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ABSTRACT 
Increasing power dissipation has become a major constraint 
for future per~brmartce gains in the design of microproces- 
sors. In this paper, we present  the circuit design of an issue 
queue for a superscalar processor that  leverages transmis- 
sion gate insertion to provide dynamic low-cost configura- 
bility of size and speed. A novel circuit structure dynami- 
cally gathers statist ics of issue queue activity over intervals 
of instruction execution. These statistics are then used to 
change the size of an issue queue organization on-the-fly to 
improve issue queue energy and performance. When applied 
to a fixed, full-size issue queue structure, the result is up to 
a 70% reduction in energy dissipation. The complexity of 
the additional circuitry to achieve this result is almost neg- 
ligible. Furthermore, self- t imed techniques embedded in the 
adaptive scheme can provide a 56% decrease in cycle time of 
the CAM array read of the issue queue when we change the 
adaptive issue queue size f¥om 32 entries (largest possible) 
to 8 entries (smallest possible in our design). 

1. INTRODUCTION 
The out-of-order issue queue structure is a major contributor 
to the overall power consumption in a modern superscalar 
processor, like the Alpha  21264 and Mips R10000 [9, 15]. It 
also requires the use of complex control logic in determin- 
ing and selecting the ready  instructions. Such complexity, 
besides adding to the overall power consumption, also com- 
plicates the verification task.  Recent work by Gonzalez et 
at. [6, 8] has addressed these problems, by proposing de- 
sign schemes tha t  reduce either the control logic complex- 
ity [6] or the power [8] without  significantly impacting the 
[PC (instruction per cycle) performance. In [6], the authors 
propose and evaluate two different schemes. In the first 
approach, the complexi ty  of the issue logic is reduced by 
having a separate ready queue which only holds instructions 
with operands tha t  are determined to be fully available at 
decode time. Thus, instruct ions can be issued in-order from 
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this ready queue at reduced complexity, without any asso- 
ciative lookup. A separate first-use table is used to hold 
instructions, indexed by unavailable operand register spec- 
ifiers. Only those instructions that  are the first-time con- 
sumers of these pending operands are stored in this table. 
Instructions which are deeper in the dependence chain sim- 
ply stall or are handled separately through a separate issue 
queue. The dependence link information connecting multi- 
ple instances of the same instruction in the first-use table is 
updated after each instruction execution is completed. At 
the same time, if a given instruction is deemed to be ready 
it is moved to the in-order ready queue. Since none of the 
new structures require associative lookups or run-time de- 
pendence analysis, and yet, instructions are able to migrate 
to the ready queue as soon as their operands become avail- 
able, this scheme significantly reduces the complexity of the 
issue logic. 

The second approach relies on stat ic scheduling. Here, the 
main issue queue only holds instructions with pre-determined 
availability times of their source operands. Since the queue 
entries are time-ordered (due to known availabilities), the 
issue logic can use simple, in-order semantics. Instructions 
with operands which have unknown availability times are 
held in a separate wait queue and get moved to the main 
issue queue only when those times become definite. In both 
approaches described in [6], the emphasis is on reduction: 
of the complexity of the issue control logic. The added (or 
augmented) support  structures in these schemes may actu- 
ally cause an increase of power, in spite of the simplicity 
and elegance of the control logic. In [8], the main focus is 
on power reduction. The issue queue is designed to be a 
circular queue structure, with head and tail pointers, and 
the effective size is dynamically adapted to fit the ILP (In- 
struction Level Parallelism) content of the workload during 
different periods of execution. 

The work in [8] leverages previous work [1, 2] in dynamically 
sizing the issue queue. In both [6] and [8], the authors show 
that  the IPC loss is very small with the suggested modi- 
fications to the issue queue structure and logic. Also, in 
[8], the authors use a trace-driven power-performance sim- 
ulator (based on the model by Cai [5]) to report substan- 
tial power savings on dynamic queue sizing. However, a 
detailed circuit-level design and simulation of the proposed 
implementations are not reported in [6] or [8]. Without  such 
analysis, it is difficult to gauge the cycle-time impact or the 
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extra  power/complexity of the augmented design. 

