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Abstract 
This paper describes a 16nm programmable accelerator for 
unsupervised probabilistic machine perception tasks that 
performs Bayesian inference on probabilistic models mapped 
onto a 2D Markov Random Field, using MCMC. Exploiting two 
degrees of parallelism, it performs Gibbs sampling inference at 
up to 1380x faster with 1965x less energy than an Arm Cortex-
A53 on the same SoC, and 1.5x faster with 6.3x less energy than 
an embedded FPGA in the same technology. At 0.8V, it runs at 
450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.  

Introduction 
Efficient unsupervised probabilistic machine perception is the 
next challenge for AI hardware. Prior emphasis on supervised 
learning with deep neural networks was limited to tasks with 
large labeled datasets that are expensive to train. In contrast, 
unsupervised Bayesian models are typically more powerful for 
problems that (i) have scarce labeled data, (ii) involve 
representing uncertainty, and (iii) have strong priors. 
Unfortunately, Bayesian inference workloads do not parallelize 
well on multi-threaded CPUs, requiring specialized hardware.  

This paper describes the first silicon implementation of an 
unsupervised Bayesian inference accelerator, which computes a 
2D probabilistic graphical model, Markov Random Field 
(MRF), using Gibbs sampling. An existing prior work describes 
augmenting server-class GPUs with an optical sampling unit to 
accelerate Gibbs sampling operations on MRFs [1]. Our CMOS-
based Parallel Gibbs sampling MRF Accelerator (PGMA) 
performs chromatic and asynchronous, parallel Gibbs sampling. 

Parallel Gibbs Sampling MRF Accelerator (PGMA) 
Unsupervised perception tasks are essentially a pixel-labeling 
problem, solved by reassigning each pixel in an image to a label 
from a given set (Fig. 1). This is done by mapping the problem 
to an MRF and performing Bayesian inference using Gibbs 
sampling in order to compute a set of labels that minimize a cost 
function describing the distribution [1,2]. While the Gibbs 
sampling and MRF node update steps are traditionally 
performed in a sequential fashion, PGMA combines (1) 
asynchronous Gibbs sampling (AGS) and (2) chromatic Gibbs 
sampling (CGS) [2] to improve parallelization (Fig. 2). CGS 
allows conditionally-independent nodes in the MRF to be 
sampled concurrently, but does not relax the on-chip memory 
required for storing intermediate model parameters, which scale 
exponentially [2]. AGS parallelizes updates by dividing the 
MRF into multiple tiles, each sampled as independent graphs 
with occasional global updates. AGS reduces on-chip memory 
by only storing data needed for individual tiles. 

Fig. 3 shows the 16nm SoC with a dual-core Arm Cortex-A53 
cluster with 2MB L2$ and a dual-core PGMA cluster. A second 
SoC containing an embedded FPGA (eFPGA) is used for 
comparison [3]. PGMA includes two sub-graph tiles (SGT) that 
share a global graph cache (GGC) for label values 
corresponding to the nodes of the MRF. The GGC consists of 
3x100KB SRAMs, sufficient for Standard Definition (SD) 
640x480 images. The two SGTs copy labels corresponding to a 
sub-graph partition of the global graph into the 640x2 local 

graph cache (LGC) and perform Gibbs sampling on the 
partitioned sub-graph. Each SGT has an input data buffer (IDB) 
to store data costs for the input pixels, using 4x80KB SRAMs 
(320KB total). IDBs store input data for the sub-graph. Each 
SGT has four Gibbs samplers (Fig. 4) that perform 2-color 
chromatic Gibbs sampling on the sub-graphs in the LGC. Each 
Gibbs sampler contains 4x16KB SRAMs (64KB total) for the 
smoothness cost table, which is pre-computed and loaded prior 
to inference (Fig. 4), to impose label smoothness amongst 
neighboring pixels. Total costs for all possible labels are 
computed and converted to Boltzmann probability distributions. 

Measurement Results 
PGMA accelerates any task formulated as a 2D MRF. Here, we 
consider four examples: (1) image restoration fills in damaged 
areas in an image, using the House (256x256, 256 labels) 
benchmark [4], (2) stereo matching creates a 3D depth map from 
a stereo camera image-pair, using the tsukuba (384x288, 16 
labels) benchmark [5], (3) image segmentation is a binary 
foreground/background segmentation task using an airplane 
image (500x333, 2 labels) from VOC2012, (4) sound source 
separation of audio mixtures from two sources, using 
spectrograms (513x125, 2 labels) as 2D MRFs [6]. 

Increasing the number of Gibbs sampling iterations consumes 
more energy but further minimizes the cost function, improving 
perceptual quality (Fig. 5).  On the four tasks, sequential, CGS, 
and AGS algorithms all converge to similar solutions, with AGS 
being the slowest (Fig. 6). However, increased parallelism and 
memory savings of AGS outweigh this disadvantage.  

Fig. 7 compares PGMA to three commercial hardware 
platforms: Nvidia Jetson TX2 A57 CPU, TX2 GPU, and Xilinx 
Zync ZCU102 [2]. PGMA is faster than A57 and GPU of TX2. 
While [2] is faster, PGMA reduces the memory footprint from 
4 to 1.46 MB (2.7x reduction) and achieves more than 2x 
throughput with only 8 samplers compared to 24 at up to 247x 
lower energy across the four tasks (Fig. 8). Adding more SGTs 
can further reduce runtime of PGMA at higher silicon area cost. 

In the absence of published silicon results, we compare 
PGMA measurements to that of a mobile CPU and an eFPGA 
in the same 16nm technology [3]. The CPU version on A53 is 
sequential (multi-threading yields at most a 10x improvement 
running on a server-class CPU). Fig. 10 summarizes measured 
throughput (Mega-Samples/s), further scaled with per-unit 
power and area, across three operating voltages: VMIN=0.6V, 
VNOM=0.8V, and VMAX=0.9V. PGMA and eFPGA achieve 
comparable speedup versus the A53. However, at 0.8V, PGMA 
achieves sub-nJ/sample operating energy, a 1965x and 6.3x 
energy reduction compared to A53 and eFPGA, respectively. 
Per-mm2 reduction is greater at 4162x and 9.2x, respectively. 
Fig. 9 shows the annotated die photos and summary of the chip.  
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Fig. 1: Bayesian MRFmodel and Gibbs sampling inference.

Fig. 2: Unsupervised pixel-labeling task using an efficient tiled
asynchronous chromatic Gibbs sampling schedule.

Fig. 3: 16nm SoC with a dual-core Arm Cortex-A53 (2MB L2$),
embedded FPGA (eFPGA), and PGMA with 300KB global graph
cache (GGC) and sub-graph tile (SGT) cores.

Fig. 6: Reduction of MSE vs. sampling iterations on four workloads.

Fig. 9: Die photos (left) and 16nm test chip summary table (right).

Fig. 7: Comparison on four hardware platforms with frequency, on-
chip memory size and supported Gibbs sampling algorithms

Fig. 8: Comparing performance of four workloads on different
platforms to achieve 95%MSE reduction

Fig. 10: Throughput for PGMA, eFPGA and A53 while scaling voltage. Per Watt and per Watt per mm2 results show greater gains.
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Fig. 5: Unsupervised machine perception tasks: image restoration,
stereo matching, image segmentation and sound source separation.

Fig. 4: SGT core contains 320KB input data buffer (IDB), 20KB local
graph cache (LGC) and four Gibbs sampler datapaths.
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