f closely, but deviates
slightly at higher voltages. This deviation can be attributed to
higher leakage power, which is not taken into account in the
V2, f curve.

While the design initially targeted 1 GHz operation, the max-
imum achievable frequency was constrained due to several rea-
sons. One reason is the underestimation of wire parasitics in the
CAD flow, which directly affects propagation delay and max-
imum operational frequency. Further, excess parasitic capaci-
tance results in fanout mismatches along the clock distribution
network within the detector. Post fabrication simulations show
that mismatch in rise and fall times within a buffer, combined
with fanout mismatch along the clock buffer chain, results in
decreasing the duty cycle of the clock signals in our design.
This decrease in duty cycle can severely degrade the maximum
achievable clock rate because it reduces the overlap period be-
tween the three clock phases, availability of time borrowing, and
time for signals to propagate through adjacent clock domains.
Due to these reasons, the measured frequencies deviate from the
original frequency targets of the detector. The key characteris-
tics of the test-chip prototype are summarized in Table III.

Table IV shows the comparison of this work with prior work
in the literature. We limit this comparison to work with chip im-
plementations and measured results. Several other authors such
as Raghupathy and Liu, Miyauchi et al., and Bickerstaff et al.
have done considerable work in this area and we defer the reader

: estimated energy = 2xPower/(MAP core throughput). The factor 2 is for two passes through the detector

to [22]-[24] for comparison of their work. As far as we know,
this work and the SOVA implementation described in [9] are
the only chips that specifically target magnetic storage devices,
which require very high throughputs. Other implementations
given in the table target various wireless communication stan-
dards where low power, in contrast to throughput, is the main
objective.

Given that these devices target different applications and
channel models, and are implemented in different technologies,
it is not straightforward to make a fair comparison. Hence, we
make the comparisons within a given subset. This work and
designs described in [17]-[19] and [21] implement the optimal
MAP method whereas designs in [9] and [20] are based on
sub-optimal methods. Among the optimal MAP implementa-
tions we infer that this work achieves the highest throughput. The
next recorded highest throughput in this category is 350 Mb/s.
Among the two high-throughput detectors targeting magnetic
storage devices, our work implements the optimal MAP algo-
rithm. The detector described by [9] implements SOVA which is
sub-optimal in terms of BER performance. Further, our imple-
mentation targets high density magnetic storage devices where
ISI'is modeled as a 16-state EEPR4 channel. Other implementa-
tions, except [18], target systems with eight states.

VI. CONCLUSION

In pursuit of higher performance for future generation
communications applications, iterative detection and decoding
methods are being considered where MAP detection and de-
coding ought to be used given their superior BER. Towards

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

RATNAYAKE et al.: A HIGH-THROUGHPUT MAXIMUM a POSTERIORI PROBABILITY DETECTOR

addressing this, we propose a maximum a posteriori proba-
bility detector that implements FOMAP, a recently developed
algorithm and achieves throughputs greater than 750 Mb/s.
The algorithm inherits attractive features from both Viterbi
and traditional BCJR algorithms, namely parallel survivor
updating and an ability to compute a posteriori probabilities.
High throughput is achieved by exploiting key aspects of this
forward-only MAP algorithm and leveraging high-speed circuit
techniques. The detector has been implemented in a 0.13 pm
CMOS technology and experimentally verified. This is the first
published implementation of the forward-only MAP algorithm
and the highest throughput demonstrated for a MAP algorithm
in VLSIL.

