
1982 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 7, JULY 2019

A 16-nm Always-On DNN Processor With Adaptive
Clocking and Multi-Cycle Banked SRAMs

Sae Kyu Lee , Member, IEEE, Paul N. Whatmough , Member, IEEE, David Brooks, Fellow, IEEE,
and Gu-Yeon Wei, Senior Member, IEEE

Abstract— Always-on subsystems in mobile/Internet of Things
(IoT) SoCs process a variety of real-time sensor data deep neural
network (DNN) classification workloads in a heavily constrained
energy budget. This can be achieved with robust, low-voltage
circuits, and specialized hardware accelerators. We present a
16-nm always-on DNN processor, which consists primarily of a
microcontroller and a DNN accelerator with on-chip SRAM for
the model weights. The design operates robustly from 0.4 to 1-V,
with calibration-free automatic voltage/frequency tuning pro-
vided by tracking small non-zero razor timing error rates.
A novel timing error-driven synchronization-free adaptive clock-
ing scheme significantly reduces the adaptation latency to provide
resilience to fast on-chip supply noise and reduce margins.
To accommodate the tight energy constraints of always-on IoT
workloads, we implement a multi-cycle SRAM read scheme
that allows the memory voltage to scale at iso-throughput,
improving energy efficiency across the entire operating range.
The wide operating range allows for high performance at
1.36 GHz, low-power consumption downs to 750 µW, and state-
of-the-art raw efficiency at 16-bit precision of 750 GOPS/W
dense or 1.81 TOPS/W sparse.

Index Terms— Adaptive clocking, deep neural networks
(DNNs), hardware accelerators, Internet of Things (IoT), machine
learning (ML), razor, system-on-chip (SoC).

I. INTRODUCTION

ALWAYS-ON intelligence represents a sea-change in the
utility of mobile and Internet of Things (IoT) devices,

both in consumer and industrial applications. Two big drivers
for always-on intelligence are user interfaces (UIs) and sensor
data classification. Emerging UIs on small form-factor devices

Manuscript received November 2, 2018; revised February 18, 2019;
accepted April 9, 2019. Date of publication May 15, 2019; date of current
version June 26, 2019. This paper was approved by Guest Editor Stefan
Rusu. This work was supported in part by the U.S. Government through
DARPA CRAFT and DARPA PERFECT Programs, in part by NSF under
Award 1551044 and Award 1718160, and in part by Intel Corporation.
(Corresponding author: Sae Kyu Lee.)

S. K. Lee was with the School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138 USA. He is now with the
IBM T. J. Watson Research Center, New York, NY 10598 USA (e-mail:
saekyu.lee@ibm.com).

P. N. Whatmough is with Arm Research, Boston, MA 02451 USA, and also
with the School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138 USA (e-mail: paul.whatmough@arm.com).

D. Brooks and G.-Y. Wei are with the School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA 02138 USA (e-mail:
dbrooks@eecs.harvard.edu; gywei@g.harvard.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2913098

Fig. 1. Overview of a typical always-on sensor classification workload,
showing the workload split between the microcontroller and accelerator
hardware.

are focused on speech-driven interfaces and require tasks such
as audio keyword spotting, gaze detection, speaker identifica-
tion, and face detection/matching. Sensor data analysis, on the
other hand, encompasses a huge variety of potential appli-
cations, from industrial environmental monitoring to health
monitoring applications such as human activity recognition. In
all these cases, there is a common requirement for ultra-low-
energy operation and robust autonomous classifier hardware
to run these tasks continuously.

A typical sensor data classification workload (Fig. 1)
includes stages for preprocessing, feature extraction, and clas-
sification using a machine learning (ML) model, such as a
deep neural network (DNN). To handle this workload pipeline
within an energy budget that allows for always-on operation
is a severe challenge and requires different hardwares for
different stages. Preprocessing and feature extraction (as well
as general control tasks) are well handled by a microcontroller
that offers software programmability. DNN inference demands
a significantly larger compute and memory footprint, which is
best served by a specialized hardware accelerator.

