
A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised
Machine Perception using Parallel Gibbs Sampling in 16nm

Glenn G. Ko1, Yuji Chai1, Marco Donato1, Paul N. Whatmough1,2, Thierry Tambe1,
Rob A. Rutenbar3, David Brooks1, Gu-Yeon Wei1

1Harvard University, MA, 2Arm Research, MA, 3University of Pittsburgh, PA

Abstract
This paper describes a 16nm programmable accelerator for
unsupervised probabilistic machine perception tasks that
performs Bayesian inference on probabilistic models mapped
onto a 2D Markov Random Field, using MCMC. Exploiting two
degrees of parallelism, it performs Gibbs sampling inference at
up to 1380x faster with 1965x less energy than an Arm Cortex-
A53 on the same SoC, and 1.5x faster with 6.3x less energy than
an embedded FPGA in the same technology. At 0.8V, it runs at
450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.

Introduction
Efficient unsupervised probabilistic machine perception is the
next challenge for AI hardware. Prior emphasis on supervised
learning with deep neural networks was limited to tasks with
large labeled datasets that are expensive to train. In contrast,
unsupervised Bayesian models are typically more powerful for
problems that (i) have scarce labeled data, (ii) involve
representing uncertainty, and (iii) have strong priors.
Unfortunately, Bayesian inference workloads do not parallelize
well on multi-threaded CPUs, requiring specialized hardware.

This paper describes the first silicon implementation of an
unsupervised Bayesian inference accelerator, which computes a
2D probabilistic graphical model, Markov Random Field
(MRF), using Gibbs sampling. An existing prior work describes
augmenting server-class GPUs with an optical sampling unit to
accelerate Gibbs sampling operations on MRFs [1]. Our CMOS-
based Parallel Gibbs sampling MRF Accelerator (PGMA)
performs chromatic and asynchronous, parallel Gibbs sampling.

Parallel Gibbs Sampling MRF Accelerator (PGMA)
Unsupervised perception tasks are essentially a pixel-labeling
problem, solved by reassigning each pixel in an image to a label
from a given set (Fig. 1). This is done by mapping the problem
to an MRF and performing Bayesian inference using Gibbs
sampling in order to compute a set of labels that minimize a cost
function describing the distribution [1,2]. While the Gibbs
sampling and MRF node update steps are traditionally
performed in a sequential fashion, PGMA combines (1)
asynchronous Gibbs sampling (AGS) and (2) chromatic Gibbs
sampling (CGS) [2] to improve parallelization (Fig. 2). CGS
allows conditionally-independent nodes in the MRF to be
sampled concurrently, but does not relax the on-chip memory
required for storing intermediate model parameters, which scale
exponentially [2]. AGS parallelizes updates by dividing the
MRF into multiple tiles, each sampled as independent graphs
with occasional global updates. AGS reduces on-chip memory
by only storing data needed for individual tiles.

Fig. 3 shows the 16nm SoC with a dual-core Arm Cortex-A53
cluster with 2MB L2$ and a dual-core PGMA cluster. A second
SoC containing an embedded FPGA (eFPGA) is used for
comparison [3]. PGMA includes two sub-graph tiles (SGT) that
share a global graph cache (GGC) for label values
corresponding to the nodes of the MRF. The GGC consists of
3x100KB SRAMs, sufficient for Standard Definition (SD)
640x480 images. The two SGTs copy labels corresponding to a
sub-graph partition of the global graph into the 640x2 local

graph cache (LGC) and perform Gibbs sampling on the
partitioned sub-graph. Each SGT has an input data buffer (IDB)
to store data costs for the input pixels, using 4x80KB SRAMs
(320KB total). IDBs store input data for the sub-graph. Each
SGT has four Gibbs samplers (Fig. 4) that perform 2-color
chromatic Gibbs sampling on the sub-graphs in the LGC. Each
Gibbs sampler contains 4x16KB SRAMs (64KB total) for the
smoothness cost table, which is pre-computed and loaded prior
to inference (Fig. 4), to impose label smoothness amongst
neighboring pixels. Total costs for all possible labels are
computed and converted to Boltzmann probability distributions.