In our work, we propose a new adaptive issue queue orga- 
nization and we evaluate the power savings and the logic 
overhead through actual circuit-level implementations and 
their simulation. This work was done as a part  of a re- 
search project targeted to explore power-saving opportuni- 
ties in future, high-end processor development within IBM. 
Our scheme is simpler than that  reported in [6, 8] in that  it 
does not introduce any new data  storage or access structure 
(like the first-use table or the wait queue in [6]). Rather, it 
proposes to use an existing framework, like the CAM /RA M  
structure commonly used in the design of issue queues [10]. 
However, the effective size of the issue queue is dynamically 
adapted to fit the workload demands. This aspect of the 
design is conceptually similar to the method proposed in [8] 
but our control logic is quite different. 

2. CHARACTERISTICS OF A 
CONVENTIONAL ISSUE QUEUE 

The purpose of the issue queue is to receive instructions 
from the dispatch stage and forward ready instructions to 
the execution units. An instruction is ready to issue when 
the da ta  needed by its source operands and the functional 
unit are available or will be available by the time the in- 
struction is ready to read the operands, prior to execution. 
The operations performed by a typical CAM/RAM based 
issue queue design is illustrated in Figure 1. 
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Many superscalar microprocessors, such as the Alpha 21264 
[9] and Mips R10000 [15] use a distr ibuted issue queue struc- 
ture, which may include separate queues for integer and 
floating point operations. For instance in the Alpha 21264 
[14], the issue queue is implemented as flip-flop latch-based 
FIFO queues with a compaction strategy, i.e., every cycle, 
the instructions in the queue are shifted to fill up any holes 
created due to prior-cycle issues. This makes efficient use of 
the queue resource, while also simplifying the wake-up and 
selection control logic. However, compaction entails shifting 
instructions around in the queue every cycle and depending 
on the instruction word width may therefore be a source of 
considerable power consumption. Studies have shown that  
overall performance is largely independent of what selection 
policy is used (oldest first, position based, etc.) [4]. As 
such, the compaction strategy may not be best suited for 
low power operation; nor is it critical to achieving good per- 
formance. So, in this research project, an initial decision 
was made to avoid compaction. Even if this means that  the 

select arbitrat ion must be performed over a window size of 
the entire queue, this is still a small price to pay compared 
to shifting multiple queue entries each cycle. 

Due to the above considerations, a decision was made to use 
a RAM/CAM based solution [10]. Intuitively, a I~AM/CAM 
would be inherently lower power due to its smaller area and 
because it naturally supports a non-compaction strategy. 
The RA M /CA M  structure forms the core of our issue queue 
design. The op-code, destination register specifier, and other 
instruction fields (such as the instruction tag) are stored in 
the RAM. The source tags are stored in the CAM and are 
compared to the result tags from the execution stage every 
cycle. Once all source operands are available, the instruction 
is ready to issue provided its functional unit is available. The 
tag comparisons performed by the CAM and the checks to 
verify that  all operands are available constitute the wakeup 
part  of the issue unit operation. While potentially consum- 
ing less power than a flip-flop based solution, the decision 
of using a R A M / C A M  structure for the issue queue is not 
without its drawbacks. CAM and RAM structures are in 
fact inherently power hungry as they need to precharge and 
discharge internal high capacitance lines and nodes for every 
operation. The CAM needs to perform tag matching oper- 
ations every cycle. This involves driving and clearing high 
capacitance tag-lines, and also precharging and discharging 
high capacitance matchline nodes every cycle. Similarly, the 
RAM also needs to charge and discharge its bitlines for ev- 
ery read operation. Our research on low-power issue queue 
designs was focused on two aspects: (a) Innovating new cir- 
cuit structures, which reduce power consumption in the ba- 
sic CA M /RA M  structure; and (b) Dynamic adap ta t ion  of 
the effective C A M / R A M  structure by exploiting workload 
variability. This paper describes the work done on the sec- 
ond aspect. However, dynamic queue sizing can degrade 
CPI performance as well. Part  of the design challenge faced 
in this work was to ensure that  the overall design choices 
do not impact performance significantly, while ensuring a 
substantial power reduction. 