Always-on operation typically requires hardware that is able
to run continuously and autonomously. As part of a larger
SoC, the always-on subsystem operates while the rest of the
SoC is in a sleep state, and ideally power-gated to remove
even leakage power. Therefore, the always-on subsystem must
be self-contained and is not able to assume the presence
of a larger CPU and memory system. Hence, as well as
efficient hardware acceleration of the algorithm computation
itself, the hardware must also be self-contained and consider
memory and input/output (IO), and provide programmability
for simple control tasks. Finally, for energy efficiency reasons,
it is essential to avoid the use of off-chip SRAM or DRAM,
which incurs at least an order-of-magnitude increase in energy
per access compared to on-chip memory [1].

Aggressive supply voltage scaling is essential to reach
energy efficiency levels that are realistic for always-on
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applications. However, from a circuits perspective, low-voltage
operation of digital circuits brings a number of challenges.
First, dense SRAM memories operate with much lower noise
margins compared to canonical static CMOS logic, due to the
use of ratioed logic and dynamic logic. Hence, the voltage
scaling of commercial 6 T SRAM arrays is significantly more
limited than that of logic cells and flip-flops. Second, it is
necessary to be able to set the supply voltage automatically to
suit the clock frequency demanded by the application through-
put constraint. This is ideally done adaptively, to minimize
excess margins otherwise required to account for process,
voltage, temperature, and aging (PVTA) [2]–[4]. Finally, it is
also essential that circuit operation at low voltage is robust
to supply voltage noise induced either directly or through a
shared ground, due to the activity of local logic or even activity
of another component on the SoC, which can cause supply
resonance [5].

A large body of work has accumulated over the past
couple of years on the topic of hardware accelerators
for DNNs. Of these, a few published chips have focused
on the features required for low-energy IoT applications.
Bang et al. [6] introduced an on-chip nonuniform memory
architecture. Whatmough et al. [7] employed on-chip memory
only and demonstrated circuit-level error tolerance in DNNs.
Bankman et al. [8] demonstrated a mixed-signal approach
to convolutional neural networks, with all memory on-chip.
Zhang et al. [9] described an in-memory ensemble weak
classifier.

This work [10] presents an autonomous wide dynamic range
DNN subsystem for always-on IoT applications. Addressing
the challenges of low-voltage circuit design in this application,
we describe the following.

1) DNN Processor: Hardware architecture for an always-
on subsystem incorporating a microcontroller and a
DNN accelerator with all memory on-chip. Timing-
error detection and mitigation circuits (also known as
“razor” [4]) are used to automatically tune supply volt-
age, dynamically eliminating margins without requiring
calibration.

2) Multi-Cycle SRAMs: The memory bandwidth demands
of DNNs are a bottleneck for performance and energy
efficiency. In addition to this, SRAM voltage scaling
performance is inferior to that of logic. To circumvent
both of these issues, we demonstrate an arrangement that
allows us to increase the effective cycle time for SRAM
reads, without reducing the bandwidth, while using only
standard commercial 6 T SRAM arrays.

3) Adaptive Clocking: A fast implementation of discrete
adaptive clocking driven from timing error detection
circuits. Inside an automatic timing error-driven supply
voltage scaling loop, fast-adaptive clocking provides a
safety-net to allow for operation with minimal margins.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of the always-on DNN processor
architecture, multi-cycle SRAM read, and adaptive clocking
schemes. Section III describes the test chip implementation
and Section IV presents the measurement results. Finally,
Section V concludes this paper.

Fig. 2. Block diagram of always-on DNN processor for Mobile/IoT applica-
tions. The FC-DNN accelerator includes smaller SRAMs for activations and
sparse node list (shown in Fig. 3).

Fig. 3. Block diagram of sparse FC-DNN pipeline with DSTB razor latches
(inset) and dynamic sequencing for sparse activations. Both the activation load
and the weight address generation are stallable from an interlock preceding
the MAC unit.

II. ALWAYS-ON DNN PROCESSOR

A. Architecture Overview

Fig. 2 shows the block diagram of the always-on DNN
processor. The major components include an Arm Cortex-
M0 microcontroller with 128 KB of instruction and data
SRAM, a 32-bit AHB interconnect, low-bandwidth peripherals
on an APB interconnect, and a DNN accelerator with a 1-MB
weight SRAM on a high-bandwidth 128-bit AXI interconnect.
The microcontroller provides programmable system manage-
ment tasks, as well as pre-processing and feature extraction
as required by the application (Fig. 1). The fully connected
DNN (FC-DNN) accelerator and weight SRAM are contained
in separate voltage islands, clocked by a dedicated digitally
controlled oscillator (DCO). The 1-MB banked weight SRAM
stores the model weights, allowing the accelerator to operate
autonomously without incurring overheads of costly off-chip
memory access.