Achieving very high-throughputs, the primary objective of
this work, led to a circuit design based on dynamic logic that
consumes high power. Power consumption is further exacer-
bated by the aggressive channel model we have targeted. With
technology scaling we may be able to reduce the power re-
quirement. We believe the most feasible method to implement
the FOMAP architecture in nanoscale technologies would be to
use static logic, which consumes less power. Static logic would
also alleviate the complications associated with leakage power.
Leakage power has been steadily increasing with technology
scaling and especially problematic for dynamic gates. While
static logic is generally slower than dynamic logic and requires
latches, the inherent speed up offered by scaling process tech-
nology ought to compensate for the slower logic family used.
Trading dynamic logic for static logic with latches shifts the
burden of clocking dynamic gates to clocking latches. Thus, the
proposed FOMAP detector architecture implemented in 65 nm
or 45 nm CMOS should be able to meet the higher throughput
rates (on the order of several Gb/s) demanded by future devices.

In order to achieve high speeds for this FOMAP design we
have leveraged algorithm and circuit level tradeoffs. Continual
research for such tradeoffs in other algorithms such as BCJR
ought to yield similar gains in throughput. We hope that the pro-
posed architecture for the FOMAP algorithm, detector imple-
mentation and tradeoff methods described in this paper enables
the use of optimal algorithms for future high-speed magnetic
storage devices.

APPENDIX
HIGH-THROUGHPUT BCJR METHOD

This Appendix describes the high-throughput BCJR algo-
rithm that was considered in Section III. Fig. 18 shows the
forward, backward recursions of this method. There are two
forward processors denoted by «; and ay and two backward
processors denoted by 31 and 3. The APP computing pro-
cessors are A; and Ay. We define the training length L as the
minimum number of trellis steps required to be processed in
order to obtain reliable state metrics after starting from all
equally probable states.

Each processor starts and process through the training seg-
ment and obtain sufficiently reliable state probabilities. The
state metrics computed within the training segment are not used
for APP computations. After completing the training segment,
each processor continues processing in the same direction for
another segment of length 3L. The state metrics generated

1857

trellis index

k-8L k-7L k-6L k-5L k-4L k-3L k-2L k-L k

k_3L\ ,,,,,,,, ,,,,,,,,,, D PR ,,,,,,,,,, ,,,,,,,,,,
SN : : AN : : : : :
NN

clock cycle

— — — training segment

Fig. 18. Forward and backward processing of a high throughput BCJR method.
There are two forward (o1, «2) and two backward processors (31, 32). Each
processor generates APPs for window of length 3 L.

within this segment are used for APP computations (Hence
the sliding window length is 3L). Thus, each forward and
backward processor pair generates 3L APPs for each 4L of
channel outputs processed. Thus, each pair has APP throughput
of 3/4 times the rate of the state updates. Since there are two
such pairs operating in parallel, the combined throughput is 3/2
times the rate of state updates.

We define latency as the number of clock cycles a channel
output required to be stored before the corresponding APP is
computed. We assume the channel outputs arrive one per cycle
and adequate number of them are stored to be processed. Thus,
kth channel output can be processed on or after the kth clock
cycle. Assume kth channel output is processed on kth clock
cycle by backward processor 32 as shown by A in Fig. 18. This
dictates the starting time of all other processors. Thus, oy and
aup starts at clock cycle £ — 3L. Therefore, the longest latency
occurs for channel output k£ — 7L since the corresponding APP
output is generated at clock cycle k£ + 4L resulting a latency
of 11L. Hence, the system needs to store at least 11 L channel
outputs or corresponding branch metrics.

ACKNOWLEDGMENT

The authors thank E. F. Haratsch, Z. Keirn, and Agere
Systems for their generous support of this work and chip
fabrication.

REFERENCES

[1] F. Sun and T. Zhang, “Quasi-reduced-state soft-output Viterbi detector
for magnetic recording read channel,” IEEE Trans. Magn., vol. 43, no.
10, pp. 3921-3924, Oct. 2007.

[2] B.Zand and D. A. Johns, “High-speed CMOS analog Viterbi detector
for 4-PAM partial-response signalling,” in IEEE Int. Solid-State Cir-
cuits Conf. (ISSCC) Dig. Tech. Papers, Jul. 2002, vol. 37, pp. 895-903.