Non-adaptive designs (like the R10000 and Alpha 21264) use 
fixed-size resources and a fixed flmctionality across all pro- 
gram runs. The choices are made to achieve best overall per- 
formance over a range of applications. However, an individ- 
ual application whose requirements are not well matched to 
this particular hardware organization may exhibit poor per- 
formance. Even a single application run may exhibit enough 
variability that  causes uneven use of the chip resources dur- 
ing different phases. Adaptive design ideas (e.g., [1]) exploit 
the workload variability to dynamically adapt  the machine 
resources to match the program characteristics. As shown 
in [1], such ideas can be used to increase overall performance 
by exploiting reduced access latencies in dynamically resized 
resources. 

Non-adaptive designs are inherently power-inefficient as well. 
A fixed queue will waste power unnecessarily in the entries 
that  are not in use. Figure 2 shows utilization da ta  for one 
of the queue resources within a high performance processor 
core when simulating the SPECint95 benchmarks. From 
this figure, we see that  the upper 9 entries contribute to 
80% of the valid entry count. Dynamic queue sizing clearly 
has the potential of achieving significant power reduction as 
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Figure  2: H i s t o g r a m  of valid ent r ies  fbr an in teger  
queue  averaged  over S P E C i n t 9 5  

other research has demonstrated as welt [2, 8]~ One option 
to save power is to clock-gate each issue queue entry on a 
cycle by cycle basis. However, clock gating alone does not 
address some of the laa'gest components of the issue queue 
power such a~s the CAM taglines, the RAM/CAM precharge 
logic, and RAM/CAM bitlines. So a scheme which allows 
shutting down the queue in chunks based on usage reduc- 
tions to address these other power components can produce 
significant additional power savings over clock gating, q?his 
idea forms the basis of the design described in this paper. 

3. AI)AVFIVE ISSUE QUEUE DESIGN 
In this section, we discuss the adaptive issue queue design 
in detail. First., we describe thE' highdevel structure of the 
queue. Then, we present partitioning of the CAM/RAM 
ai:ray anti tile sell'timed sense amplifier design. Finally, we 
discuss the shutdown logic that is employed to configure tile 
adaptive issue queue at run- t ime 

3.1 Higtl-Level Structure 
Our approactl to issue queue power savings is to dynamieatly 
shut down and re-enable entire [)locks of the queue~ Shut- 
ling down blocks rather than individual entries achieves a 
more coarse-grained precharge gating. A high-level mecha~ 
:aism monitors the activity of the issue queue over a period of 
execution called the cycle window and gathers statistics us- 
ing hardware counters (discussed in section a.a). At the end 
of the cycle window, the decision logic enables the appro- 
priate control signals to disable and enable queue blocks. A 
very simple mechanism for the decision logic in pseudoeode 
is listed below. 

if (present_IPC < factor * last_IPC) 

increase_size; 
else if (counter < threshold_l) 

decreasesize; 
else if (counter < threshold_2) 

retain_current_size; 
else increase_size; 

At the end of the cycle window, there are four possible ac- 
tions. The issue queue size is ramped up to next larger 
queue size of the current one if the present IPC is a fac- 
tor lower than the Last IPC during the last cycle window. 

This guarding mechanism attempts to limit the performance 
loss of adaptat ion Otherwise, depending on the comparison 
of cmmter values with certain threshold values the decision 
logic may do the following: i) increase issue queue size by 
enabling higher order entries if) retain the current size, or 
iii) decrease the size by disabling the highest order entries. 
Note that a simple NOR of all the active instructions in a 
drank ensures that all entries are issued before tile chunk is 
disabled 

