
Profiling a warehouse-scale computer

Svilen Kanev†

Harvard University
Juan Pablo Darago†

Universidad de Buenos Aires
Kim Hazelwood†

Yahoo Labs
Parthasarathy Ranganathan

Google
Tipp Moseley

Google
Gu-Yeon Wei

Harvard University
David Brooks

Harvard University

Abstract
With the increasing prevalence of warehouse-scale (WSC)

and cloud computing, understanding the interactions of server
applications with the underlying microarchitecture becomes
ever more important in order to extract maximum performance
out of server hardware. To aid such understanding, this paper
presents a detailed microarchitectural analysis of live data-
center jobs, measured on more than 20,000 Google machines
over a three year period, and comprising thousands of differ-
ent applications.

We first find that WSC workloads are extremely diverse,
breeding the need for architectures that can tolerate appli-
cation variability without performance loss. However, some
patterns emerge, offering opportunities for co-optimization
of hardware and software. For example, we identify com-
mon building blocks in the lower levels of the software stack.
This “datacenter tax” can comprise nearly 30% of cycles
across jobs running in the fleet, which makes its constituents
prime candidates for hardware specialization in future server
systems-on-chips. We also uncover opportunities for classic
microarchitectural optimizations for server processors, espe-
cially in the cache hierarchy. Typical workloads place signifi-
cant stress on instruction caches and prefer memory latency
over bandwidth. They also stall cores often, but compute heav-
ily in bursts. These observations motivate several interesting
directions for future warehouse-scale computers.

1. Introduction
Recent trends show computing migrating to two extremes:
software-as-a-service and cloud computing on one end, and
more functional mobile devices and sensors (“the internet of
things”) on the other end. Given that the latter category is often
supported by back-end computing in the cloud, designing next-

† The work was done when these authors were at Google.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author. Copyright is held by the owner/author(s).
ISCA’15, June 13-17, 2015, Portland, OR USA
ACM 978-1-4503-3402-0/15/06.
http://dx.doi.org/10.1145/2749469.2750392

generation cloud and datacenter platforms is among the most
important challenges for future computer architectures.

Computing platforms for cloud computing and large inter-
net services are often hosted in large data centers, referred to
as warehouse-scale computers (WSCs) [4]. The design chal-
lenges for such warehouse-scale computers are quite different
from those for traditional servers or hosting services, and em-
phasize system design for internet-scale services across thou-
sands of computing nodes for performance and cost-efficiency
at scale. Patterson and Hennessy, for example, posit that
these warehouse-scale computers are a distinctly new class
of computer systems that architects must design to [19]: “the
datacenter is the computer”[41].

At such scale, understanding performance characteristics
becomes critical – even small improvements in performance
or utilization can translate into immense cost savings. De-
spite that, there has been a surprising lack of research on
the interactions of live, warehouse-scale applications with
the underlying microarchitecture. While studies on isolated
datacenter benchmarks [14, 49], or system-level characteriza-
tions of WSCs [5, 27], do exist, little is known about detailed
performance characteristics of at-scale deployments.

This paper presents the first (to the best of our knowledge)
profiling study of a live production warehouse-scale computer.
We present detailed quantitative analysis of microarchitecture
events based on a longitudinal study across tens of thousands
of server machines over three years running workloads and
services used by billions of users. We highlight important pat-
terns and insights for computer architects, some significantly
different from common wisdom for optimizing SPEC-like or
open-source scale-out workloads.

Our methodology addresses key challenges to profiling
large-scale warehouse computers, including breakdown analy-
sis of microarchitectural stall cycles and temporal analysis of
workload footprints, optimized to address variation over the
36+ month period of our data (Section 2). Even though ex-
tracting maximal performance from a WSC requires a careful
concert of many system components [4], we choose to focus
on server processors (which are among the main determinants
of both system power and performance [25]) as a necessary
first step in understanding WSC performance.

From a software perspective, we show significant diversity
in workload behavior with no single “silver-bullet” application
to optimize for and with no major intra-application hotspots
(Section 3). While we find little hotspot behavior within appli-

http://dx.doi.org/10.1145/2749469.2750392

cations, there are common procedures across applications that
constitute a significant fraction of total datacenter cycles. Most
of these hotspots are in functions unique to performing compu-
tation that transcends a single machine – components that we
dub “datacenter tax”, such as remote procedure calls, protocol
buffer serialization and compression (Section 4). Such “tax”
presents interesting opportunities for microarchitectural opti-
mizations (e.g., in- and out-of-core accelerators) that can be
applied to future datacenter-optimized server systems-on-chip
(SoCs).

Optimizing tax alone is, however, not sufficient for radical
performance gains. By drilling into the reasons for low core
utilization (Section 5), we find that the cache and memory
systems are notable opportunities for optimizing server pro-
cessors. Our results demonstrate a significant and growing
problem with instruction-cache bottlenecks. Front-end core
stalls account for 15-30% of all pipeline slots, with many
workloads showing 5-10% of cycles completely starved on
instructions (Section 6). The instruction footprints for many
key workloads show significant growth rates (≈30% per year),
greatly exceeding the current growth of instruction caches,
especially at the middle levels of the cache hierarchy.

Perhaps unsurprisingly, data cache misses are the largest
fraction of stall cycles, at 50% to 60% (Section 7). Latency
is a significantly bigger bottleneck than memory bandwidth,
which we find to be heavily over provisioned for our work-
loads. A typical datacenter application mix involves access
patterns that indicate bursts of computations mixed with bursts
of stall times, presenting challenges for traditional designs.
This suggests that while wide, out-of-order cores are neces-
sary, they are often used inefficiently. While simultaneous
multithreading (SMT) helps both with hiding latency and over-
lapping stall times (Section 8), relying on current-generation
2-wide SMT is not sufficient to eliminate the bulk of overheads
we observed.

Overall, our study suggests several interesting directions for
future microarchitectural exploration: design of more general-
purpose cores with additional threads to address broad work-
load diversity, with specific accelerators for “datacenter tax”
components, improved emphasis on the memory hierarchy,
including optimizations to trade-off bandwidth for latency,
as well as increased emphasis on instruction cache optimiza-
tions (partitioning i-cache/d-cache, etc). Each of these ar-
eas deserves further study in the quest of more performant
warehouse-scale computers.

2. Background and methodology

This study profiles a production warehouse-scale computer
at large, aggregating performance data across thousands of
applications and identifying architectural bottlenecks at this
scale. The rest of this section describes a typical WSC software
environment and then details the methodology that enables
such analysis.

Background: WSC software deployment We begin with
a brief description of the software environment of a modern
warehouse-scale computer as a prerequisite to understanding
how processors perform under a datacenter software stack.
While the idioms described below are based on our experience
at Google, they are typical for large-scale distributed systems,
and pervasive in other platform-as-a-service clouds.

