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1 INTRODUCTION
The twilight of Dennard scaling has activated a global trend towards
application-based hardware specialization. This trend is currently
accelerating due to the surging democratization and deployment
of machine learning on mobile and IoT compute platforms. At the
same time, the growing complexity of specialized system-on-chips
(SoCs) is levying a more laborious tax on ASIC companies’ design
and verification efforts. High-level synthesis (HLS) is emerging as a
foremost agile VLSI development methodology gaining increasing
adoption in the hardware design community. However, concerns
over Quality of Results (QoR) remain a key factor inhibiting more
mainstream adoption of HLS. Obtaining optimal PPA outcomes can
sometimes be an elusive or challenging task and strongly correlates
with the syntactic approach of the high-level source code.

In this paper, we aim to share the proven HLS practices we em-
ployed to raise the level of confidence in the post-silicon functional
and performance expectations from our accelerator designs. In do-
ing so, we recount some of the main challenges we encountered in
our HLS-based hardware-software co-design journey and offer a
few recommendations cultivated from our learnings. Finally, we
posit on where the research opportunities to further improve design
QoR and HLS user experience lie.

2 HLS-BASED SOFTWARE-HARDWARE
CO-DESIGN INFRASTRUCTURE

In the development of machine learning accelerators, we relied on
an objected-oriented HLS-based methodology (OOHLS) for fast
SystemC-to-RTL prototyping [9]. Our OOHLS adaptation, shown
in Fig. 1, effectively closes the loop between the application’s soft-
ware modeling and the backend hardware implementation being
abstracted inside the HLS environment. Using the software ML
framework (e.g., PyTorch, TensorFlow) as a golden reference, the
HLS environment facilitates making, with relatively fast velocity,
hardware tweaks and ECOs until i) the hardware and software
output activations from the neural network returned matching bit-
level results, ii) the post-HLS verification is functionally correct,
and post-HLS PPA results are satisfactory.

Thanks in great part to this infrastructure, we were able to de-
sign, verify, and tape out edge AI SoCs [11, 15] with HLS-based
accelerators in a span of about four months. This agility is made
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Class Datapath
Class PE;
Class GB;
Class FlexASR
…

#include <nvhls_verify.h>
#include libnpy/npy.hpp
SC_MODULE(testbench) {
testbench(sc_module_name
name)
…
}
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Figure 1: HLS-based HW/SW co-design and co-verification
methodology we adopted during tapeouts of edge AI SoCs.

possible by the following characteristics which we benefited from
(similarly expressed in [9, 10]):

• Modularity.Well-maintained libraries such as MatchLib [9],
and HLSLibs [2] boost HLS design productivity by offering
a slate of synthesizable, configurable, and common hard-
ware components such as scratchpad memories, latency-
insensitive channels, arbitrated crossbar arrays, datatype
classes, etc. Notably, MatchLib also provides AXI channels
enabling the HLS design to be connected with the rest of
the SoC. Therefore, hardware engineers need not “reinvent
every wheel" as these libraries help modularize the design in
a correct-by-construction fashion.

• High-throughput verification. C++ based simulation is
innately orders-of-magnitude faster than an equivalent RTL-
based simulation. And, the reuse of the C++/SystemC test-
bench in the verification of the HLS-generated Verilog pro-
motes the troubleshooting of the hardware to occur at the
higher abstraction level. The overwhelming majority of de-
sign bugs, in our experience, were caught prior to the HLS
execution, in large part, due to enabling random stalling of
communication channels, which help unearth elusive bugs
that would have otherwise been detected only during the
post-HLS phase.

• Facilitation of design space exploration. The parameter-
ization of key hardware features (e.g., number of processing
elements, MAC vector size, memory size, etc) in the source
code is highly encouraged as these parameters can be conve-
niently discretized in verification and synthesis Makefiles via
external JSON files, enabling rapid high-level investigations.

• Easy handshake with application software. We have
used the NPY library [1] to great success in order to convert
and sync Numpy-based DNN activations and weights over to
the HLS environment for verification purposes. Alternatively,
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given the high-level implementation already bears some
resemblance to software C++ models, the migration of ML
data can be further streamlined by plugging in the HLS
design directly into the C++ API of the ML framework [6].