3.2 Partitioning of the RAM/CAM Array and 
Self:Timed Sense Amplifiers 

Tile proposed adaptive CAM/RAM structure is illustrated 
in Figure 3. The effective sizes of the individual arrays can 
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Figure  3: ,Adaptive C A M / R A M  s t r u c t u r e  

be changed at run-time by adjusting the enable inputs that 
control the transmission gates ~2)r our circuit-Level irnple- 
mentation and simulation study, a 32-entry issue queue is 
e~ssumed which is partitioned into four 8-entry chunks. For 
the taglines, a separate scheme is emplwed in order to avoid 
a cycle time impact. A global tag-line is traversed through 
the CAM array and its local tagqines are enabled/disabled 
depending on the control inputs  The sense amplifiers and 
preeharge logic are located at the bottom of both arrays. 
Another ~eature of the design is that these CAM and RAM 
structures are implemented as self-timed blocks The timing 
of the structure is performed via an extra dummy bitliae 
within the datapath of CAM/RAM structures, which has 
the same layout as the real bitl ines A logic zero is stored in 
every dummy cel l  A reading operation of the selected cell 
creates a logical one to zero transition on the dummy bit- 
line that controls the set input of the sense amplifier. (Note 
that the dummy bitline is precharged each cycle as with the 
other bitlines.) This work assumes a latching sense ampli- 
tier that is able to operate with inputs near Vdd as shown 
in Figure 3. When the set input is high, a small voltage 
difference from the memory cell passes through the NMOS 
pass gates of the sense amplifier. When the set signal goes 
low, the cross-coupled devices amplify this difference to a 
full rail signal as the pass gates turn off. 

Figure 4 shows data from CAM read simulations. In this 
simulation, the issue queue size is changed from 32 entries 

75



down to 8 entries successively and the da ta  is read corre- 
spondingly. (The third, fourth and fifth signals from the 
top of Figure 4 correspond to en3, en2 and enl  signals, re- 
spectively, in Figure 3.) The sixth signal waveform from the 
top of the figure shows the vaxiation in latencies. When the 
issue queue size is 8, a faster access time is achieved because 
of the 24 disabled entries. The self-timed sense amplifier 
structure takes advantage of this feature by employing the 
dummy bitline to allow faster operation, i.e., the dummy bit- 
line enables the sense amplifiers at the exact t ime the da ta  
becomes available. Simulations show that  one may achieve 
up to a 56% decrease in the cycle time of the CAM array 
read by this method. Therefore, downsizing to a smaller 
number of entries results in a faster issue queue cycle time 
and saves energy, similar to prior work related to adaptive 
cache designs [3, 11]. 
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su l t s  

F i g u r e  5: H i g h - l e v e l  s t r u c t u r e  o f  s h u t d o w n  logic a n d  
logic t a b l e  for  b ias  logic 

The 32-entry issue queue is part i t ioned into 8-entry chunks 
that  are separately monitored for activity. The bias logic 
block monitors the activity of the issue queue in 4-entry 
chunks. This scheme is employed to decrease the fan-in of 
the bias logic. The bias logic simply gathers the activity 
information over four entries and averages them over each 
cycle. The activity state of each instruction may be inferred 
from the ready flag of that  part icular queue entry. One par- 
ticular state of interest is when exactly half of the entries 
in the monitored chunk are active. One alternative is to 
statically choose either active or not active in this partic- 
ular case. Another approach is to dynamically change this 
choice by making use of an extra  logic signal variable. (See 
Adapt ive  Bias Logic in Figure 5.) 

The statistics process&storage stage, which is shown in Fig- 
ure 6, is comprised of two different parts. The detection logic 

Combining this variable latency issue queue design with 
a synchronous pipeline stage is not straightforward. The 
main problem is to avoid synchronization failure (metastable 
state). One technique to prevent synchronization failures 
is a stoppable clock [12]. A sense amplifier following the 
dummy line generates a Done signal for the issue queue. 
This signal causes the synchronous circuit 's clock to stop 
when the synchronous stage is not  able to receive or com- 
municate new data. Another alternative is to integrate the 
design with self-timed execution units, although synchro- 
nization must still be performed after the execute stage. The 
discussion of synchronization is beyond the scope of this pa- 
per, but  several schemes are discussed in the literature [7, 
t2, 13]. 

