
A Circuit Level Implementation of an Adaptive Issue
for Power-Aware Microprocessors

Queue

Atper 8uyuktosunoglu, David Albonesi
University of Rochester

Electrical and Computer Engineering
Rochester, NY

buyuktos @ ece. rochester.edu

Stanley Schuster, David Brooks
Pradip Bose, Peter Cook

IBM T. J. Watson Research Center
Yorktown Heights, NY

ABSTRACT
Increasing power dissipation has become a major constraint
for future per~brmartce gains in the design of microproces-
sors. In this paper, we present the circuit design of an issue
queue for a superscalar processor that leverages transmis-
sion gate insertion to provide dynamic low-cost configura-
bility of size and speed. A novel circuit structure dynami-
cally gathers statist ics of issue queue activity over intervals
of instruction execution. These statistics are then used to
change the size of an issue queue organization on-the-fly to
improve issue queue energy and performance. When applied
to a fixed, full-size issue queue structure, the result is up to
a 70% reduction in energy dissipation. The complexity of
the additional circuitry to achieve this result is almost neg-
ligible. Furthermore, self- t imed techniques embedded in the
adaptive scheme can provide a 56% decrease in cycle time of
the CAM array read of the issue queue when we change the
adaptive issue queue size f¥om 32 entries (largest possible)
to 8 entries (smallest possible in our design).

1. INTRODUCTION
The out-of-order issue queue structure is a major contributor
to the overall power consumption in a modern superscalar
processor, like the Alpha 21264 and Mips R10000 [9, 15]. It
also requires the use of complex control logic in determin-
ing and selecting the ready instructions. Such complexity,
besides adding to the overall power consumption, also com-
plicates the verification task. Recent work by Gonzalez et
at. [6, 8] has addressed these problems, by proposing de-
sign schemes tha t reduce either the control logic complex-
ity [6] or the power [8] without significantly impacting the
[PC (instruction per cycle) performance. In [6], the authors
propose and evaluate two different schemes. In the first
approach, the complexi ty of the issue logic is reduced by
having a separate ready queue which only holds instructions
with operands tha t are determined to be fully available at
decode time. Thus, instruct ions can be issued in-order from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GI,SV[.SI 2001 West l.afayette, Indiana, USA
Copyright ACM 2001 1-58113-351-0/01/03...$5.00

this ready queue at reduced complexity, without any asso-
ciative lookup. A separate first-use table is used to hold
instructions, indexed by unavailable operand register spec-
ifiers. Only those instructions that are the first-time con-
sumers of these pending operands are stored in this table.
Instructions which are deeper in the dependence chain sim-
ply stall or are handled separately through a separate issue
queue. The dependence link information connecting multi-
ple instances of the same instruction in the first-use table is
updated after each instruction execution is completed. At
the same time, if a given instruction is deemed to be ready
it is moved to the in-order ready queue. Since none of the
new structures require associative lookups or run-time de-
pendence analysis, and yet, instructions are able to migrate
to the ready queue as soon as their operands become avail-
able, this scheme significantly reduces the complexity of the
issue logic.

The second approach relies on stat ic scheduling. Here, the
main issue queue only holds instructions with pre-determined
availability times of their source operands. Since the queue
entries are time-ordered (due to known availabilities), the
issue logic can use simple, in-order semantics. Instructions
with operands which have unknown availability times are
held in a separate wait queue and get moved to the main
issue queue only when those times become definite. In both
approaches described in [6], the emphasis is on reduction:
of the complexity of the issue control logic. The added (or
augmented) support structures in these schemes may actu-
ally cause an increase of power, in spite of the simplicity
and elegance of the control logic. In [8], the main focus is
on power reduction. The issue queue is designed to be a
circular queue structure, with head and tail pointers, and
the effective size is dynamically adapted to fit the ILP (In-
struction Level Parallelism) content of the workload during
different periods of execution.