Fig. 3 shows the FC-DNN accelerator pipeline that includes
the accelerator and the 1-MB weight SRAM. The FC-DNN
accelerator is a second-generation design derived from [7],
with a five-stage pipeline, eight-way fixed-point single instruc-
tion, multiple data (SIMD) datapath, and optimizations for
16b/8b operands. The accelerator pipeline also includes
smaller SRAMs to store activations and sparse node list.
The FC-DNN architecture exploits activation data sparsity to
significantly reduce both the number of multiply-accumulates
(MACs) and the number of memory accesses [1]. During the
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activation stage, output activations are compared to a program-
mable threshold to eliminate small neurons from downstream
processing, achieved by storing a list of active neurons in the
node SRAM.

A razor [4] timing error detection-based adaptive voltage
and frequency scheme is used to set the operating condition
for the accelerator and weight SRAM. Timing error detection
is performed using the double-sampling method with time-
borrowing (DSTB) in the datapath [2], [11]. In the accelerator
pipeline (Fig. 3), the weight SRAM load and SIMD datapath
unit have DSTB latches at critical timing end-points. A DSTB
register [11], shown in Fig. 3, is composed of a flip-flop and
latch, with the D input feeding into both in parallel. The
latch Q output is used in the datapath. An error signal (ERR)
is derived from the XOR of the flip-flop and latch outputs.
A pulsed clock drives the CLK signal, such that the latch
behaves as a pulse latch, while the flip-flop behaves as a
normal hard-edge register. The DSTB hence provides TB in
the datapath due to the transparency of the latch in the clock
pulse phase. Meanwhile, the ERR signal is asserted if the
output of the flip-flop and pulse latch differs, which will be
true if a transition on D occurs after the clock edge, but before
the clock pulse falls. The DNN processor tunes the operating
condition of the accelerator and weight SRAM by monitoring
the ERR signal. Similar to some previous razor accelerators,
timing error detection is used without explicit replay-based
correction [1], [12], [13], that is, timing errors are intentionally
left uncorrected in the datapath with some quality impact at
the algorithm level.

In this paper, we focus on the low-voltage circuit per-
formance of this design in 16-nm FinFET technology,
by describing a banked weight SRAM, and a fast-adaptive
clocking mechanism. These are described in detail in
Sections II-B and II-C.

B. Multi-Cycle Banked SRAM Read

The forward calculation of FC-DNN layers is memory
bandwidth limited, in contrast to CNN layers, which are
typically compute bound. Exploiting abundant data sparsity
significantly reduces memory bandwidth [7], but access to the
model parameters (weights) is still ultimately the limitation
on performance. In addition to this, SRAM is generally also
the bottleneck limitation on the minimum operating voltage
(VMIN). To address both of these issues, we describe a
banked multi-cycle scheme that relaxes the clock-frequency
requirement of the SRAM without degrading the average
throughput. We do this using an optimized accelerator micro-
architecture with unmodified commercial 6-T SRAMs, which
is in contrast to previous work that uses custom 8-T arrays
optimized specifically for low-voltage operation [6].

The multi-cycle banked SRAM micro-architecture is shown
in Fig. 4, along with the clocking waveforms. The 1-MB
weight SRAM is split across four autonomous banks, using the
LSBs from the address to determine the bank. Therefore, read
requests to sequentially addressed words are serviced from
consecutive banks, in a round-robin fashion. A decode and
backpressure unit generates an enable for each bank based on

Fig. 4. Multi-cycle banked SRAM microarchitecture and associated wave-
forms for clocking.

the address received on each transaction on the 128-bit AXI
bus. Given that each bank now has an activity factor of one
access in every four address requests, the effective throughput
of any given bank is reduced to one-fourth, while the overall
throughput is unchanged at one 128-bit data access per AXI
transaction per cycle. Simply stated, this means that the read
access time of the SRAM in each bank has been relaxed by a
factor of 4×.

