
Learnings from a HLS-based High-Productivity Digital VLSI Flow
Thierry Tambe
Harvard University

USA

David Brooks
Harvard University

USA

Gu-Yeon Wei
Harvard University

USA

1 INTRODUCTION
The twilight of Dennard scaling has activated a global trend towards
application-based hardware specialization. This trend is currently
accelerating due to the surging democratization and deployment
of machine learning on mobile and IoT compute platforms. At the
same time, the growing complexity of specialized system-on-chips
(SoCs) is levying a more laborious tax on ASIC companies’ design
and verification efforts. High-level synthesis (HLS) is emerging as a
foremost agile VLSI development methodology gaining increasing
adoption in the hardware design community. However, concerns
over Quality of Results (QoR) remain a key factor inhibiting more
mainstream adoption of HLS. Obtaining optimal PPA outcomes can
sometimes be an elusive or challenging task and strongly correlates
with the syntactic approach of the high-level source code.

In this paper, we aim to share the proven HLS practices we em-
ployed to raise the level of confidence in the post-silicon functional
and performance expectations from our accelerator designs. In do-
ing so, we recount some of the main challenges we encountered in
our HLS-based hardware-software co-design journey and offer a
few recommendations cultivated from our learnings. Finally, we
posit on where the research opportunities to further improve design
QoR and HLS user experience lie.

2 HLS-BASED SOFTWARE-HARDWARE
CO-DESIGN INFRASTRUCTURE

In the development of machine learning accelerators, we relied on
an objected-oriented HLS-based methodology (OOHLS) for fast
SystemC-to-RTL prototyping [9]. Our OOHLS adaptation, shown
in Fig. 1, effectively closes the loop between the application’s soft-
ware modeling and the backend hardware implementation being
abstracted inside the HLS environment. Using the software ML
framework (e.g., PyTorch, TensorFlow) as a golden reference, the
HLS environment facilitates making, with relatively fast velocity,
hardware tweaks and ECOs until i) the hardware and software
output activations from the neural network returned matching bit-
level results, ii) the post-HLS verification is functionally correct,
and post-HLS PPA results are satisfactory.

Thanks in great part to this infrastructure, we were able to de-
sign, verify, and tape out edge AI SoCs [11, 15] with HLS-based
accelerators in a span of about four months. This agility is made

This work was supported in part by the Applications Driving Architectures (ADA)
Research Center, a JUMP Center co-sponsored by SRC and DARPA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’22, March 1, 2022, Lausanne, Switzerland
© 2021 Copyright held by the owner/author(s).

Class Datapath
Class PE;
Class GB;
Class FlexASR
…

#include <nvhls_verify.h>
#include libnpy/npy.hpp
SC_MODULE(testbench) {
testbench(sc_module_name
name)
…
}

Ground Truth

Quantization

Clustering

William Shakespeare was an English 
poet, widely regarded as the greatest 

writer in the English language.

Sparsity

Inputs

Pretrained 
model

Accelerator SystemC 
Implementation

ML frameworks MatchLib
HLSLibs

Same?

Yes

No

HW Activations

HLS
• Functionality
• Area
• Power
• Delay, Fmax
• Throughput Yes

No

Yes

PPA 
satisfactory? 

APR

Output (*.npy)

Weights (*.npy)
Inputs (*npy)

Looped inside HLS environment (Catapult)

Tunable HW Parameters
§ # of PEs
§ MAC vector size
§ Scratchpad size
§ Datapath precision
§ # of pipeline stages

SystemC 
testbench

Figure 1: HLS-based HW/SW co-design and co-verification
methodology we adopted during tapeouts of edge AI SoCs.

possible by the following characteristics which we benefited from
(similarly expressed in [9, 10]):

• Modularity.Well-maintained libraries such as MatchLib [9],
and HLSLibs [2] boost HLS design productivity by offering
a slate of synthesizable, configurable, and common hard-
ware components such as scratchpad memories, latency-
insensitive channels, arbitrated crossbar arrays, datatype
classes, etc. Notably, MatchLib also provides AXI channels
enabling the HLS design to be connected with the rest of
the SoC. Therefore, hardware engineers need not “reinvent
every wheel" as these libraries help modularize the design in
a correct-by-construction fashion.