The work in [8] leverages previous work [1, 2] in dynamically
sizing the issue queue. In both [6] and [8], the authors show
that the IPC loss is very small with the suggested modi-
fications to the issue queue structure and logic. Also, in
[8], the authors use a trace-driven power-performance sim-
ulator (based on the model by Cai [5]) to report substan-
tial power savings on dynamic queue sizing. However, a
detailed circuit-level design and simulation of the proposed
implementations are not reported in [6] or [8]. Without such
analysis, it is difficult to gauge the cycle-time impact or the

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI 2001, West Lafayette, Indiana, USA
© ACM 2001 1-58113-351-0/00/03…$5.00

73

extra power/complexity of the augmented design.

In our work, we propose a new adaptive issue queue orga-
nization and we evaluate the power savings and the logic
overhead through actual circuit-level implementations and
their simulation. This work was done as a part of a re-
search project targeted to explore power-saving opportuni-
ties in future, high-end processor development within IBM.
Our scheme is simpler than that reported in [6, 8] in that it
does not introduce any new data storage or access structure
(like the first-use table or the wait queue in [6]). Rather, it
proposes to use an existing framework, like the CAM /RA M
structure commonly used in the design of issue queues [10].
However, the effective size of the issue queue is dynamically
adapted to fit the workload demands. This aspect of the
design is conceptually similar to the method proposed in [8]
but our control logic is quite different.

2. CHARACTERISTICS OF A
CONVENTIONAL ISSUE QUEUE

The purpose of the issue queue is to receive instructions
from the dispatch stage and forward ready instructions to
the execution units. An instruction is ready to issue when
the da ta needed by its source operands and the functional
unit are available or will be available by the time the in-
struction is ready to read the operands, prior to execution.
The operations performed by a typical CAM/RAM based
issue queue design is illustrated in Figure 1.

< X ,X >

: r ''2--
LATCH..,~ CAM ~ RE AD .y,.~ S F~L EC]L_~ L A T O ! Pd~AD RAM DRIVE R[~IiFILE
TAGS * OEN A R B W R f R D - ~ R E A D CAM- ~SOURC~i BU.~
- - NISW ARB* WRITE RAM

INSTR RESULT WRITE CAM
INSTR MATLI|

WRIffE ARB ITRAT ION . PRE(~I ARGIE CAM M ATCtlLI NF.S
PRF~tIARGE CAMfiLAM REAl) B frLINES READy, S F.LFXJT, WRITE LgXIIC

F i g u r e 1: O p e r a t i o n s p e r f o r m e d b y t h e i s sue q u e u e
a n d t h e i r d e p e n d e n c i e s

Many superscalar microprocessors, such as the Alpha 21264
[9] and Mips R10000 [15] use a distr ibuted issue queue struc-
ture, which may include separate queues for integer and
floating point operations. For instance in the Alpha 21264
[14], the issue queue is implemented as flip-flop latch-based
FIFO queues with a compaction strategy, i.e., every cycle,
the instructions in the queue are shifted to fill up any holes
created due to prior-cycle issues. This makes efficient use of
the queue resource, while also simplifying the wake-up and
selection control logic. However, compaction entails shifting
instructions around in the queue every cycle and depending
on the instruction word width may therefore be a source of
considerable power consumption. Studies have shown that
overall performance is largely independent of what selection
policy is used (oldest first, position based, etc.) [4]. As
such, the compaction strategy may not be best suited for
low power operation; nor is it critical to achieving good per-
formance. So, in this research project, an initial decision
was made to avoid compaction. Even if this means that the

select arbitrat ion must be performed over a window size of
the entire queue, this is still a small price to pay compared
to shifting multiple queue entries each cycle.

Due to the above considerations, a decision was made to use
a RAM/CAM based solution [10]. Intuitively, a I~AM/CAM
would be inherently lower power due to its smaller area and
because it naturally supports a non-compaction strategy.
The RA M /CA M structure forms the core of our issue queue
design. The op-code, destination register specifier, and other
instruction fields (such as the instruction tag) are stored in
the RAM. The source tags are stored in the CAM and are
compared to the result tags from the execution stage every
cycle. Once all source operands are available, the instruction
is ready to issue provided its functional unit is available. The
tag comparisons performed by the CAM and the checks to
verify that all operands are available constitute the wakeup
part of the issue unit operation. While potentially consum-
ing less power than a flip-flop based solution, the decision
of using a R A M / C A M structure for the issue queue is not
without its drawbacks. CAM and RAM structures are in
fact inherently power hungry as they need to precharge and
discharge internal high capacitance lines and nodes for every
operation. The CAM needs to perform tag matching oper-
ations every cycle. This involves driving and clearing high
capacitance tag-lines, and also precharging and discharging
high capacitance matchline nodes every cycle. Similarly, the
RAM also needs to charge and discharge its bitlines for ev-
ery read operation. Our research on low-power issue queue
designs was focused on two aspects: (a) Innovating new cir-
cuit structures, which reduce power consumption in the ba-
sic CA M /RA M structure; and (b) Dynamic adap ta t ion of
the effective C A M / R A M structure by exploiting workload
variability. This paper describes the work done on the sec-
ond aspect. However, dynamic queue sizing can degrade
CPI performance as well. Part of the design challenge faced
in this work was to ensure that the overall design choices
do not impact performance significantly, while ensuring a
substantial power reduction.