We exploit this read access time reduction by using a
counter and clock gating (CG) logic to enable a configurable
one or two cycle read latency for the banked SRAMs. This
approach allows us to simply use a single clock for the
accelerator and the SRAM, avoiding the need to generate
and calibrate another clock source, which is an important
consideration for realistic product scenarios. Although each
bank may now take multiple clock cycles to complete each
read, there is no change in throughput for access to sequential
addresses; the latency increases by one cycle which has a
negligible impact on overall latency per inference. However,
for non-sequential accesses that decode to the same bank in
consecutive cycles, there is a bank collision, where the SRAM
will be completing the second cycle of the first read when it
receives a new read request.

The FC-DNN accelerator allows for both conventional dense
processing of FC layers, as well as a sparse mode, where
only activations larger than a programmable threshold are
stored and processed. The sparse mode will often result in
non-sequential addresses, which introduces occasional random
bank contention and pipeline bubbles. Fig. 5 shows simplified
timing diagrams for both dense accesses (which generate
sequential addresses) and sparse (which introduces occasional
contention resulting in stalls). Contention in sparse mode is
handled by stalling the bus for a cycle, which is implemented
by the backpressure unit. The accelerator pipeline micro-
architecture is redesigned to allow stalling on weight memory
bank collisions, as shown in Fig. 3, where the interlock logic
before the MAC unit handles pipeline backpressure. Fig. 6
shows an analysis of the impact of stall cycles against network
sparsity by sweeping the activation threshold during sparse
operation when processing an MNIST model. In sparse mode
at iso-accuracy, the stall cycle penalty is very low at less than
1%, which is a negligible impact on throughput. This is due to
the high correlation in the input images, which mainly consist
of large runs of white background. At the extreme of 90%
sparsity, the SRAM reads incur <2.6% additional stall cycles,
at which point the classification accuracy is degraded due to
overly aggressive pruning of the activation nodes.
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Fig. 5. Bank timing for two-cycle read operation during dense access (left)
and sparse access (right). Reads in dense mode are sequentially striped across
the banks and therefore multi-cycle read does not result in contention. Sparse
mode causes occasional bank collisions that result in stall cycles.

Fig. 6. Analysis of the impact of data sparsity on the percentage of stall
cycles and MNIST classification accuracy. Dense access results in zero stalls,
but sparse operation introduces occasional stall cycles. Sparse operation at
iso-accuracy results in a stall cycle penalty of <1%, which is negligible.

C. Low-Latency Timing-Driven Adaptive Clocking

DNN algorithms are robust to small amounts of noise in
the computation, which have minimal impact on classification
accuracy. This has previously been exploited to dynamically
remove PVTA margins and operate at a small non-zero timing
error rate [7]. However, operating in this regime exposes the
circuits to fast voltage droops. Although worst case di/dt
voltage noises are infrequent in occurrence [14], [15], they
can introduce large bursts of timing violations that may not
be tolerable, and also risk corrupting the control plane logic,
thus requiring additional voltage or frequency guardbands.
Prior works have demonstrated adaptive clocking techniques to
mitigate the impact of fast voltage droops [3], [5], [16]–[21].
In this paper, we propose a fast-adaptive clocking scheme
specifically designed for error-tolerant accelerators. We extend
the in situ razor timing error detection scheme to also trigger
the fast-adaptive clocking mechanism.

Previous work has shown that benefit from adaptive clock-
ing is fundamentally limited by voltage droop detection
latency [22]. This is due to the fixed latency through the
clock generation oscillator and the clock distribution and
is typically limited by synchronization latency. Previously
proposed voltage-triggered schemes often require complex
calibration [3], [17], [18]. However, the use of in situ razor
circuits to trigger adaptive clocking is ideal since they can be
distributed to capture fast local variation and do not require
calibration or significant margin. Fig. 7 shows an illustration

Fig. 7. Razor timing error-driven fast-adaptive clocking. Double-sampling
with TB (DSTB) pulse latches provides timing violation information, which
is combined and used to initiate a frequency reduction at the DCO, using a
metastability-safe fast loading stage, which removes sync flop latency.

of the razor-driven adaptive clocking scheme. Unfortunately,
using razor to trigger discrete1 adaptive clocking has a similar
limitation to other approaches, due to the fact that the output
trigger signal (ERR) is asynchronous to the clock (FCLK) and
prone to metastability. The ERR signal must be synchronized
before being used to adapt the clock, to avoid the possibility of
glitches and slow edges in the DCO output. A typical design
solution is to use a flip-flop synchronizer to minimize the
chance of metastability down to a tolerable risk. However,
the synchronizer increases the adaptation latency, which is a
critical requirement for adaptive clocking.