3 .3  S h u t d o w n  L o g i c  
Figure 5 illustrates the high-level operation of the shutdown 
logic. It consists of bias logic at the first stage followed by 
the statistics process&storage stage. The activity informa- 
tion is first filtered by the bias logic and then it is fed to 
the process&storage stage where the information is fed to 
counters. At the end of the cycle window, this da ta  passes 
through the decision logic to generate the corresponding con- 
trol inputs. 
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F i g u r e  6: S t a t i s t i c s  p r o c e s s  a n d  s t o r a g e  s t a g e  for 
s h u t d o w n  logic 

provides the value that  will be added to the final counter. 
It gathers the number of active chunks from the bias logic 
outputs and then generates a certain value (e.g., if there axe 
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two active 8-entry chunks, the detection logic will generate 
binary two to add to the final counter). The second part, 
which is the most power hungry, is tim flip-flop and adder 
pair (Ibrming the counter). Each cycle, this counter is incre- 
mented by the number of active clusters (8 entry chunks). 
In this figure one can also see the function of the detection 
logic. The zeros in tim inputs correspond to the non-active 
clusters and the ones to active clusters. The result section 
shows which value in binary should be added. For 32 en- 
tries, two of these detection circuits and a small three-bit 
adder are required to produce the counter input. One of 
the detection logic units covers the upper 16 entries and the 
other one covers the bot tom 16 entries. 

A primary goal in designing the shutdown logic is not to 
add too much overhead to the conventional design in terms 
of transistor count and energy dissipation. Table 1 shows 
the complexity of the shutdown logic in terms of transistor 
count. From this table it is clear that the extra logic adds 
only a small amount of complexity to the overall issue queue. 
AS/X [16] simulations show that  this extra circuitry dissi- 
pates 3% of the energy dissipated by the whole CAM/RAM 
structure on average. 

4. CIRCUIT SIMULATION RESUIfrS 
Figure 7 shows tile energy savings (from AS/X simulations) 
achieved with an adaptive RAM array. (Note that  in this 
figure only positive energy savings numbers are presented.) 
There are several possible energy/perfbrmance tradeoff points 
depending on the transistor width of the transmission gates. 
A larger transistor width results in less cycle time impact, 
although more energy is dissipated. The cycle time impact 
of the additional circuitry did not affect the overall target 
frequency of the processor across all cases. (This was true 
also for the CAM structure.) By going down to 0.39um tran- 
sistor width, one can obtain an energy savings of up to 44%. 
These numbers are inferred from the energy dissipation cor- 
responding to one read operation of a 32-entry conventional 
RAM array and that  of various alternatives of the adaptive 
RAM array. (The size of the queue is varied over the value 
points: 8, 16, 24 and 32.) An interesting feature of tile 
adaptive design is that  it achieves energy savings even with 
32 entries enabled. This is because tile transmission gates 
in the adaptive design reduce the signal swing therefore re- 
sulting in less energy dissipation. The adaptive RAM array 
delay values are illustrated in Figure 8 for various numbers 
of enabled entries and transmission gate transistor widths. 

Tile adaptive CAM array energy and delay values are pre- 
sented in Figure 9 and Figure 10, respectively, for various 
numbers of enabled entries and transmission gate transistor 
widths. These values account for the additional circuitry 
that  generates the final request signal for each entry (input 
to the arbiter logic). With  this structure, a 75% savings 
in energy dissipation is achieved by downsizing from 32 en- 
tries to 8 entries. Furthermore, the cycle time of the CAM 
array read is reduced by 56%. It  should be noted that  a 
32 entry conventional CAM structure consumes roughly the 
same amount of energy as the adaptive CAM array with 
32 entries. Because the CAM array dissipates ten times 
more energy than the RAM array (using 2.34um transmis- 
sion gate transistor width) a 75% energy savings in the CAM 
array corresponds to a 70% overall issue queue energy say- 
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16 
32 
64 
128 