Datacenters have bred a software architecture of distributed,
multi-tiered services, where each individual service exposes
a relatively narrow set of APIs.1 Communication between
services happens exclusively through remote procedure calls
(RPCs) [17]. Requests and responses are serialized in a com-
mon format (at Google, protocol buffers [18]). Latency, es-
pecially at the tail end of distributions, is the defining per-
formance metric, and a plethora of techniques aim to reduce
it [11].

One of the main benefits of small services with narrow APIs
is the relative ease of testability and deployment. This encour-
ages fast release cycles – in fact, many teams inside Google
release weekly or even daily. Nearly all of Google’s datacenter
software is stored in a single shared repository, and built by
one single build system [16]. Consequently, code sharing is
frequent, binaries are mostly statically linked to avoid dynamic
dependency issues. Through these transitive dependences, bi-
naries often reach 100s of MBs in size. Thus, datacenter
CPUs are exposed to varied and diverse workloads, with large
instruction footprints, and shared low-level routines.

Continuous profiling We collect performance-related data
from the many live datacenter workloads using Google-Wide-
Profiling (GWP) [44]. GWP is based on the premise of low-
overhead random sampling, both of machines within the data-
center, and of execution time within a machine. It is inspired
by systems like DCPI [2].

In short, GWP collectors: (i) randomly select a small frac-
tion of Google’s server fleet to profile each day, (ii) trigger
profile collection remotely on each machine-under-test for
a brief period of time (most often through perf [10]), (iii)
symbolize the collected sample’s callstacks (such that they are
tagged with corresponding code locations) and (iv) aggregate
a large number of such samples from many machines in a
Dremel [37] database for easy analysis. The GWP collection
pipeline has been described in detail by Ren et al. [44].

GWP has been unobtrusively sampling Google’s fleet for
several years, which makes it a perfect vehicle for longitu-
dinal studies that answer where cycles have been spent over
large periods of time. We perform several such studies with
durations of 12-36 months in the following sections.

We focus these studies on code written in C++, because it
is the dominant language that consumes CPU cycles. This
is not necessarily the case in terms of popularity. A large
amount of code (measured in lines-of-code) is written in other

1Recently the term “microservices” [38] has been coined to describe such
a system architecture. The concept itself predates the term [40].

languages (mostly Java, Python and Go), however such code is
responsible for a small fraction of cycles overall. Focusing on
C++ also simplifies symbolizing callstacks with each collected
sample. The aggregated set of these symbolized callstacks
enables analyses that transcend application boundaries, and
allows us to search for hotspots at true warehouse scale.

Architecture-specific collection To analyze more subtle in-
teractions of warehouse-scale applications with the underlying
hardware, we use processor performance counters that go be-
yond attributing cycles to code regions. We reuse the majority
of GWP’s infrastructure to collect performance counters and
ask microarchitecture-specific questions. Since counters are
intricately tied to a specific microarchitecture, we limit such
studies to machines with Intel Ivy Bridge processors.

In more detail, for each such dedicated collection, we ran-
domly select ≈ 20,000 Ivy Bridge machines, and profile all
jobs running on them to gather 1-second samples of the respec-
tive performance counters. For per-thread measurements, we
also collect the appropriate metadata to attribute the samples
to the particular job executing the thread, and its respective
binary (through perf’s container group support). We also
take special care to validate the performance counters that we
use with microbenchmarks (errata in more exotic performance
counters can be common), and to only use counter expressions
that can fit constraints of a core’s performance monitoring
unit (PMU) in a single measurement (time-multiplexing the
PMU often results in erroneous counter expressions). The last
requirement limits the analyses that we perform. A common
practice for evaluating complex counter expressions that do
not fit a single PMU is to simply collect the necessary counters
during multiple runs of the same application. In a sampling
scenario, this is not trivially applicable because different parts
of the counter expression can come from different samples,
and would require special normalization to be comparable to
one another.

All expressions that we do collect in single-PMU chunks
are ratios (normalized by cycles or instructions) and do not re-
quire such special treatment. Their individual samples can be

Binary Description
ads Content ad targeting – matches ads with web pages based

on page contents.
bigtable Scalable, distributed, storage [7].
disk Low-level distributed storage driver.
flight-
search

Flight search and pricing engine.

gmail Gmail back-end server.
gmail-fe Gmail front-end server.
indexing1,
indexing2

Components of search indexing pipelines [5].

search1,
search2,
search3

Search leaf nodes [36].

video Video processing tasks: transcoding, feature extraction.

Table 1: Workload descriptions

0 10 20 30 40 50
Binaries

0
20
40
60
80

100

Di
st

rib
ut

io
n

of
 c

yc
le

s
(C

DF
 %

)

Hottest: 9.9 %

Figure 1: There is no “killer application” to optimize for. The
top 50 hottest binaries only cover ≈60% of WSC cycles.

compared against each other and aggregated without any addi-
tional normalization. We typically show the distributions of
such samples, compressed in box plots. Boxes, drawn around
the median value, represent the 25-th and 75-th percentiles of
such distributions, while whiskers (in the plots where shown) –
the 10-th and 90-th.

Performance counter analysis We use a performance anal-
ysis methodology, called Top-Down, recently proposed by
Yasin [48]. Top-Down allows for reconstructing approximate
CPI stacks in modern out-of-order processors, a task con-
sidered difficult without specialized hardware support [13].
The exact performance counter expressions that we use are
identical with the ones listed in the Top-Down work [48].

Similar to other cycle counting methodologies [6, 13], Top-
Down calculates the cost of microarchitectural stall events in
cycles, as opposed to in more conventional metrics (e.g. miss
rates, misses per kilo-instruction – MPKI), quantifying the
end cost in performance for such events. This is especially
important for modern complex out-of-order processors which
have a wide range of latency hiding mechanisms. For example,
a high value for MPKI in the L1 instruction cache can raise
a false alarm for optimizing instruction footprint. In fact, a
modern core’s front end has sufficient buffering, and misses in
the L1 alone cause very little end-performance impact.

Workloads While we do make the observation that work-
loads are getting increasingly diverse, we focused on 12 bi-
naries (Table 1) for in-depth microarchitectural analysis. The
main selection criterion was diversity. Thus, we ended up with
jobs from several broad application classes – batch (video,
indexing) vs. latency-conscious (the rest); low-level ser-
vices (disk, bigtable) through back-ends (gmail, search)
to front-end servers (gmail-fe). We strived to include varied
microarchitectural behaviors – different degrees of data cache
pressure, front-end bottlenecks, extracted IPC, etc. We also
report averages aggregated over a significantly larger number
of binaries than the hand-picked 12.

Finally, we make the simplifying assumption that one appli-
cation equals one binary and use the two terms interchange-
ably (Kambadur et al. [24] describe application delineation
tradeoffs in a datacenter setting). This has no impact on any
results for the 12 workloads described above, because they are
composed of single binaries.