3 OBSERVED CHALLENGES
Although our tapeout execution largely benefited from the agile
design and verification velocity of the above-described OOHLS
HW/SW co-design flow, we did experience a number of challenges
which are discussed below. [16] recounts some of the engineering
techniques we employed to mitigate these pitfalls.

3.1 Grasping proper semantics for correct
Post-HLS functionality

It is relatively easy to write a compiling SystemC/C++ code that
fails post-HLS RTL verification. A somewhat appreciable learning
curve is required in order to develop understanding of the syntactic
idioms that guarantee error-less synthesizability and functionality.
These learnings are eventually acquired after lots of trials and
errors. A common manifestation would be a compiling high-level
code that eventually hangs or freezes in the middle of the post-HLS
RTL verification. However, we have observed that newer releases of
MatchLib that internally and automatically reset its communication
channels, along with the usage of random port stalling have greatly
reduced the occurrence rate of these bugs.

3.2 Grasping proper semantics for optimal
Post-HLS PPA

We have found it is also relatively easy to write a compiling, func-
tioning, and synthesizing source code that ultimately produces very
subpar post-HLS performance. Often, the cycle behavior of the un-
timed or “loosely-timed" high-level abstraction does not match that
of the generated RTL which tends to be more pessimistic. Therefore,
an even bigger learning curve is grasping the coding habits that
would achieve rigorous post-HLS PPA metrics – as simple tweaks
in the source code may affect area, power, and throughput in drastic
ways. This learning endeavor also requires intimate understanding
of the many pragmas and directives offered by the HLS tool and
their impact on circuit behavior.

A common source of inefficiency comes from using overly long,
and often very sequential SC_THREADs requiring larger initiation
intervals (II) that degrade the datapath throughput. As shown in
Fig. 2, multithreading such designs is key to improving performance.
However, as independent SC_THREADs contribute to the same
design output behavior, orchestrating their timing and event-based
properties may be nontrivial.

Moreover, Fmax and delay characteristics assumed during the
HLS execution may be different from those observed after gate-level
synthesis. Therefore, a struggle is figuring out how much positive
or negative margins are baked into the HLS process in order to
maximize post place-and-route performance.

4 OPPORTUNITIES FOR HLS ENHANCEMENT
Beyond its heavy adoption in the FPGA world [3–5, 8], HLS has
also been proven in many successful academic [11, 13, 15] and

12nm PPA @ 500MHz
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Moved to separate thread
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Figure 2: Multithreading complex SC_THREADs can signfi-
cantly reduce the required initiation interval of datapaths,
improving overall throughput. This opens another challenge
of syncing the timing behavior of these independent threads.

industry [17, 18] SoC tapeouts. And it is currently being used to
design digital ASICs in a mass production capacity [14].

Still, QoR concerns are key factors limiting more mainstream
adoption in competitive andmarket-centered businessmodels where
exacting PPA demands are combined with an extremely high bar for
functional health. Addressing these stringent scenarios warrants
raising the level of confidence higher through:

• A mature formal equivalence verification (FEV) or logical
equivalence checking (LEC) tool comparing the high-level
source code with the HLS-generated RTL representation [9].

• A mature pre-HLS coverage closure tool that examines the
comprehensiveness of SystemC/C++ verification testbenches.

• Awareness of floorplan and STA constraints during the HLS
execution in order to maximize post place-and-route fre-
quency attainment. We note such solutions are starting to
form in the case of FPGA-based HLS [7].

• Improved legibility and decipherability of HLS-generated
RTLs for human reviewers.

All things considered, HLS is poised to make greater inroads and
breakthroughs as Moore’s law effectiveness wanes and machine
learning becomesmore ubiquitous. For example, homogeneous SoC-
level HLS design approaches are being introduced – as opposed to
traditional manual integration of HLS IPs into a RTL-based chas-
sis [12]. A proposal for furthering HLS democratization would be
to invest in a reverse RTL-to-C HLS tool which would be helpful in
“softening" handcrafted hard IPs for rapid hardware recalibration to
new PPA or process node targets or application-specific constraints.

5 CONCLUDING REMARKS
C-to-RTL HLS flows enable engineering and research teams to
develop application-driven SoCs with agility and velocity. However,
optimizing HLS designs is often a nontrivial endeavor, which would
greatly benefit from the standardization of best known practices in
order to improve designer’s user experience.
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