[3] P. J. Black and T. H. Y. Meng, “A 1-Gb/s, four-state, sliding block

Viterbi decoder,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.

Tech. Papers, Jun. 1997, vol. 32, pp. 797-805.

I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi algo-

rithm,” in Proc. IEEE GLOBECOM, Nov. 2000, pp. 1664—1668.

[4

=

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

1858

[5S] M. Tuchler, R. Koetter, and A. C. Singer, “Turbo equalization: Prin-
cipals and new results,” IEEE Trans. Commun., vol. 50, no. 5, pp.
754-767, May 2002.

[6] G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms

for Turbo detection,” in Proc. Int. Conf. Telecomm., Jun. 1998, pp.

259-263.

C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and

A. Glavieux, “Iterative correction of intersymbol interference:

Turbo-equalization,” Eur. Trans. Telecomm., vol. 6, pp. 507-511, Sep.

1995.

[8] X. Wang and H. V. Poor, “Iterative (Turbo) soft interference cancella-
tion and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47,
no. 7, pp. 1046-1061, Jul. 1999.

[9] E. Yeo, S. A. Augsburger, W. R. Davis, and B. Nikolic, “A 500-Mb/s
soft-output Viterbi decoder,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Jul. 2003, vol. 38, pp. 1234-1241.

[10] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision
outputs and its applications,” in Proc. IEEE GLOBECOM, Nov. 1989,
vol. 3, pp. 1680-1686.

[11] B. Vucetic and J. Yuan, Turbo Codes: Principals and Applications.
Boston, MA: Kluwer Academic, 2000.

[12] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimum decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf.
Theory, vol. 20, no. 2, pp. 284-287, Mar. 1974.

[13] X. Ma and A. Kav¢i¢, “Path partition and forward-only trellis algo-
rithm,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 38-52, Jan. 2003.

[14] P.J. Black and T. H. Y. Meng, “A 140-Mb/s, 32 state, radix-4 Viterbi
decoder,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Dec. 1992, vol. 27, pp. 1877-1885.

[15] D. Harris, Skew-Tolerant Circuit Design.
Kaufmann, 2001.

[16] N. H. E. Weste and D. Harris, CMOS VLSI Design.
Addison Wesley, 2004.

[17] S. Lee, N. Shanbhag, and A. C. Singer, “A 285 MHz pipelined MAP
decoder in 0.18 pgm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no.
8, pp. 1718-1725, Aug. 2005.

[18] P. Urard, L. Paumier, M. Viollet, E. Lantrebecq, H. Michel, S. Muroor,
B. Coates, and B. Guptha, “A generic 350 Mb/s Turbo-codec based
on a 16-states SISO decoder,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2004, vol. 1, pp. 424-425.

[19] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24
Mb/s radix-4 logMAP Turbo decoder for 3GPP-HSDPA mobile wire-
less,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Pa-
pers, Feb. 2003, vol. 1, pp. 150-151.

[20] C. Wong, C. Tang, M. Lai, Y. Zheng, C. Lin, H. Chang, C. Lee, and Y.
Su, “A 0.22 nJ/b/iter 0.13 pzm Turbo decoder chip using inter-block per-
mutation interleaver,” in Proc. IEEE Custom Integrated Circuits Conf.
(CICC), Sep. 2007, pp. 273-276.

[21] B. Bougard, A. Giulietti, V. Derudder, J. Weijers, S. Dupont, L.
Hollevoet, F. Catthoor, L. V. der Perre, H. D. Man, and R. Lauwereins,
“A scalable 8.7 nJ/bit 75.6 Mb/s parallel concatenated convolutional
(Turbo-) codec,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2003, vol. 1, pp. 152-153.

[22] A. Raghupathy and K. J. R. Liu, “VISI implementation considerations
for Turbo decoding using a low latency log-MAP,” in Proc. Int. Conf.
Consumer Electronics (ICCE), Jun. 1999, pp. 182-183.