• High-throughput verification. C++ based simulation is
innately orders-of-magnitude faster than an equivalent RTL-
based simulation. And, the reuse of the C++/SystemC test-
bench in the verification of the HLS-generated Verilog pro-
motes the troubleshooting of the hardware to occur at the
higher abstraction level. The overwhelming majority of de-
sign bugs, in our experience, were caught prior to the HLS
execution, in large part, due to enabling random stalling of
communication channels, which help unearth elusive bugs
that would have otherwise been detected only during the
post-HLS phase.

• Facilitation of design space exploration. The parameter-
ization of key hardware features (e.g., number of processing
elements, MAC vector size, memory size, etc) in the source
code is highly encouraged as these parameters can be conve-
niently discretized in verification and synthesis Makefiles via
external JSON files, enabling rapid high-level investigations.

• Easy handshake with application software. We have
used the NPY library [1] to great success in order to convert
and sync Numpy-based DNN activations and weights over to
the HLS environment for verification purposes. Alternatively,



LATTE ’22, March 1, 2022, Lausanne, Switzerland Tambe, et al.

given the high-level implementation already bears some
resemblance to software C++ models, the migration of ML
data can be further streamlined by plugging in the HLS
design directly into the C++ API of the ML framework [6].

3 OBSERVED CHALLENGES
Although our tapeout execution largely benefited from the agile
design and verification velocity of the above-described OOHLS
HW/SW co-design flow, we did experience a number of challenges
which are discussed below. [16] recounts some of the engineering
techniques we employed to mitigate these pitfalls.

3.1 Grasping proper semantics for correct
Post-HLS functionality

It is relatively easy to write a compiling SystemC/C++ code that
fails post-HLS RTL verification. A somewhat appreciable learning
curve is required in order to develop understanding of the syntactic
idioms that guarantee error-less synthesizability and functionality.
These learnings are eventually acquired after lots of trials and
errors. A common manifestation would be a compiling high-level
code that eventually hangs or freezes in the middle of the post-HLS
RTL verification. However, we have observed that newer releases of
MatchLib that internally and automatically reset its communication
channels, along with the usage of random port stalling have greatly
reduced the occurrence rate of these bugs.

3.2 Grasping proper semantics for optimal
Post-HLS PPA

We have found it is also relatively easy to write a compiling, func-
tioning, and synthesizing source code that ultimately produces very
subpar post-HLS performance. Often, the cycle behavior of the un-
timed or “loosely-timed" high-level abstraction does not match that
of the generated RTL which tends to be more pessimistic. Therefore,
an even bigger learning curve is grasping the coding habits that
would achieve rigorous post-HLS PPA metrics – as simple tweaks
in the source code may affect area, power, and throughput in drastic
ways. This learning endeavor also requires intimate understanding
of the many pragmas and directives offered by the HLS tool and
their impact on circuit behavior.

A common source of inefficiency comes from using overly long,
and often very sequential SC_THREADs requiring larger initiation
intervals (II) that degrade the datapath throughput. As shown in
Fig. 2, multithreading such designs is key to improving performance.
However, as independent SC_THREADs contribute to the same
design output behavior, orchestrating their timing and event-based
properties may be nontrivial.

Moreover, Fmax and delay characteristics assumed during the
HLS execution may be different from those observed after gate-level
synthesis. Therefore, a struggle is figuring out how much positive
or negative margins are baked into the HLS process in order to
maximize post place-and-route performance.

4 OPPORTUNITIES FOR HLS ENHANCEMENT
Beyond its heavy adoption in the FPGA world [3–5, 8], HLS has
also been proven in many successful academic [11, 13, 15] and

12nm PPA @ 500MHz
• 2.5x faster!
• 1.1x higher area
• 1.05x higher power

Moved to separate thread

Optimal II

Figure 2: Multithreading complex SC_THREADs can signfi-
cantly reduce the required initiation interval of datapaths,
improving overall throughput. This opens another challenge
of syncing the timing behavior of these independent threads.

industry [17, 18] SoC tapeouts. And it is currently being used to
design digital ASICs in a mass production capacity [14].

Still, QoR concerns are key factors limiting more mainstream
adoption in competitive andmarket-centered businessmodels where
exacting PPA demands are combined with an extremely high bar for
functional health. Addressing these stringent scenarios warrants
raising the level of confidence higher through:

• A mature formal equivalence verification (FEV) or logical
equivalence checking (LEC) tool comparing the high-level
source code with the HLS-generated RTL representation [9].