A
u
g

Y1
N

ov
 Y

1
Fe

b
Y2

M
ay

 Y
2

Ju
l
Y2

O
ct

 Y
2

Ja
n
 Y

3
A
pr

 Y
3

Ju
l
Y3

S
ep

 Y
3

D
ec

 Y
3

M
ar

 Y
4

Ju
n
 Y

4
A
u
g

Y4

0

20

40

60

80

100

C
yc

le
s

in
5
0
 h

o
tt

es
t

b
in

ar
ie

s
(%

)

Trend: -4.97 % / year; R2 =0.67

Figure 2: Workloads are getting more diverse. Fraction of cy-
cles spent in top 50 hottest binaries is decreasing.

3. Workload diversity

The most apparent outcome of this study is the diversity of
workloads in a modern warehouse-scale computer. While
WSCs were initially created with a “killer application” in
mind [5], the model of “the datacenter is the computer” has
since grown and current datacenters handle a rapidly increas-
ing pool of applications.

To confirm this point, we performed a longitudinal study of
applications running in Google’s warehouse-scale computers
over more than 3 years. Figure 1 shows the cumulative dis-
tribution of CPU cycles among applications for the last week
of the study. It is clear that no single application dominates
the distribution – the hottest one accounts for ≈10% of cycles.
Furthermore, it takes a tail of 50 different applications to build
up to 60% of cycles.

Figure 1 is just a single slice in time of an ongoing diversifi-
cation trend. We demonstrate that in Figure 2, which plots the
fraction of CPU cycles spent in the 50 hottest binaries for each
week of the study. While at the earliest periods we examined,
50 applications were enough to account for 80% of execution
time, three years later, the same number (not necessarily the
same binaries) cover less than 60% of cycles. On average,
the coverage of the top 50 binaries has been decreasing by
5 percentage points per year over a period of more than 3
years. Note that this data set does not include data related to
public clouds, which give orders of magnitude more program-
mers access to warehouse-scale resources, further increasing
application diversity.

Applications exhibit diversity as well, having very flat ex-
ecution profiles themselves. We illustrate this point with a
CPU profile from search3, aggregated over a week of execu-
tion on a typically-sized cluster for that particular application.
Figure 3 shows the distribution of CPU cycles over leaf func-
tions – the hottest single function is responsible for only 6.3%
of cycles, and it takes 353 functions to account for 80% of
cycles. This tail-heavy behavior is in contrast with previous
observations. For example, another scale-out workload, Data
analytics from CloudSuite has been shown to contain sig-
nificant hotspots – with 3 functions responsible for 65% of
execution time [49].

From a software engineer’s perspective, the absence of im-
mediately apparent hotspots, both on the application and func-

0 500 1000 1500 2000
Leaf functions

0
20
40
60
80

100

Di
st

rib
ut

io
n

of
 c

yc
le

s
(C

DF
 %

)

353

Figure 3: Individual binaries are already optimized. Example
binary without hotspots, and with a very flat execution profile.

tion levels, implies there is no substitute for datacenter-wide
profiling. While there is value in optimizing hotspots on a
per-application basis, the engineering costs associated with op-
timizing flat profiles are not always justified. This has driven
Google to increasingly invest effort in automated, compiler-
driven feedback-directed optimization [8]. Nevertheless, tar-
geting the right common building blocks across applications
can have significantly larger impact across the datacenter.

From an architect’s point of view, it is similarly unlikely
to find a single bottleneck for such a large amount of codes.
Instead, in the rest of the paper, after aggregating over many
thousands of machines running these workloads, we point out
several smaller-scale bottlenecks. We then tie them back to
suggestions for designing future WSC server systems.

4. Datacenter tax
Despite the significant workload diversity shown in Section 3,
we see common building blocks once we aggregate sampled
profile data across many applications running in a datacenter.
In this section, we quantify the performance impact of the
datacenter tax, and argue that its components are prime can-
didates for hardware acceleration in future datacenter SoCs.

We identify six components of this tax, detailed below,
and estimate their contributions to all cycles in our WSCs.
Figure 4 shows the results of this characterization over 11
months – “tax cycles” consistently comprise 22-27% of all
execution. In a world of a growing number of applications
(Figure 2), optimizing such inter-application common building
blocks can lead to significant performance gains, more so than
hunting for hotspots in individual binaries. We have observed
services that spend virtually all their time paying tax, and
would benefit disproportionately from reducing it.

The components that we included in the tax classification
are: protocol buffer management, remote procedure calls
(RPCs), hashing, compression, memory allocation and data
movement. In order to cleanly attribute samples between them
we only use leaf execution profiles (binning based on pro-
gram counters, and not full call stacks). With leaf profiles, if
the sample occurs in malloc() on behalf of RPC calls, that
sample will be attributed to memory allocation, and not to
RPC. This also guarantees that we always under-estimate the
fraction of cycles spent in tax code.

While some portions of the tax are more specific to WSCs
(protobufs and RPCs), the rest are general enough to be used

Ja
n
 Y

1

Fe
b

Y1

M
ar

 Y
1

A
pr

 Y
1

M
ay

 Y
1

Ju
n
 Y

1

Ju
l
Y1

A
u
g

Y1

S
ep

 Y
1

O
ct

 Y
1

N
ov

 Y
1

0
5

10
15
20
25
30
35

C
yc

le
s

in
 t

ax
 c

o
d
e

(%
)

compression

allocation

hash
protobuf
rpc
memmove

Figure 4: 22-27% of WSC cycles are spent in different compo-
nents of “datacenter tax”.

in various kinds of computation. When selecting which inter-
application building blocks to classify as tax, we opted for gen-
erally mature low-level routines, that are also relatively small
and self-contained. Such small, slowly-changing, widely-used
routines are a great match for hardware specialization. In the
following paragraphs, we sketch out possible directions for
accelerating each tax component.

Protobuf management Protocol buffers [18] are the lingua
franca for data storage and transport inside Google. One of
the the most common idioms in code that targets WSCs is seri-
alizing data to a protocol buffer, executing a remote procedure
call while passing the serialized protocol buffer to the remote
callee, and getting a similarly serialized response back that
needs deserialization. The serialization/deserialization code in
such a flow is generated automatically by the protobuf com-
piler, so that the programmer can interact with native classes
in their language of choice. Generated code is the majority of
the protobuf portion in Figure 4.

The widespread use of protocol buffers is in part due to the
encoding format’s stability over time. Its maturity also implies
that building dedicated hardware for protobuf (de)serialization
in a server SoC can be successful, similarly to XML pars-
ing accelerators [9, 46]. Like other data-intensive accelera-
tors [28], such dedicated protobuf hardware should probably
reside closer to memory and last-level caches, and get its
benefits from doing computation close to memory.

Remote procedure calls (RPCs) RPCs are ubiquitous in
WSCs. RPC libraries perform a variety of functions, such
as load balancing, encryption, and failure detection. In our
tax breakdown, these are collectively responsible for approxi-
mately a third of RPC tax cycles. The rest are taken up by sim-
ple data movement of the payloads. Generic data movement
accelerators have been proposed [12] and would be beneficial
for the latter portion.