Non-adaptive designs (like the R10000 and Alpha 21264) use
fixed-size resources and a fixed flmctionality across all pro-
gram runs. The choices are made to achieve best overall per-
formance over a range of applications. However, an individ-
ual application whose requirements are not well matched to
this particular hardware organization may exhibit poor per-
formance. Even a single application run may exhibit enough
variability that causes uneven use of the chip resources dur-
ing different phases. Adaptive design ideas (e.g., [1]) exploit
the workload variability to dynamically adapt the machine
resources to match the program characteristics. As shown
in [1], such ideas can be used to increase overall performance
by exploiting reduced access latencies in dynamically resized
resources.

Non-adaptive designs are inherently power-inefficient as well.
A fixed queue will waste power unnecessarily in the entries
that are not in use. Figure 2 shows utilization da ta for one
of the queue resources within a high performance processor
core when simulating the SPECint95 benchmarks. From
this figure, we see that the upper 9 entries contribute to
80% of the valid entry count. Dynamic queue sizing clearly
has the potential of achieving significant power reduction as

74
74

'*{ ... 27~;

i ,,[/ /
/ / i

i / i
1

~'i/,7 i

o]

Figure 2: H i s t o g r a m of valid ent r ies fbr an in teger
queue averaged over S P E C i n t 9 5

other research has demonstrated as welt [2, 8]~ One option
to save power is to clock-gate each issue queue entry on a
cycle by cycle basis. However, clock gating alone does not
address some of the laa'gest components of the issue queue
power such a~s the CAM taglines, the RAM/CAM precharge
logic, and RAM/CAM bitlines. So a scheme which allows
shutting down the queue in chunks based on usage reduc-
tions to address these other power components can produce
significant additional power savings over clock gating, q?his
idea forms the basis of the design described in this paper.

3. AI)AVFIVE ISSUE QUEUE DESIGN
In this section, we discuss the adaptive issue queue design
in detail. First., we describe thE' highdevel structure of the
queue. Then, we present partitioning of the CAM/RAM
ai:ray anti tile sell'timed sense amplifier design. Finally, we
discuss the shutdown logic that is employed to configure tile
adaptive issue queue at run- t ime

3.1 Higtl-Level Structure
Our approactl to issue queue power savings is to dynamieatly
shut down and re-enable entire [)locks of the queue~ Shut-
ling down blocks rather than individual entries achieves a
more coarse-grained precharge gating. A high-level mecha~
:aism monitors the activity of the issue queue over a period of
execution called the cycle window and gathers statistics us-
ing hardware counters (discussed in section a.a). At the end
of the cycle window, the decision logic enables the appro-
priate control signals to disable and enable queue blocks. A
very simple mechanism for the decision logic in pseudoeode
is listed below.

if (present_IPC < factor * last_IPC)

increase_size;
else if (counter < threshold_l)

decreasesize;
else if (counter < threshold_2)

retain_current_size;
else increase_size;

At the end of the cycle window, there are four possible ac-
tions. The issue queue size is ramped up to next larger
queue size of the current one if the present IPC is a fac-
tor lower than the Last IPC during the last cycle window.