• A mature pre-HLS coverage closure tool that examines the
comprehensiveness of SystemC/C++ verification testbenches.

• Awareness of floorplan and STA constraints during the HLS
execution in order to maximize post place-and-route fre-
quency attainment. We note such solutions are starting to
form in the case of FPGA-based HLS [7].

• Improved legibility and decipherability of HLS-generated
RTLs for human reviewers.

All things considered, HLS is poised to make greater inroads and
breakthroughs as Moore’s law effectiveness wanes and machine
learning becomesmore ubiquitous. For example, homogeneous SoC-
level HLS design approaches are being introduced – as opposed to
traditional manual integration of HLS IPs into a RTL-based chas-
sis [12]. A proposal for furthering HLS democratization would be
to invest in a reverse RTL-to-C HLS tool which would be helpful in
“softening" handcrafted hard IPs for rapid hardware recalibration to
new PPA or process node targets or application-specific constraints.

5 CONCLUDING REMARKS
C-to-RTL HLS flows enable engineering and research teams to
develop application-driven SoCs with agility and velocity. However,
optimizing HLS designs is often a nontrivial endeavor, which would
greatly benefit from the standardization of best known practices in
order to improve designer’s user experience.



Learnings from a HLS-based High-Productivity Digital VLSI Flow LATTE ’22, March 1, 2022, Lausanne, Switzerland

REFERENCES
[1] 2021. ARMCompute Library. https://github.com/ARM-software/ComputeLibrary
[2] 2021. Open-Source High-Level Synthesis IP Libraries. https://github.com/hlslibs
[3] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong.

2021. Extending High-Level Synthesis for Task-Parallel Programs. In 2021 IEEE
29th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 204–213. https://doi.org/10.1109/FCCM51124.2021.00032

[4] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.
2021. HBM Connect: High-Performance HLS Interconnect for FPGA HBM. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’21). Association for Computing Machinery, New
York, NY, USA, 116–126. https://doi.org/10.1145/3431920.3439301

[5] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From Prototyping to De-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (2011), 473–491. https://doi.org/10.1109/TCAD.2011.2110592

[6] M. Fingeroff. 2021. Machine Learning at the edge: using HLS to optimize power and
performance. https://resources.sw.siemens.com/en-US/white-paper-machine-
learning-at-the-edge-using-hls-to-optimize-power-and-performance

[7] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru
Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained Floorplan-
ning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In The
2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(Virtual Event, USA) (FPGA ’21). Association for Computing Machinery, New
York, NY, USA, 81–92. https://doi.org/10.1145/3431920.3439289

[8] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru
Zhang, and Jason Cong. 2020. Analysis and Optimization of the Implicit Broad-
casts in FPGA HLS to Improve Maximum Frequency. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.
2020.9218718

[9] Brucek Khailany, Evgeni Krimer, Rangharajan Venkatesan, Jason Clemons, Joel S.
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,
Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam Likun Xi, Yanqing
Zhang, and Brian Zimmer. 2018. INVITED: A Modular Digital VLSI Flow for
High-Productivity SoC Design. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465897

[10] Aki Kuusela and Clint Smullen. 2021. Video Coding Unit (VCU) : Hot Chips
2021. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1–30. https://doi.org/10.1109/
HCS52781.2021.9567040

[11] Sae Kyu Lee, Paul N. Whatmough, Marco Donato, Glenn G. Ko, David Brooks, and
Gu-Yeon Wei. 2022. SMIV: A 16-nm 25-mm2 SoC for IoT With Arm Cortex-A53,
eFPGA, and Coherent Accelerators. IEEE Journal of Solid-State Circuits 57, 2
(2022), 639–650. https://doi.org/10.1109/JSSC.2021.3115466

[12] Nathaniel Pinckney, Rangharajan Venkatesan, Ben Keller, and Brucek Khailany.
2021. IPA: Floorplan-Aware SystemC Interconnect Performance Modeling and
Generation for HLS-based SoCs. In 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD). 1–9. https://doi.org/10.1109/ICCAD51958.2021.
9643499