Fig. 7 shows a simplified schematic of the proposed scheme,
which allows the requirement for the synchronizer to be
relaxed without sacrificing metastability performance. DSTB
pulse latches at timing critical end points in the accelerator
pipeline and the weight SRAM detect timing errors due to fast
voltage droops (Fig. 3). Timing error outputs from all DSTB
latches in the system are OR reduced to a single ERR control
signal, which is then used to drive the metastable-safe control
input on the DCO to trigger a reduction in the clock frequency
(FCLK). The initial timing errors that trigger adaptation are
masked with TB in the DSTB pulse latches. The duration of
the FCLK reduction is programmable via the Extend block,
to allow it to last until the voltage droop event subsides.
A conventional synthesized clock tree then distributes the
clock output from the DCO to the flops in the design [23].
The metastable-safe frequency adaptation mechanism in the
DCO allows the use of asynchronous ERR signal without
the need for a flip-flop synchronizer stage, reducing the
adaptation latency. As a result, the worst case overall droop
response latency of this scheme, from timing error detection

1A discrete-step adaptive clocking scheme triggers a fixed change in the
clock period, as opposed to a continuously adaptive clock period.
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TABLE I

TEST CHIP SUMMARY

to clock distribution as shown in Fig. 7, is less than 2.8 clock
cycles (cc).

The simplified block diagram of the DCO shown in Fig. 7
illustrates the metastability-safe frequency adaptation mech-
anism. The DCO is an all-digital, single-ended design with
muxed delay stages for conventional coarse-grained frequency
tuning, and achieves fast metastability-safe frequency reduc-
tion via binary varactor loads before the ring oscillator output.
The varactors use the two inputs of NAND2 gates: the input
closest to the output in the NAND2 stack directly loads the
delay path (CIN in Fig. 7), while the other input modulates
the effective capacitance of CIN. Hence, any asynchronous
events that result in a metastable signal on the NAND2 ERR
input cannot cause glitches on FCLK, and hence a synchronizer
is not required. Multiple NAND2 stages, close to the DCO
output, minimize charge injection and adaptation latency. The
magnitude of the FCLK reduction is programmable via the
varactor select input in the DCO.

III. TEST CHIP IMPLEMENTATION

The DNN processor (Fig. 2) was implemented in a Taiwan
Semiconductor Manufacturing Company (TSMC) 16-nm
FinFET technology, and flip-chip bonded to a 165-pin ball grid
array (BGA) package. Table I gives a summary of the test chip
and Fig. 8 shows the die photograph. Physical implementation
was carefully constrained to achieve a wide dynamic range
(24×) in FMAX, from 1.36 GHz at 1.0-V down to 57 MHz at
near-threshold, 0.4-V. This was achieved with a commercial
standard cell library and 6-T SRAM compiler. In all cases,
razor error-rate counters are used to automatically find the
optimal VDD/FCLK settings at the first error point, without
calibration [4], [7]. The DSTB pulse latches placed on critical
timing end points (Fig. 3) are implemented using standard
cells only, with 2.03× area overhead of a regular flip-flop.

Fig. 8. Annotated die photograph of flip-chip packaged 16-nm test chip.

The area overhead of all DSTB latches accounts for <2.0% of
the overall standard cell area in the design. All other paths are
constrained with 30% extra timing margin to avoid functional
failures.

Validating and characterizing implementations of adaptive
clocking schemes are particularly challenging. We used flip-
chip packaging and carefully designed Printed Circuit Board
(PCB) supply coupling, in order to achieve a predictable
supply impedance. A number of circuit instrumentation blocks
were incorporated in the design to allow generation and
measurement of supply voltage noise. We use an on-chip
noise generator to emulate the supply noise generated on a
common on-chip ground plane by large blocks in a full SoC.
Previous implementations of noise generation circuits have
used large devices to short the supply rails briefly to generate
supply droops [24]–[26]. However, this approach requires
custom layout and carefully validated circuits to ensure that the
shorting devices behave as intended and will not inadvertently
engage, which would be catastrophic. An alternative approach
of using a large ring oscillator [14] has the advantage that it
can be implemented using standard-cells and automatic place
and route tools. However, ring oscillators can take significant
silicon area for a large voltage droop range.