This guarding mechanism attempts to limit the performance
loss of adaptat ion Otherwise, depending on the comparison
of cmmter values with certain threshold values the decision
logic may do the following: i) increase issue queue size by
enabling higher order entries if) retain the current size, or
iii) decrease the size by disabling the highest order entries.
Note that a simple NOR of all the active instructions in a
drank ensures that all entries are issued before tile chunk is
disabled

3.2 Partitioning of the RAM/CAM Array and
Self:Timed Sense Amplifiers

Tile proposed adaptive CAM/RAM structure is illustrated
in Figure 3. The effective sizes of the individual arrays can

75

WAKEUP I,(X;IC INSTRUCTION READ

Figure 3: ,Adaptive C A M / R A M s t r u c t u r e

be changed at run-time by adjusting the enable inputs that
control the transmission gates ~2)r our circuit-Level irnple-
mentation and simulation study, a 32-entry issue queue is
e~ssumed which is partitioned into four 8-entry chunks. For
the taglines, a separate scheme is emplwed in order to avoid
a cycle time impact. A global tag-line is traversed through
the CAM array and its local tagqines are enabled/disabled
depending on the control inputs The sense amplifiers and
preeharge logic are located at the bottom of both arrays.
Another ~eature of the design is that these CAM and RAM
structures are implemented as self-timed blocks The timing
of the structure is performed via an extra dummy bitliae
within the datapath of CAM/RAM structures, which has
the same layout as the real bitl ines A logic zero is stored in
every dummy cel l A reading operation of the selected cell
creates a logical one to zero transition on the dummy bit-
line that controls the set input of the sense amplifier. (Note
that the dummy bitline is precharged each cycle as with the
other bitlines.) This work assumes a latching sense ampli-
tier that is able to operate with inputs near Vdd as shown
in Figure 3. When the set input is high, a small voltage
difference from the memory cell passes through the NMOS
pass gates of the sense amplifier. When the set signal goes
low, the cross-coupled devices amplify this difference to a
full rail signal as the pass gates turn off.

Figure 4 shows data from CAM read simulations. In this
simulation, the issue queue size is changed from 32 entries

75

down to 8 entries successively and the da ta is read corre-
spondingly. (The third, fourth and fifth signals from the
top of Figure 4 correspond to en3, en2 and enl signals, re-
spectively, in Figure 3.) The sixth signal waveform from the
top of the figure shows the vaxiation in latencies. When the
issue queue size is 8, a faster access time is achieved because
of the 24 disabled entries. The self-timed sense amplifier
structure takes advantage of this feature by employing the
dummy bitline to allow faster operation, i.e., the dummy bit-
line enables the sense amplifiers at the exact t ime the da ta
becomes available. Simulations show that one may achieve
up to a 56% decrease in the cycle time of the CAM array
read by this method. Therefore, downsizing to a smaller
number of entries results in a faster issue queue cycle time
and saves energy, similar to prior work related to adaptive
cache designs [3, 11].

D~C~Q

~, l~,tl~21.,~l +~°+ I+,,,,I.~I~ I ~ . ~

~ N, m~ NA ~A N~ S~ N: I m A ~A
i

N~ NA S:i A NA NA N+ N*~ A NA

Sh N~ A A A ~ N: NA A A ?
- - ~ - -

A ~ A A A m . < m ~ r A A A A A

- Jol°l°lo °lo]:l°l°
o 0 o 0 0 o o o o

sized

NPP.f~CIIGBAR i

.... I 1
s~ l L._..: o,ooo omm

+, [... i ~000 o.,~,o

l i
I C'I

I ~Jt~¢*41~ I.~ Ilry$ ~(M~I 6 JltYt ~ O+~ .

F i g u r e 4: A d a p t i v e C A M a r r a y r e a d s i m u l a t i o n re-
su l t s

F i g u r e 5: H i g h - l e v e l s t r u c t u r e o f s h u t d o w n logic a n d
logic t a b l e for b ias logic

The 32-entry issue queue is part i t ioned into 8-entry chunks
that are separately monitored for activity. The bias logic
block monitors the activity of the issue queue in 4-entry
chunks. This scheme is employed to decrease the fan-in of
the bias logic. The bias logic simply gathers the activity
information over four entries and averages them over each
cycle. The activity state of each instruction may be inferred
from the ready flag of that part icular queue entry. One par-
ticular state of interest is when exactly half of the entries
in the monitored chunk are active. One alternative is to
statically choose either active or not active in this partic-
ular case. Another approach is to dynamically change this
choice by making use of an extra logic signal variable. (See
Adapt ive Bias Logic in Figure 5.)