Data movement In fact, RPCs are by far not the only code
portions that do data movement. We also tracked all calls to the
memcpy() and memmove() library functions to estimate the
amount of time spent on explicit data movement (i.e., exposed
through a simple API). This is a conservative estimate because
it does not track inlined or explicit copies. Just the variants of
these two library functions represent 4-5% of datacenter cycles.

Recent work in performing data movement in DRAM [45]
could optimize away this piece of tax.

Compression Approximately one quarter of all tax cycles
are spent compressing and decompressing data.2 Compres-
sion is spread across several different algorithms, each of
which stresses a different point in the compression ratio/speed
spectrum. This need not be the case for potential hardware-
accelerated compression. For example, the snappy algorithm
was designed specifically to achieve higher (de)compression
speeds than gzip, sacrificing compression ratios in the pro-
cess. Its usage might decrease in the presence of sufficiently
fast hardware for better-compressing algorithms [30, 39].

Memory allocation Memory allocation and deallocation
make up a substantial component of WSC computation (as
seen by allocation in Figure 4), despite significant efforts
in optimizing them in software [15, 29]. Current software
implementations are mostly based on recursive data structures,
and interact with the operating system, which makes them
non-trivial to implement in hardware. However, the poten-
tial benefits suggest that an investigation in this direction is
worthwhile.

Hashing We also included several hashing algorithms in our
definition of tax cycles to estimate the potential for cryptogra-
phy accelerators. Hashing represents a small, but consistent
fraction of server cycles. Due to the large variety of hashes in
use, this is a conservative estimate.

Kernel The kernel as a shared workload component de-
serves additional mention. It is obviously ubiquitous, and
it is not surprising that WSC applications spend almost a fifth
of their CPU cycles in the kernel (Figure 5). However, we
do not consider it acceleratable tax – it is neither small, nor
self-contained, and certainly not easy to replace with hardware.
This is not to say it would not be beneficial to further optimize
it in software. As an example, consider the scheduler in Fig-
ure 5, which has to deal with many diverse applications, each
with even more concurrent threads (a 90-th percentile machine
is running about 4500 threads concurrently [50]). Even after

Ja
n
 Y

1

Fe
b

Y1

M
ar

 Y
1

A
pr

 Y
1

M
ay

 Y
1

Ju
n
 Y

1

Ju
l
Y1

A
u
g

Y1

S
ep

 Y
1

O
ct

 Y
1

N
ov

 Y
1

0
5

10
15
20
25
30
35

C
yc

le
s

in
 k

er
n
el

 c
o
d
e

(%
)

kernel

kernel/sched

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.

2We only include general-purpose lossless compression in this category,
not audio/video coding.

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

433.milc
471.omnetpp

429.mcf
445.gobmk

400.perlbench

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Retiring
Front-end bound

Bad speculation
Back-end bound

Figure 6: Top-level bottleneck breakdown. SPEC CPU2006
benchmarks do not exhibit the combination of low retirement
rates and high front-end boundedness of WSC ones.

extensive tuning [47], the scheduler alone accounts for more
than 5% of all datacenter cycles.

5. Microarchitecture analysis

Similar to the smaller components of the “datacenter tax” that
together form a large fraction of all cycles, we expect multi-
ple performance bottlenecks on the microarchitectural level.
In order to easily identify them, we use the Top-Down [48]
performance analysis methodology, which we incorporated in
our fleet measurement infrastructure.

Top-Down chooses the micro-op (µop) queue of a modern
out-of-order processor as a dividing point between a core’s
front-end and back-end, and uses it to classify µop pipeline
slots (i.e. potentially committed µops) in four broad cate-
gories: Retiring, Front-end bound, Bad speculation,
Back-end bound. Out of these, only Retiring classifies as
“useful work” – the rest are sources of overhead that prevent
the workload from utilizing the full core width.

Because of this single point of division the different
components of this overhead are additive, very much like
the components of a traditional CPI stack. The detailed
methodology recursively breaks each overhead category into
more concrete subcategories (e.g., Back-end bound into
Core-bound, L1-bound, etc.), driving profiling in the direc-
tion of increasingly specific microarchitectural bottlenecks.
We mostly focus on the top-level breakdown and several of its
direct descendants – deeper subcategories require more com-
plex counter expressions that are harder to collect accurately
in sampled execution, as described in Section 2.

The breakdown in the four top categories can be sum-
marized in a simple decision tree. If a µop leaves the
µop queue, its slot can be classified as either Retiring or
Bad speculation, depending on whether it makes it through
to the commit stage. Similarly, if a µop-queue slot does not
become empty in a particular cycle, there can be two reasons:
it was either empty to begin with (Front-end bound), or the

back-end was not ready for another µop (Back-end bound).
These can be distinguished simply by a back-end stall signal.
Intuitively, Front-end bound captures all overheads asso-
ciated with fetching, instruction caches, decoding and some
shorter-penalty front-end resteers, while Back-end bound is
composed of overheads due to the data cache hierarchy and
the lack of instruction-level parallelism.

We apply this approach to the overheads of datacenter
workloads in Figure 6. It includes several SPEC CPU2006
benchmarks with well-known behaviors as reference points:
400.perlbench – high IPC, largest i-cache working set;
445.gobmk – hard-to-predict branches, highest IL1 MPKI;
429.mcf, 471.omnetpp – memory-bound, stressing mem-
ory latency; 433.milc – memory-bound, stressing memory
bandwidth.

The first immediate observation from Figure 6 is the small
fraction of Retiring µops– similar, or often lower, than the
lowest seen in SPEC (429.mcf). This implies that most dat-
acenter workloads spend cores’ time stalled on various bot-
tlenecks. The majority of these stall slots are clearly due to
back-end pressures – except for search2 and search3, more
than 60% of µop slots are held up due to the back-end. We will
examine these more closely in Section 7. Bad speculation
slots are within the range defined by the SPEC suite. Exam-
ining more closely, the 12 WSC applications show branch
misprediction rates in a wide range from 0.5× to 2× those of
445.gobmk and 473.astar, with the rest of SPEC below the
lower bound of that interval.

Finally, one type of behavior that clearly stands out in com-
parison with SPEC benchmarks is the large fraction of stalls
due to front-end pressure. We investigate them in the next
section.

6. Instruction cache bottlenecks
The Top-Down cycle breakdown shown in Figure 6 suggests
that WSC applications spend a large portion of time stalled
in the front-end. Indeed, Front-end waste execution slots
are in the 15-30% range across the board (most often 2−3×
higher than those in typical SPEC benchmarks) Note that these
indicate instructions under-supplied by the front-end – after
the back-end has indicated it is able to accept more. We trace
these to predominantly instruction cache problems, due to lots
of lukewarm code. Finally, extrapolating i-cache working set
trends from historical data, we see alarming growth rates for
some applications that need to be addressed.