Measurement Results
PGMA accelerates any task formulated as a 2D MRF. Here, we
consider four examples: (1) image restoration fills in damaged
areas in an image, using the House (256x256, 256 labels)
benchmark [4], (2) stereo matching creates a 3D depth map from
a stereo camera image-pair, using the tsukuba (384x288, 16
labels) benchmark [5], (3) image segmentation is a binary
foreground/background segmentation task using an airplane
image (500x333, 2 labels) from VOC2012, (4) sound source
separation of audio mixtures from two sources, using
spectrograms (513x125, 2 labels) as 2D MRFs [6].

Increasing the number of Gibbs sampling iterations consumes
more energy but further minimizes the cost function, improving
perceptual quality (Fig. 5). On the four tasks, sequential, CGS,
and AGS algorithms all converge to similar solutions, with AGS
being the slowest (Fig. 6). However, increased parallelism and
memory savings of AGS outweigh this disadvantage.

Fig. 7 compares PGMA to three commercial hardware
platforms: Nvidia Jetson TX2 A57 CPU, TX2 GPU, and Xilinx
Zync ZCU102 [2]. PGMA is faster than A57 and GPU of TX2.
While [2] is faster, PGMA reduces the memory footprint from
4 to 1.46 MB (2.7x reduction) and achieves more than 2x
throughput with only 8 samplers compared to 24 at up to 247x
lower energy across the four tasks (Fig. 8). Adding more SGTs
can further reduce runtime of PGMA at higher silicon area cost.

In the absence of published silicon results, we compare
PGMA measurements to that of a mobile CPU and an eFPGA
in the same 16nm technology [3]. The CPU version on A53 is
sequential (multi-threading yields at most a 10x improvement
running on a server-class CPU). Fig. 10 summarizes measured
throughput (Mega-Samples/s), further scaled with per-unit
power and area, across three operating voltages: VMIN=0.6V,
VNOM=0.8V, and VMAX=0.9V. PGMA and eFPGA achieve
comparable speedup versus the A53. However, at 0.8V, PGMA
achieves sub-nJ/sample operating energy, a 1965x and 6.3x
energy reduction compared to A53 and eFPGA, respectively.
Per-mm2 reduction is greater at 4162x and 9.2x, respectively.
Fig. 9 shows the annotated die photos and summary of the chip.

Acknowledgements
This work is supported in part by DARPA CRAFT, JUMP ADA, Intel
and Arm.

References
[1] Zhang et al., ISCA, 2018. [2] Ko et al.,FPL, 2019.
[3] Whatmough et al., VLSI, 2019. [4] Besag, J R STAT SOC B 1986.
[5] Scharstein et al., IJCV, 2002. [6] Ko et al., JETC, 2018.

978-1-7281-9942-9/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 13:55:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Bayesian MRFmodel and Gibbs sampling inference.

Fig. 2: Unsupervised pixel-labeling task using an efficient tiled
asynchronous chromatic Gibbs sampling schedule.

Fig. 3: 16nm SoC with a dual-core Arm Cortex-A53 (2MB L2$),
embedded FPGA (eFPGA), and PGMA with 300KB global graph
cache (GGC) and sub-graph tile (SGT) cores.

Fig. 6: Reduction of MSE vs. sampling iterations on four workloads.

Fig. 9: Die photos (left) and 16nm test chip summary table (right).

Fig. 7: Comparison on four hardware platforms with frequency, on-
chip memory size and supported Gibbs sampling algorithms

Fig. 8: Comparing performance of four workloads on different
platforms to achieve 95%MSE reduction

Fig. 10: Throughput for PGMA, eFPGA and A53 while scaling voltage. Per Watt and per Watt per mm2 results show greater gains.

2x16 tile

t=0,2,4, …

t=1,3,5, …

Max tile size
supported:
2x640

Asynchronous
Gibbs sampling
updates tiles in

parallel not
sequentially

Updates red nodes

Updates blue nodes

On 2x16 tile perform chromatic Gibbs sampling

Select a 2x16
tile to sample

asynchronously

Repeat until max iterationsSample rest of the
tiles and repeat

until convergence

a CGS – Chromatic Gibbs sampling bAGS – Asynchronous Gibbs sampling

Fig. 5: Unsupervised machine perception tasks: image restoration,
stereo matching, image segmentation and sound source separation.

Fig. 4: SGT core contains 320KB input data buffer (IDB), 20KB local
graph cache (LGC) and four Gibbs sampler datapaths.

Authorized licensed use limited to: Harvard Library. Downloaded on April 29,2022 at 13:55:51 UTC from IEEE Xplore. Restrictions apply.