[13] Kartik Prabhu, Albert Gural, Zainab F. Khan, Robert M. Radway, Massimo Gior-
dano, Kalhan Koul, Rohan Doshi, JohnW. Kustin, Timothy Liu, Gregorio B. Lopes,
Victor Turbiner, Win-San Khwa, Yu-Der Chih, Meng-Fan Chang, Guénolé Lalle-
ment, Boris Murmann, Subhasish Mitra, and Priyanka Raina. 2022. CHIMERA: A
0.92-TOPS, 2.2-TOPS/W Edge AI Accelerator With 2-MByte On-Chip Foundry
Resistive RAM for Efficient Training and Inference. IEEE Journal of Solid-State
Circuits (2022), 1–1. https://doi.org/10.1109/JSSC.2022.3140753

[14] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubrama-
nian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani
Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira Ja-
yaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander
Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin
Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish
Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wach-
sler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu.
2021. Warehouse-Scale Video Acceleration: Co-Design and Deployment in the
Wild. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS 2021). Association for Computing Machinery, New York, NY, USA, 600–615.
https://doi.org/10.1145/3445814.3446723

[15] Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper, Marco
Donato, Paul N. Whatmough, Alexander M. Rush, David Brooks, and Gu-Yeon
Wei. 2021. 9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-
Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-
Sequence DNN Speech Recognition in 16nm FinFET. In 2021 IEEE International
Solid- State Circuits Conference (ISSCC), Vol. 64. 158–160. https://doi.org/10.1109/

ISSCC42613.2021.9366062
[16] Thierry Tambe. 2022. Effective SW/HW Co-Design of Specialized ML Accelerators

using Catapult HLS. Siemens Webinar. https://event.on24.com/wcc/r/3549953/
BDEFF7A2C76676D76EF4C26F6A580A1B?partnerref=

[17] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel S. Emer,
C. Thomas Gray, Stephen W. Keckler, and Brucek Khailany. 2019. A 0.11 pJ/Op,
0.32-128 TOPS, Scalable Multi-Chip-Module-based Deep Neural Network Accel-
erator with Ground-Reference Signaling in 16nm. In 2019 Symposium on VLSI
Circuits. C300–C301. https://doi.org/10.23919/VLSIC.2019.8778056

[18] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel S. Emer,
C. Thomas Gray, Stephen W. Keckler, and Brucek Khailany. 2020. A 0.32–128
TOPS, Scalable Multi-Chip-Module-Based Deep Neural Network Inference Accel-
erator With Ground-Referenced Signaling in 16 nm. IEEE Journal of Solid-State
Circuits 55, 4 (2020), 920–932. https://doi.org/10.1109/JSSC.2019.2960488

https://github.com/ARM-software/ComputeLibrary
https://github.com/hlslibs
https://doi.org/10.1109/FCCM51124.2021.00032
https://doi.org/10.1145/3431920.3439301
https://doi.org/10.1109/TCAD.2011.2110592
https://resources.sw.siemens.com/en-US/white-paper-machine-learning-at-the-edge-using-hls-to-optimize-power-and-performance
https://resources.sw.siemens.com/en-US/white-paper-machine-learning-at-the-edge-using-hls-to-optimize-power-and-performance
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1109/DAC18072.2020.9218718
https://doi.org/10.1109/DAC18072.2020.9218718
https://doi.org/10.1109/DAC.2018.8465897
https://doi.org/10.1109/HCS52781.2021.9567040
https://doi.org/10.1109/HCS52781.2021.9567040
https://doi.org/10.1109/JSSC.2021.3115466
https://doi.org/10.1109/ICCAD51958.2021.9643499
https://doi.org/10.1109/ICCAD51958.2021.9643499
https://doi.org/10.1109/JSSC.2022.3140753
https://doi.org/10.1145/3445814.3446723
https://doi.org/10.1109/ISSCC42613.2021.9366062
https://doi.org/10.1109/ISSCC42613.2021.9366062
https://event.on24.com/wcc/r/3549953/BDEFF7A2C76676D76EF4C26F6A580A1B?partnerref=
https://event.on24.com/wcc/r/3549953/BDEFF7A2C76676D76EF4C26F6A580A1B?partnerref=
https://doi.org/10.23919/VLSIC.2019.8778056
https://doi.org/10.1109/JSSC.2019.2960488

	1 Introduction
	2 HLS-based Software-Hardware Co-Design Infrastructure
	3 Observed Challenges
	3.1 Grasping proper semantics for correct Post-HLS functionality
	3.2 Grasping proper semantics for optimal Post-HLS PPA

	4 Opportunities for HLS Enhancement
	5 Concluding remarks
	References