AdapUve CAM Anay 

Transistor Counts 
Issue Queue 

28820 
57108 
113716 
227092 

Transistor Counts Complexity of 
Shutdown Logic Shutdown Logic 

802 2.8% 
1054 1.8% 
1736 1.5% 
2530 1.1% 

Table 1: C o m p l e x i t y  of  shutdown logic in terms of  transis tor  count 

3r9Um 
234U 

Issue Queue 
Number of Entries 

32 24 
E,'~exl Enbtea 

Figure 10: Adapt ive  C A M  array delay values 

5. CONCLUSION 
We examine the power saving potential of an adaptive, out- 
of-order issue queue strncture. We propose an implementa- 
tion that divides the issue queue into separate chunks, con- 
nected via transmission gates. These gates are controlled by 
signals which determine whether a particular chunk is to be 
disabled to reduce the effective queue size. The queue size 
control signals are derived from counters that keep track of 
the active state of each queue entry on a cycle-by-cycle basis. 
After a (programmable) cycle window, the decision to resize 
the queue can be made based on the activity profile mon- 
itored. The major contribution of this work is a detailed, 
circuit-level implementation backed by (AS/X) simulation- 
based analysis to quantify the net power savings that can 
be achieved by various levels of queue size reduction. 

6. ACKNOWLEDGEMENTS 
We wish to thank John Wellman, Prabhakar Kudva, Victor 
Zyuban and Hans Jacobson for many interesting discussions 
and helpful hints. 

7. REFERENCES 
[1] D. H. Albonesi. Dynamic IPC/Clock Rate 

Optimization. Proc. ISCA-25, pp. 282-292, June/July 
1998. 

[2] D. H. Albonesi. The Inherent Energy Efficiency of 
Complexity-Adaptive Processors. Proc. ISCA 
Workshop on Power-Driven Microarchitecture, June 
1998. 

[3] R. Balasubramonian, D.H. Albonesi, A. 
Buyuktosunoglu, and S. Dwarkadas. Memory 
Hierarchy Reconfiguration for Energy and 
Performance in General-Purpose Processor 

78 

Architectures. 33rd International Symposium on 
Microarchitecture, pp. 245-257, December 2000. 

[4] M. Butler and Y.N Patt. An investigation of the 
performance of various dynamic scheduling 
techniques. Proc. ISCA-92, pp. 1-9. 

[5] G. Cai. Architectural level power/performance 
optimization and dynamic power estimation. Proc. of 
the Cool Chips Tutorial, in conjunction with 
Micro-32, 1999. 

[6] R. Canal and A. Gonzalez. A low-complexity issue 
logic. Proc. ACM Int'l. Conference on Supercomputing 
(ICS), pp. 327-335, Santa Fe, N.M., June 2000. 

[7] D. M. Chapiro. Globally-Asynchronous 
Locally-Synchronous systems. PhD thesis, Stanford 
University, October 1984. 

[8] D. Folegnani and A. Gonzalez. Reducing the power 
consumption of the issue logic. Proc. ISCA Workshop 
on Complexity-Effective Design, June 2000. 

[9] R. Kessler. The Alpha 21264 microprocessor. IEEE 
Micro, 19(2): 24-36, March/April 1999. 

[10] S. Palacharla, N. P. Jouppi and J. E. Smith. 
Complexity-effective superscalar processors. Proc. 
ISCA-97, pp. 206-218, June 1997. 

[11] M. D. Powell, S.H. Yang, B. Falsafi, K. Roy, T. N. 
Vijaykumar. Gated-Vdd: A Circuit Technique to 
Reduce Leakage in Deep-Submicron Cache Memories. 
ACM/IEEE International Symposium on Low Power 
Electronics and Design (ISLPED), 2000. 

[12] C. L.Seitz. System Timing. In Carver A. Mead and 
Lynn A. Conway, editors, Introduction to VLSI 
Systems, chapter 7, Addison-Wesley, 1980. 

[13] A. Sjogren and C. Myers. Interfacing synchronous and 
asynchronous modules within a high-speed pipeline. 
Proceedings of the 17th Conference on Advanced 
Research in VLSI, September 1997. 

[14] K. Wilcox and S. Manne. Alpha Processors: A history 
of power issues and a look to the future. Proc. of the 
Cool Chips Tutorial, in conjunction with Micro-32, 
1999. 

[15] K.Yeager. The Mips R10000 superscalar 
microprocessor. IEEE Micro, 16(2): 28-41, April 1996. 

[16] AS/X User's Guide. IBM Corporation, New York, 
1996. 

78