In this paper, we use a novel approach to short the supply
rails using only conventional CMOS standard cells. Fig. 9
shows an overview of the on-chip noise generation circuits,
which consist of an array of shorted inverter pairs that induce
VDD droops by driving one of the inputs with an on-chip
pattern generator, while the other input of the pair is tied low.
This causes short-circuit current between VDD and VSS when
the two inputs differ, i.e., in this condition, one inverter pulls
the intermediate node high, while the other pulls low, shorting
the supply. The pattern generator unit is able to implement
impulses, steps, and other droop waveforms. The test chip
implements 256 inverter pairs, enabled by an 8-bit select code.
The measured noise generator current is given in Fig. 9(b).

Fig. 9(b) also plots the impedance profile of the power
delivery network (PDN) of the test chip that includes an
off-chip linear regulator, PCB board, socket, and the flip-
chip package, characterized using the on-chip noise generator.
The voltage response is measured using a fast oscilloscope
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Fig. 9. All-digital on-chip noise generation circuits. (a) Block diagram.
(b) Measured current versus noise generator code (left), measured PDN
impulse response (middle), and impedance profile (right).

Fig. 10. Measured trace of VDD droop waveform demonstrating adaptive
clocking response.

attached to dedicated sense pins on the package. The resonant
frequency of the PDN is ∼68 MHz for the DNN accelerator.
The measured impulse response of the PDN is also shown.
The droop magnitude is also calibrated using the same external
oscilloscope and voltage sense pins.

At last, the fast-adaptive clock modulation was implemented
on the test chip using an open-loop DCO. The required clock
frequency is found incrementally, based on the current DCO
output frequency, which is observed by dividing down on-
chip and then measuring externally using an oscilloscope. The
DCO can be embedded in a control loop without significant
modification, as the fast modulation is well beyond typical
loop bandwidths.

IV. MEASUREMENT RESULTS

A. Fast Razor Adaptive Clocking

Measured scope traces shown in Fig. 10 confirm proper
operation of the razor adaptive clocking architecture. A step
current is generated by the noise generator, which induces a

Fig. 11. Measurements of adaptive clocking system benefits (a) reduction
in timing violation rate via reducing adaptation latency by removing the
synchronization flop, and optimizing the FCLK reduction extend results and
(b) resulting throughput increase or energy savings due to reclaimed margin.

VDD droop. Timing violations occur when VDD falls below the
“first error” voltage, which then triggers a 10% FCLK reduction
in the DCO within 3 clock cycles (cc). FCLK reduction lasts for
a configurable number of cycles via the Extend block (shown
in Fig. 7) by holding the ERR signal high (16 cc in Fig. 10),
allowing it to last until the fast droop event passes.

Fig. 11 summarizes the benefits of the proposed
metastability-safe adaptive clocking across a range of adap-
tation latencies and FCLK reduction cycles. The experimental
setup induces a periodic voltage noise on-chip at the resonant
frequency with a magnitude of 10% VDD at the nominal
VDD = 0.8-V. DSTB latches at timing critical stages monitor
and count timing violations due to this VDD noise, which are
aggregated and captured using on-chip performance counters.
Fig. 11(a) shows the improvements in timing violation rates,
normalized to the baseline error rate with the adaptive clocking
system disabled. Enabling the adaptive clocking system, with
the optional sync flops enabled (shown in Fig. 7) and 4 cc of
FCLK reduction, reduces timing violations by 35%. Without
synchronization, adaptation latency reduces from 5 to 3 cc
and timing violations now decrease by 56%. For the voltage
noise scenario presented, extending the FCLK reduction to an
optimal setting of 12 cc further reduces timing violations,
down by 80% overall. This reduction translates to 11.7%
throughput improvement (by increasing the baseline clock
frequency) or 8.4% energy savings (by reducing the baseline
voltage) by reclaiming some of the timing/voltage guardbands,
as shown in Fig. 11(b).