For a more detailed understanding of the reasons for front-
end stalls, we first measure front-end starvation cycles – those
when the µop queue is delivering 0 µops to the back-end.
Figure 7 shows them to typically exceed 5% of all cycles. This
is especially significant in the presence of deep (40+ instruc-
tions) front-end buffers, which absorb minor fetch bubbles.
The most probable cause is a non-negligible fraction of long-
latency instruction miss events – most likely instruction misses
in the L2 cache.

0 2 4 6 8 10 12
Fetch latency cycles (%)

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 7: Cycles completely starved on front-end bottlenecks
account for more than 5% of execution.

Such a hypothesis is confirmed by the high exhibited L2 in-
struction miss rates from Figure 8. WSC applications typically
miss in the range of 5-20 MPKI, an order of magnitude more
frequently than the worst cases in SPEC CPU2006, and, at the
high end of that interval, 50% higher than the rates measured
for the scale-out workloads of CloudSuite [14].

The main reason for such high miss rates is simply the large
code footprint of WSC applications. Binaries of 100s of MB
are common and, as seen in Section 3, without significant
hotspots. Thus, instruction caches have to deal with large code
working sets – lots of “lukewarm instructions”. This is made
worse in the L2 cache, where instructions have to compete for
cache capacity with the data stream, which typically also has
a large working set.

There are several possible directions for architects to ad-
dress instruction cache bottlenecks. Larger instruction caches
are an obvious one, although higher capacity has to be bal-
anced with increased latency and die constraints. More com-
plex instruction prefetchers are another, which have been suc-
cessful for private i-caches under non-trivial instruction miss
rates [3, 26]. Finally, cache partitioning is another alternative,
especially in light of high miss rates in the L2 and lukewarm
code. While partitioning has been extensively studied for mul-
tiple applications’ access streams in shared last-level caches
(Qureshi and Patt [43], among many others), relatively little
attention has been paid to treating the instruction and data
streams differently, especially in private, mid-level caches. Re-
cently, Jaleel et al. proposed modifying replacement policies
to prioritize code over data [21], and the SPARC M7 design
team opted for an architecture with completely separate L2
instruction and data caches [30].

A problem in the making Large instruction working sets
are a widespread and growing issue. To demonstrate that, we
use profiling data to estimate i-cache footprints of datacenter
binaries over a period of 30 months. For some applications,
such estimates grow by more than 25% year-over-year, signifi-
cantly out-pacing i-cache size growth.

The canonical method to estimate a workload’s working set
size is simulation-based. It involves simply sweeping the cache
size in a simulator, and looking for the “knee of the curve” –
the size at which the miss rate drops to near zero. This is
cumbersome, especially if performed over a large number of

0 5 10 15 20 25 30
L2 cache instruction MPKI

433.milc
471.omnetpp

429.mcf
445.gobmk

400.perlbench

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 8: Instruction misses in the L2 cache are usually high.

versions of the same binary to capture a growth trend. Instead,
we developed a different, non-invasive approach to estimate it.

With only profiling data available, one can use unordered
instruction pointer samples, and measure how many unique
cache lines cover a large fraction (e.g. 99%) of all samples,
when ranked by hotness. The rationale behind such a met-
ric is that an infinite-size cache would obviously contain all
unique lines. In a limited-size one, over a large enough time
window, the LRU replacement policy eventually kicks out less
frequently-used lines, until the hottest lines are left.

However, such a strategy is contingent on consistent sam-
pling over time. In a long-term historical study, both the frac-
tion of machines that get profiled and the amount of machines
serving the same application can vary significantly, often in
ways that are hard to control for. Under such variance, it is un-
fair to compare the absolute number of cache lines that cover
a fixed fraction of samples for two time periods – 99% of 10×
more samples are more likely to capture larger portions of the
tail of instruction cache lines.

We compensate with yet another layer of sampling. For a
particular binary version, we select a fixed number of random
samples in post-processing a week’s worth of data (in results
shown below, this number is 1 million), and count the absolute
number of unique cache lines that cover that new sample set.
This is the equivalent of constructing a hotness ranking with a
stable number of samples across measurement periods.

Figure 9 shows the results of applying this approach to 30
months of instruction pointer samples. It plots our estimate of
the instruction cache working set size – the number of unique
cache lines in 1M randomly-selected weekly samples for a
specific binary. For calibration, we include 400.perlbench,
which has the largest measured i-cache working set in SPEC
CPU2006 (≈172 KB) [20].

First, compared to SPEC, all workloads demonstrated sev-
eral fold larger i-cache working sets. Figure 9 illustrates that
for search2 and bigtable – their i-cache footprints are 4×
those of 400.perlbench, which amounts to 688 KB or more.
Note that such a size is significantly larger than the L2 cache
in current architectures (Intel: 256 KB, AMD: 512 KB, IBM:
512 KB), which also has to be shared with the data stream.

More importantly, this estimate is growing over time, at

Ju
l Y

1

Oc
t Y

1

Ja
n

Y2

Ap
r Y

2

Ju
n

Y2

Se
p

Y2

De
c

Y2

M
ar

 Y
3

M
ay

 Y
3

Au
g

Y3

No
v

Y3

0
10
20
30
40
50

#
 u

ni
qu

e
ic

ac
he

 li
ne

s
in

 1
M

 s
am

pl
es

 (K
)

Growth: 27.77 % / year; R2 =0.66

400.perlbench

search2

Ju
l Y

1

Oc
t Y

1

Ja
n

Y2

Ap
r Y

2

Ju
n

Y2

Se
p

Y2

De
c

Y2

M
ar

 Y
3

M
ay

 Y
3

Au
g

Y3

No
v

Y3

0
10
20
30
40
50

#
 u

ni
qu

e
ic

ac
he

 li
ne

s
in

 1
M

 s
am

pl
es

 (K
)

Growth: 3.23 % / year; R2 =0.16

400.perlbench

bigtable

Figure 9: Large instruction cache footprints. Getting progressively larger for some applications.

alarming rates for some applications. Consider search2 in
Figure 9, whose footprint has almost doubled during the dura-
tion of the study, at 27% per year. Other workloads are more
stable – for example, bigtable only sees a 3% year-to-year
growth.

While the exact reasons for this disparity are unclear, we
hypothesize it is related to development velocity. Products
like search are under constant development, and often see
a variety of new features added, which leads to simply more
code. bigtable, on the other hand, is a relatively mature code
base with a well-defined feature set that sees less development.
A more quantitative study, correlating development speed with
instruction footprint would make for interesting future work.

7. Core back-end behavior: dependent accesses
While the negative impact of large instruction working sets
is likely to continue growing, the current dominant source of
overhead identified by the Top-Down decomposition (Figure 6)
is clearly in the core’s back-end.

Overall, the combined influence of a large amount of front-
end and back-end stalls results in very few instructions per
cycle (IPC) on average (Figure 10) – almost 2x lower than the
SPECint geomean and close to that of the most memory-bound
benchmarks in SPEC (429.mcf, 471.omnetpp, 433.milc).
This result is in line with published data on classical datacenter
workloads [22], and has led researchers to investigate the
potential of small cores for warehouse-scale applications [1,
22, 31]. We show a more nuanced picture, with bimodal
extracted ILP, frequently low, but also with periods of more
intense computation.