[23] T. Miyauchi, K. Yamamoto, T. Yokokawa, M. Kan, Y. Mizutani, and
M. Hattori, “High-performance programmable SISO decoder VLSIim-
plementation for decoding Turbo codes,” in Proc. IEEE GLOBECOM,
Nov. 2001, vol. 1, pp. 305-309.

[24] M. Bickerstaff, D. Garrett, T. Prokop, C. T. B. Widdup, Z. Gongyu, C.
Nicol, and Y. Ran-Hong, “A unified Turbo Viterbi channel decoder
for 3GPP mobile wireless in 0.18 pm CMOS,” in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Nov. 2002, vol. 37,
pp. 1555-1564.

[7

—

San Mateo, CA: Morgan

Reading, MA:

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 8, AUGUST 2008

Ruwan Ratnayake (M’02) received the B.S. degree
in electrical engineering from the University of
Sydney, Sydney, Australia, in 1998, and the M.S.
degree in electrical and computer engineering from
the University of California at Santa Barbara in
2002. He received the Ph.D. degree in electrical
engineering from Harvard University, Cambridge,
MA, in 2008.

From 1998 to 2001, he was a senior research engi-
neer at the Institute for Infocomm Research in Singa-
pore. His research interests include signal processing
and VLSI design at systems architecture level.

Dr. Ratnayake is a member of the IEEE ComSoc Data Storage Technical
committee and has one patent in this area.

Aleksandar Kavcié received the Dipl. Ing. degree
in electrical engineering from Ruhr-University,
Bochum, Germany, in 1993, and the Ph.D. degree in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 1998.

Since 2007, he has been with the University
of Hawaii, Honolulu, where he is presently an
Associate Professor of electrical engineering. Prior
to 2007, he was with the Division of Engineering
and Applied Sciences at Harvard University, as an
Assistant Professor of electrical engineering from
1998 to 2002, and as John L. Loeb Associate Professor of Natural Sciences
from 2002 to 2006. While on leave from Harvard University, he served as a
Visiting Associate Professor at the City University of Hong Kong in the Fall of
2005 and as a Visiting Scholar at the Chinese University of Hong Kong in the
Spring of 2006. He held short-term research positions at Seagate Technology in
1995, Read-Rite Corporation in 1996, and Quantum Corporation from 1997 to
1998. He served as a technical consultant for Quantum Corporation in 1999 and
2000, Link-A-Media in 2004, and Agere Corporation in 2004. He is presently
serving on the Advisory Board of Link-A-Media Corporation.

Prof. Kav¢i¢ received the IBM Partnership Award in 1999 and the NSF CA-
REER Award in 2000. He is a co-recipient, with X. Ma and N. Varnica, of the
2005 IEEE Best Paper Award in Signal Processing and Coding for Data Storage.
He served on the Editorial Board of the IEEE TRANSACTIONS ON INFORMATION
THEORY as Associate Editor for Detection and Estimation from 2001 to 2004.
From 2005 until 2007, he was the Chair of the Signal Processing for Storage
Technical Committee of the IEEE Communications Society.

Gu-Yeon We received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, in 1994, 1997, and 2001,
respectively.

He is currently an Associate Professor of electrical
engineering in the School of Engineering and Ap-
plied Sciences, Harvard University, Cambridge, MA.
After a brief stint as a Senior Design Engineer at
Accelerant Networks, Inc., Beaverton, OR, he joined
the faculty at Harvard as an Assistant Professor in
January 2002. His research interests span several
areas, including high-speed, low-power link design, mixed-signal circuits for
communications, ultra-low-power hardware for wireless sensor networks, and
co-design of circuits and computer architecture for high-performance and
embedded processors to address PVT variability and power consumption that
plague nanoscale CMOS technologies.

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 12:42:50 UTC from IEEE Xplore. Restrictions apply.