Fig. 12 shows the classification accuracy observed over the
whole 10-K vector MNIST [27] test set versus voltage droop
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Fig. 12. MNIST classification accuracy versus voltage droop, demonstrating
adaptive clocking with TB provides ∼10% droop tolerance.

magnitude for resonant supply voltage noise. Without adaptive
clocking, classification accuracy plummets as voltage droop
magnitude increases beyond 4%. However, adaptive clocking
enabled with TB to mask the initial trigger errors can tolerate
up to 10% voltage droop with a negligible drop in accuracy.
Since the adaptive clocking is driven by in situ timing error
detection, the calibration is not required. This is in contrast
to schemes that use a global canary circuit to trigger clock
adaptation.

B. Multi-Cycle Banked SRAM

Although the DNN processor avoids costly off-chip memory
accesses by storing all model parameters (weights) in the
on-chip weight SRAM, memory power is still a significant
portion of total power due to the size of the SRAM and the
memory bandwidth required to support the eight-way SIMD
unit. The proposed banked weight SRAM architecture, shown
in Fig. 4, allows for a two-cycle SRAM read latency, which
not only relaxes timing constraints for SRAM access but
enables aggressive VMEM scaling at iso-throughput to provide
significant power savings across the entire operating range.
Fig. 13(a) shows the measurement results from the multi-
cycle banked SRAM voltage scaling. At one-cycle memory
read latency, the weight SRAM (VMEM) operates at the same
voltage as the DNN accelerator (VACC). By allowing two-cycle
read latency for the SRAM, VMEM can scale independently
of VACC without sacrificing throughput. For example, VMEM
can scale from 1 to 0.68-V with VACC still at 1-V, with no
loss in performance. This results in significant power savings
as shown in Fig. 13(b), which plots the aggregate power
consumption of the DNN accelerator and weight SRAM for
different operation modes. For example, at VACC = 1-V, two-
cycle read latency reduces overall power consumption from
135 to 93 mW for 16-bit weights with additional reduction
down to 72 mW by switching to 8-bit weights. At the other end
of the voltage range, the DNN accelerator and weight SRAM
achieve 750 µW at VACC = 0.4-V and VMEM = 0.38-V using
two-cycle SRAM read latency and 8-bit weights. Fig. 13(c)
summarizes the resulting energy improvements for three oper-

Fig. 13. Measured benefits of multi-cycle banked SRAM read. (a) SRAM
operating voltage scaling at iso-throughput. (b) FC-DNN accelerator and
weight SRAM power savings. (c) Energy savings for the MEP, nominal
voltage, and maximum frequency operating points.

Fig. 14. Measured power breakdown of weight SRAM and DNN accelerator
at nominal voltage 0.8-V for (a) one-cycle SRAM read with 16-bit weights,
(b) two-cycle SRAM read with 16-bit weights, and (c) two-cycle SRAM read
with 8-bit weights.

ating points: maximum frequency, nominal voltage, and min-
imum energy. Multi-cycle read latency provides 31%, 24%,
and 10% energy improvements, respectively, at the three
operating points for 16-bit weights. Overall, this scheme
improves energy efficiency across the entire operating range.
Finally, Fig. 14 shows a breakdown of power consumption
split between the DNN accelerator and the weight SRAM at
the nominal voltage (0.8 V). Enabling two-cycle SRAM read
and switching to 8-bit weights reduce the SRAM access power,
thereby increasing the compute to memory access power ratio
and improving the overall energy efficiency.

C. Energy and Throughput

Five always-on sensor classification workloads [28] were
mapped onto the DNN processor (Table II). The workloads
used consist of: binary face matching (FACE) [29], keyword
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TABLE II

ALWAYS-ON SENSOR WORKLOADS

Fig. 15. Energy/inference (left) and inferences/second (right) for IoT
workloads at maximum frequency and MEPs.

spotting (KWS) [30], two different human activity recognition
scenarios (HAR1 [31] and HAR2 [32]), and handwritten digit
classification (MNIST) [27]. Fig. 15 reports the measured
energy efficiency (energy per inference) and throughput (infer-
ences per second). Two operating points are given for each
workload, one at FMAX and one at the minimum energy point
(MEP). All five workloads run at well below µJ.