As a reminder, there are two very broad reasons for
Back-end bound µop slots: time spent serving data cache
requests, and lack of instruction-level parallelism (ILP). Of the
two, data cache behavior is the dominant factor in our measure-
ments. This is somewhat unsurprising, given the data-intensive
nature of WSC workloads. Figure 11 serves as confirmation,
showing the amount of back-end cycles, stalled due to pending
loads in the cache hierarchy, or due to insufficient store buffer
capacity. At 50-60% of all cycles, they account for more
than 80% of Back-end bound pipeline slots shown earlier
(Figure 6).

However, not all cycles are spent waiting on data caches. We
demonstrate this in Figure 12, which measures the distribution
of extracted ILP. By extracted ILP, we refer to the number

0.0 0.5 1.0 1.5 2.0 2.5
Instructions per cycle (IPC)

433.milc
471.omnetpp

429.mcf
445.gobmk

400.perlbench

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 10: IPC is universally low.

0 10 20 30 40 50 60 70 80
Cache-bound cycles (%)

video
search3
search2
search1

indexing2
indexing1

gmail-fe
gmail

flight-search
disk

bigtable
ads

Figure 11: Half of cycles are spent stalled on caches.

of simultaneously executing µops at each cycle when some
µops are issued from the out-of-order scheduler to execution
units. We see that 72% of execution cycles exhibit low ILP (1
or 2 on a 6-wide Ivy Bridge core), consistent with the fact that
the majority of cycles are spent waiting on caches. However,
for the other 28% of cycles, 3 or more functional units are kept
busy each cycle.

One explanation consistent with such behavior is that WSC
applications exhibit a fine-grained mix of dependent cache
accesses and bursty computation. The bursts of computation
can either be dependent on the cache references, or indepen-
dent and extractable as ILP. The difference between these two
variants – whether intense compute phases are on the critical
path of execution – could be detrimental for the amount of end
performance degradation of “wimpier” cores, and requires a
dedicated simulation study.

Memory bandwidth utilization Notice that in the previ-
ous paragraph, we immediately diagnose dependent cache ac-
cesses. We hypothesize this because of the very low memory
bandwidth utilization that we observed, shown in Figure 13.

[1,2] [3,4] [5,6]
0

33

67

100

Cy
cl

es
 w

ith
 e

xt
ra

ct
ed

 IL
P

(%
)

Figure 12: Extracted ILP. 28% of cycles utilize 3 or more exe-
cution ports on a 6-wide machine.

0 20 40 60 80 100
Samples (%)

0
10
20
30
40
50
60
70

Di
st

rib
ut

io
n

of

ba
nd

w
id

th
 (C

DF
 %

)

95 %

31%

Figure 13: Memory bandwidth utilization is universally low.

The plot is a cumulative histogram of measured DRAM band-
width across a sufficiently large number of machines.3 The
95-th percentile of utilization is at 31%, and the maximum
measured – 68%, with a heavy tail at the last percentile. Some
portion of the low bandwidth usage is certainly due to low
CPU utilization. However this is not a sufficient explanation –
Barroso et al. show median CPU utilization in the 40%–70%
range (depending on the type of cluster) [4], while we mea-
sure a significantly lower median bandwidth utilization at 10%.
Note that the low bandwidth requirement is not very different
from measurements on CloudSuite [14] and other emerging
datacenter workloads [33].

One consequence of the low bandwidth utilization is that
memory latency is more important than bandwidth for the set
of the applications running in today’s datacenters. In light of
WSC server design, this might pose tradeoffs between memory
bandwidth (or then number of memory controllers) and other
uses of freed up silicon area (for example, more cores or
accelerators).

Note that the large amount of unused bandwidth is also
contrary to some typical benchmarking practices that focus on
capacity. For example, SPECrate as commonly run (N copies
on N cores) can shift several benchmarks’ memory bottlenecks
from latency to bandwidth [48], causing architects to optimize
for a less relevant target.

8. Simultaneous multi-threading
The microarchitectural results shown so far did not account
for simultaneous multi-threading (SMT), even though it is

3Measured through the sum of the UNC_M_CAS_COUNT:RD and
UNC_M_CAS_COUNT:WR IvyTown uncore performance counters.

[1,2] [3,4] [5,6]
0

33

67

100

Cy
cl

es
 w

ith
 e

xt
ra

ct
ed

 IL
P

(%
)

0 10 20 30 40 50
Front-end bound cycles (%)

per-core
per-thread

0 2 4 6 8 10 12
Fetch latency cycles (%)

per-core
per-thread

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Instructions per cycle (IPC)

per-core
per-thread

Figure 14: SMT effects on architectural behavior. From top to
bottom: (i) more ILP extracted compared to Figure 12; (ii) front-
end bound cycles decrease, but (iii) instruction starvation still
exists; (iv) core throughput doubles with two hyperthreads.

enabled on the Ivy Bridge machines profiled. For example,
the top-level cycle breakdown in Figure 6 was done on a per-
hyperthread basis, assuming each hyperthread has the full
machine width to issue µops.

Broadly speaking, SMT is most efficient when workloads
have different performance bottlenecks, and multiple threads
can complement each other’s deficiencies. WSC applications,
with inefficiencies in both the front-end and the back-end,
as well as suspected fine-grained phase behavior, fit such a
description well, and we expect them to benefit from SMT.

While we cannot perform at-scale measurements of coun-
terfactuals without disturbing a large number of user-facing
services (i.e., disabling SMT and looking at workload perfor-
mance), we can at least estimate the efficacy of SMT by com-
paring specific per-hyperthread performance counters with
ones aggregated on a per-core basis. Note that this is very
different from measuring the speedup that a single applica-
tion experiences from SMT. When a thread is co-run on a
core, its performance naturally drops compared to when it has
the full core available – mostly due to capacity effects, i.e.
having to share microarchitectural units and caches. On the
other hand, core utilization increases simply because multiple
threads share it. While we cannot measure the first effect
at-scale without turning SMT off, we can and do measure the
latter.

As expected, functional unit utilization in the back-end
increases when accounting for SMT. The first plot in Figure 14
shows that 3 or more of the 6 execution ports are used during

34% of cycles when counting both hyperthreads, as opposed to
28% in Figure 12, when counting each hyperthread separately.

While such improvements from SMT are expected and well-
understood, the effects on front-end performance are less clear.
On the one hand, SMT can increase instruction cache pressure
– more instructions need to be fetched, even if hyperthreads
share the same code, exacerbating an already severe instruction
cache capacity bottleneck (Section 6). On the other, long-
latency fetch bubbles on one hyperthread can be absorbed by
fetching from another.

Our profiling data suggests that the latter effect dominates
in WSC applications and SMT ends up improving front-end
utilization. This is evident from the second and third plots
of Figure 14. Per-core Front-end bound cycles are signif-
icantly lower than when measured per-hyperthread – 16%
versus 22% on the medians, with drastically tighter distri-
butions around them. Front-end starvation cycles (with no
µops dispatched) also decrease from 5% to 4%, indicating
that long-latency instruction cache misses are better absorbed,
and SMT succeeds in alleviating some front-end inefficiencies.