Raw energy efficiency is reported in Fig. 16, as a func-
tion of the supply voltage. With 16-bit data and no spar-
sity optimization, the measured energy efficiency tops out at
750 GOPS/W at the MEP, which includes all memory power.
This is the highest reported raw GOPS/W to date at this
precision, even amongst CNN accelerators with very high data
reuse [33]–[35] not achievable with FC layers. Compared to
other work that similarly does not rely on off-chip DRAM [1],
this is a 2× improvement on the state of the art. For 8-bit
operands with sparse data prediction, the measured efficiency
increases to 2.44 TOPS/W at the MEP, which yields the lowest
reported MNIST energy per inference of 151 nJ at 98.51%
accuracy, which is 2.3× lower than [1] and [7].

D. Comparison With State of the Art

Table III gives a comparison of adaptive clocking schemes
published in silicon to date. Compared to prior works, the pro-
posed adaptive clocking scheme does not require any complex
calibration, which is a significant advantage. Removing the
flip-flop synchronizers from the control path achieves com-
pelling speed-up in adaptation latency, with droop detection
and FCLK adjustment each taking ∼1 cc. Hashimoto et al. [18]

Fig. 16. Measured raw efficiency over the operating voltage range for dense
and sparse operations.

Fig. 17. Energy versus accuracy comparison for published MNIST results
measured in silicon. Data are from the following references: Buhler et al.
(VLSI’17) [36], Whatmough et al. (ISSCC’17) [7], Kim et al. (VLSI’15) [37],
and Merolla et al. (Science’14) [38].

achieved comparable results by also removing synchronizers
from the droop detection and frequency modulation control
path. In addition to the fast adaptation latency, the use of
distributed razor DSTB latches allows the capture of fast local
droops unlike the global detection circuit used in [18]. The
DNN inference accelerator has the unique property that the
workload is error tolerant to a degree. This is not the case for
the adaptive clocking schemes published for CPUs.

Finally, Fig. 17 shows the comparison of the measure-
ments of our DNN processor with other published acceler-
ator application-specific integrated circuit (ASIC) results on
the MNIST benchmark. This is arguably the most worth-
while approach, since simpler operations per second per watt
(OPS/W) metrics become confusing with different models,
operand bitwidths, storage requirements, and so on.

Fig. 17 includes both DNNs and spiking neural networks
(SNNs). Implementations of SNNs [36]–[38] seem to occupy
a frontier that is at least an order of magnitude greater in
energy and generally offer poor accuracy. The best reported
convolutional neural network result for MNIST [34] has too
high energy/inference to include on our plot.
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TABLE III

COMPARISON OF ADAPTIVE CLOCKING SCHEMES

The analog SNN implementation in [36] reports impres-
sive energy/inference, although accuracy is very limited.
Zhang et al. [9] presented an implementation of an MNIST
classifier where the computation is performed in a stan-
dard 6-T SRAM. Results show very low energy efficiency
of 630 pJ/inference, but poor accuracy of 90% on a heavily
cut-down version of MNIST (9 × 9 pixel images instead of
28×28). A related publication on an in-SRAM implementation
by Ando et al. [39] does not report energy/inference, but again
demonstrates poor accuracy of 90.1% with 22 × 22 images.
An in-SRAM CNN design by Biswas and Chandrakasan [40]
reports much better accuracy of 96%, but does not report
energy/inference. Analog and in-memory architectures are also
generally less robust to aggressive voltage scaling and require
challenging analog circuit design and layout.

V. CONCLUSION

This paper described a 16-nm always-on DNN processor
that achieves state-of-the-art efficiency on IoT DNN inference
tasks, which is a key enabling technology for always-on
mobile and IoT devices. The fabricated test chip demon-
strated a number of novel techniques, including razor timing
error rate-driven automatic calibration-free voltage/frequency
scaling, multi-cycle banked SRAM scheme to relax the
SRAM read cycle time, and a fast-adaptive clocking scheme
for robustness. Measurement results show that the DNN
processor has a wide dynamic range and can operate at
FMAX of up to 1.36 GHz, and achieves low-power opera-
tion all the way down to 750 µW at the minimum volt-
age point. We also achieve state-of-the-art raw efficiency at
16-bit precision of 750 GOPS/W dense or 1.81 TOPS/W
sparse.
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