Note however, that, even after we account for 2-wide SMT,
75% of collected fleet samples show an IPC value of 1.2 or
less (last plot of Figure 14), compared to a theoretical machine
width of 4.0. Adding this to the fact that latency bottlenecks
(both due to fetching instructions from the L3 cache, and
fetching data from main memory) are still far from eliminated
suggests potential for wider SMT: with more threads per core,
as seen in some server chips [30]. This case is strengthened by
the low memory bandwidth utilization shown earlier – even
with more threads per core bandwidth is unlikely to become a
bottleneck. These results warrant further study of balancing
the benefits of wider SMT with the potential costs, both in per-
formance from potentially hitting capacity bottlenecks, and in
power from the duplication or partitioning of core resources.

9. Related work
In recent years, research interest in developing new architec-
tural support for datacenters has increased significantly. The
concept of deploying “wimpy cores” or microservers to op-
timize datacenters has been well-explored [1, 22, 31], and
recent efforts have investigated specialized interconnects [32]
and customized hardware accelerators [42]. While our cycle
breakdown finds opportunities for specialization, microarchi-
tectural analysis suggests that “brawny” out-of-order super-
scalar cores provide sufficient performance to be justified,
especially when coupled with wide SMT. As prior research
has observed, “wimpy” cores and some forms of specializa-
tion excel in cost- and power-efficiency, often at the cost of
performance.

Architecture research in datacenter processor design has
spurred multiple academic efforts to develop benchmark suites
for datacenter computing. Most notably, CloudSuite is a mix-
ture of scale-out cloud service workloads, characterized on
a modern server system [14]. Recent efforts have provided

in-depth microarchitectural characterization of portions of
CloudSuite [49]. Some of our findings (very low bandwidth
utilization) are well-represented in CloudSuite benchmarks,
others – to a lesser extent (large i-cache pressure), while yet
others are markedly different (very flat execution profiles ver-
sus hotspots). Many follow-up architectural studies unjustly
focus only on the Web Search portion of CloudSuite. This
can lead to false conclusions, because: (i) websearch is not the
sole “killer workload” in the datacenter; and (ii) CloudSuite
Web Search is the least correlated with our findings from a
live WSC (it sees very low stall times, has a tiny L2 instruc-
tion working set, and, as a result, achieves very high IPC more
representative of a compute-bound workload [14]). Similarly,
DCBench focuses in more depth on cloud data analytics [23].
These suites are vital for experimentation, though they can-
not be as comprehensive as observing production applications
evolve at scale over the years.

Other researchers have also taken the approach of profiling
live datacenters. Kozyrakis et al. present data on internet-
scale workloads from Microsoft – Hotmail, Cosmos, and Bing,
but their study focuses more on system-level Amdahl ratios
rather than microarchitectural implications [27]. Another pa-
per [5] similarly focuses on system issues for Google web-
search. While it has some discussion of microarchitecture,
this study is now more than a decade old. A large body of
work profiles production warehouse-scale applications with
the explicit purpose of measuring [24] and reducing [35, 50]
contention between co-scheduled jobs, or of scheduling them
in accordance with machine characteristics [34]. Such studies
can benefit from microarchitectural insights provided here.

Finally, our work builds on top of existing efforts to profile
and analyze applications on modern hardware. Google-Wide-
Profiling provides low-overhead performance sampling across
Google’s datacenter fleet and has been deployed for many
years to provide the capability for longitudinal studies [44].
We also leverage recent advances in Top-Down performance
analysis [48] that allow us to estimate CPI stacks without
specialized hardware support [13].

10. Conclusions
To better understand datacenter software performance proper-
ties, we profiled a warehouse-scale computer over a period of
several years. In this paper, we showed detailed microarchitec-
tural measurements spanning tens of thousands of machines,
running thousands of different applications, while executing
the requests of billions of users.

These workloads demonstrate significant diversity, both in
terms of the applications themselves, and within each indi-
vidual one. By profiling across binaries, we found common
low-level functions (“datacenter tax”), which show potential
for specialized hardware in a future server SoC. Finally, at the
microarchitectural level, we identified a common signature
for WSC applications – low IPC, large instruction footprints,
bimodal ILP and a preference for latency over bandwidth –

which should influence future processor designs for the data-
center. These observations motivate several interesting direc-
tions for future warehouse-scale computers. The table below
briefly summarizes our findings and potential implications for
architecture design.

Finding Investigation direction
workload diversity Profiling across applications.
flat profiles Optimize low-level system functions.
datacenter tax Datacenter specific SoCs

(protobuf, RPC, compression HW).
large (growing)
i-cache footprints

I-prefetchers, i/d-cache partitioning.

bimodal ILP Not too “wimpy” cores.
low bandwidth
utilization

Trade off memory bandwidth for cores.
Do not use SPECrate.

latency-bound
performance

Wider SMT.

Summary of findings and suggestions for future investigation.

Acknowledgments
We would like to thank the anonymous reviewers and Ah-
mad Yasin for their constructive feedback. We reserve special
thanks for our colleagues at Google, and especially: the GWP
team for developing and maintaining large-scale profiling in-
frastructure; David Levinthal and Stephane Eranian for their
invaluable help with performance counters; and Luiz Barroso,
Artur Klauser and Liqun Cheng for commenting on drafts of
this manuscript.

Svilen Kanev’s academic work was partially supported by
C-FAR, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA. Juan Pablo Darago’s academic work was supported
by the LICAR lab in Departamento de Ciencias de la Com-
putación, Universidad de Buenos Aires.

References
[1] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-

ishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A fast array of
wimpy nodes. In Operating systems principles (SOSP), 2009.

[2] Jennifer Anderson, Lance Berc, George Chrysos, Jeffrey Dean, Sanjay
Ghemawat, Jamey Hicks, Shun-Tak Leung, Mitch Lichtenberg, Mark
Vandevoorde, Carl A Waldspurger, et al. Transparent, low-overhead
profiling on modern processors. In Workshop on Profile and Feedback-
Directed Compilation, 1998.

[3] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Call
graph prefetching for database applications. Transactions of Computer
Systems, 2003.

[4] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacen-
ter as a computer: an introduction to the design of warehouse-scale
machines. Synthesis Lectures on Computer Architecture, 2013.

[5] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a
planet: The google cluster architecture. IEEE Micro, 2003.

[6] Paolo Calafiura, Stephane Eranian, David Levinthal, Sami Kama, and
Roberto Agostino Vitillo. GOoDA: The generic optimization data
analyzer. In Journal of Physics: Conference Series, 2012.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. In Operating Systems Design and Implementation (OSDI), 2006.

[8] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao, Vinodha
Ramasamy, Paul Yuan, Wenguang Chen, and Weimin Zheng. Taming
hardware event samples for FDO compilation. In Code generation and
optimization (CGO), 2010.

[9] Zefu Dai, Nick Ni, and Jianwen Zhu. A 1 cycle-per-byte XML parsing
accelerator. In Field Programmable Gate Arrays, 2010.

[10] Arnaldo Carvalho de Melo. The new linux ‘perf’ tools. In Slides from
Linux Kongress, 2010.

[11] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communica-
tions of the ACM, 2013.

[12] Filipa Duarte and Stephan Wong. Cache-based memory copy hardware
accelerator for multicore systems. IEEE Transactions on Computers,
2010.

[13] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E Smith.
A top-down approach to architecting cpi component performance coun-
ters. IEEE Micro, 2007.

[14] Michael Ferdman, Babak Falsafi, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak,
Adrian Daniel Popescu, and Anastasia Ailamaki. Clearing the clouds.
In Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012.

[15] T.B. Ferreira, R. Matias, A. Macedo, and L.B. Araujo. An experi-
mental study on memory allocators in multicore and multithreaded
applications. In Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2011.

[16] Google. Bazel. http://bazel.io/.
[17] Google. gRPC. http://grpc.io/.
[18] Google. Protocol buffers. https://developers.google.com/

protocol-buffers/.
[19] John L Hennessy and David A Patterson. Computer architecture: a

quantitative approach. 2012.
[20] Aamer Jaleel. Memory characterization of workloads using

instrumentation-driven simulation–a Pin-based memory characteriza-
tion of the SPEC CPU2000 and SPEC CPU2006 benchmark suites.
Intel Corporation, VSSAD, 2007.

[21] Aamer Jaleel, Joseph Nuzman, Adrian Moga, Simon C Steely Jr, and
Joel Emer. High Performing Cache Hierarchies for Server Workloads.
In High-Performance Computer Architecture (HPCA), 2015.

[22] Vijay Janapa Reddi, Benjamin C Lee, Trishul Chilimbi, and Kushagra
Vaid. Web search using mobile cores: quantifying and mitigating the
price of efficiency. Computer Architecture (ISCA), 2010.

[23] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo.
Characterizing data analysis workloads in data centers. In Workload
characterization (IIWSC), 2013.

[24] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim.
Measuring interference between live datacenter applications. In High
Performance Computing, Networking, Storage and Analysis (SC),
2012.

[25] Svilen Kanev, Kim Hazelwood, Gu-Yeon Wei, and David Brooks.
Tradeoffs between Power Management and Tail Latency in Warehouse-
Scale Applications. In Workload Characterization (IISWC), 2014.

[26] Aasheesh Kolli, Ali Saidi, and Thomas F. Wenisch. RDIP: Return-
address-stack Directed Instruction Prefetching. In Microarchitecture
(MICRO), 2013.

[27] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid.
Server engineering insights for large-scale online services. IEEE Micro,
2010.

[28] Snehasish Kumar, Arrvindh Shriraman, Viji Srinivasan, Dan Lin, and
Jordan Phillips. SQRL: Hardware Accelerator for Collecting Software
Data Structures. In Parallel architectures and compilation (PACT),
2014.

[29] Sangho Lee, Teresa Johnson, and Easwaran Raman. Feedback directed
optimization of tcmalloc. In Proceedings of the workshop on Memory
Systems Performance and Correctness, 2014.

[30] Penny Li, Jinuk Luke Shin, Georgios Konstadinidis, Francis Schu-
macher, Venkat Krishnaswamy, Hoyeol Cho, Sudesna Dash, Robert
Masleid, Chaoyang Zheng, Yuanjung David Lin, et al. A 20nm 32-
Core 64MB L3 cache SPARC M7 processor. In Solid-State Circuits
Conference (ISSCC), 2015.

[31] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant
Patel, Trevor Mudge, and Steven Reinhardt. Understanding and de-
signing new server architectures for emerging warehouse-computing
environments. In Computer Architecture (ISCA), 2008.

[32] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos,
Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic,
Sachin Idgunji, Emre Ozer, et al. Scale-out processors. In Computer
Architecture (ISCA), 2012.

http://bazel.io/
http://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

[33] Krishna T Malladi, Benjamin C Lee, Frank A Nothaft, Christos
Kozyrakis, Karthika Periyathambi, and Mark Horowitz. Towards
energy-proportional datacenter memory with mobile DRAM. Com-
puter Architecture (ISCA), 2012.

[34] Jason Mars and Lingjia Tang. Whare-map: Heterogeneity in "homoge-
neous" warehouse-scale computers. In Computer Architecture (ISCA),
2013.

[35] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou
Soffa. Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations. In Microarchitecture (MICRO),
2011.

[36] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F Wenisch. Power management of online
data-intensive services. In Computer Architecture (ISCA), 2011.

[37] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: interac-
tive analysis of web-scale datasets. Very Large Data Bases (VLDB),
2010.

[38] Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services archi-
tecture. Open Information Technologies, 2014.

[39] Jian Ouyang, Hong Luo, Zilong Wang, Jiazi Tian, Chenghui Liu,
and Kehua Sheng. FPGA implementation of GZIP compression and
decompression for IDC services. In Field-Programmable Technology
(FPT), 2010.

[40] Mike P Papazoglou and Willem-Jan Van Den Heuvel. Service oriented
architectures: approaches, technologies and research issues. The VLDB
journal, 2007.

[41] David A Patterson. The data center is the computer. Communications
of the ACM, 2008.

[42] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable

fabric for accelerating large-scale datacenter services. In Computer
Architecture (ISCA), 2014.

[43] Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition
shared caches. In Microarchitecture (MICRO), 2006.

[44] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. Google-Wide Profiling: A Continuous Profiling Infrastructure
for Data Centers. IEEE Micro, 2010.

[45] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. Row-
Clone: Fast and Energy-efficient in-DRAM Bulk Data Copy and Ini-
tialization. In Microarchitecture (MICRO), 2013.

[46] Jan Van Lunteren, Ton Engbersen, Joe Bostian, Bill Carey, and Chris
Larsson. XML accelerator engine. In Workshop on High Performance
XML Processing, 2004.

[47] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at Google with Borg. In European Conference on Computer Systems
(EuroSys), 2015.

[48] Ahmad Yasin. A Top-Down method for performance analysis and
counters architecture. Performance Analysis of Systems and Software
(ISPASS), 2014.

[49] Ahmad Yasin, Yosi Ben-Asher, and Avi Mendelson. Deep-dive Anal-
ysis of the Data Analytics Workload in CloudSuite. In Workload
characterization (IIWSC), 2014.

[50] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. CPI2: CPU performance isolation for shared compute
clusters. In European Conference on Computer Systems (EuroSys),
2013.

	Introduction
	Background and methodology
	Workload diversity
	Datacenter tax
	Microarchitecture analysis
	Instruction cache bottlenecks
	Core back-end behavior: dependent accesses
	Simultaneous multi-threading
	Related work
	Conclusions