The statistics process&storage stage, which is shown in Fig-
ure 6, is comprised of two different parts. The detection logic

Combining this variable latency issue queue design with
a synchronous pipeline stage is not straightforward. The
main problem is to avoid synchronization failure (metastable
state). One technique to prevent synchronization failures
is a stoppable clock [12]. A sense amplifier following the
dummy line generates a Done signal for the issue queue.
This signal causes the synchronous circuit 's clock to stop
when the synchronous stage is not able to receive or com-
municate new data. Another alternative is to integrate the
design with self-timed execution units, although synchro-
nization must still be performed after the execute stage. The
discussion of synchronization is beyond the scope of this pa-
per, but several schemes are discussed in the literature [7,
t2, 13].

3 .3 S h u t d o w n L o g i c
Figure 5 illustrates the high-level operation of the shutdown
logic. It consists of bias logic at the first stage followed by
the statistics process&storage stage. The activity informa-
tion is first filtered by the bias logic and then it is fed to
the process&storage stage where the information is fed to
counters. At the end of the cycle window, this da ta passes
through the decision logic to generate the corresponding con-
trol inputs.

B ~
Los~ I

o
I _ I

NA ~A ~A SA 0 0 0

~A NA ~A A 0 0 I

NA ~A A A 0 t 0

~A A A A 0 I I

^ A A A I 0 0

I I I I I J

F i g u r e 6: S t a t i s t i c s p r o c e s s a n d s t o r a g e s t a g e for
s h u t d o w n logic

provides the value that will be added to the final counter.
It gathers the number of active chunks from the bias logic
outputs and then generates a certain value (e.g., if there axe

7 6

76

two active 8-entry chunks, the detection logic will generate
binary two to add to the final counter). The second part,
which is the most power hungry, is tim flip-flop and adder
pair (Ibrming the counter). Each cycle, this counter is incre-
mented by the number of active clusters (8 entry chunks).
In this figure one can also see the function of the detection
logic. The zeros in tim inputs correspond to the non-active
clusters and the ones to active clusters. The result section
shows which value in binary should be added. For 32 en-
tries, two of these detection circuits and a small three-bit
adder are required to produce the counter input. One of
the detection logic units covers the upper 16 entries and the
other one covers the bot tom 16 entries.

A primary goal in designing the shutdown logic is not to
add too much overhead to the conventional design in terms
of transistor count and energy dissipation. Table 1 shows
the complexity of the shutdown logic in terms of transistor
count. From this table it is clear that the extra logic adds
only a small amount of complexity to the overall issue queue.
AS/X [16] simulations show that this extra circuitry dissi-
pates 3% of the energy dissipated by the whole CAM/RAM
structure on average.

4. CIRCUIT SIMULATION RESUIfrS
Figure 7 shows tile energy savings (from AS/X simulations)
achieved with an adaptive RAM array. (Note that in this
figure only positive energy savings numbers are presented.)
There are several possible energy/perfbrmance tradeoff points
depending on the transistor width of the transmission gates.
A larger transistor width results in less cycle time impact,
although more energy is dissipated. The cycle time impact
of the additional circuitry did not affect the overall target
frequency of the processor across all cases. (This was true
also for the CAM structure.) By going down to 0.39um tran-
sistor width, one can obtain an energy savings of up to 44%.
These numbers are inferred from the energy dissipation cor-
responding to one read operation of a 32-entry conventional
RAM array and that of various alternatives of the adaptive
RAM array. (The size of the queue is varied over the value
points: 8, 16, 24 and 32.) An interesting feature of tile
adaptive design is that it achieves energy savings even with
32 entries enabled. This is because tile transmission gates
in the adaptive design reduce the signal swing therefore re-
sulting in less energy dissipation. The adaptive RAM array
delay values are illustrated in Figure 8 for various numbers
of enabled entries and transmission gate transistor widths.

Tile adaptive CAM array energy and delay values are pre-
sented in Figure 9 and Figure 10, respectively, for various
numbers of enabled entries and transmission gate transistor
widths. These values account for the additional circuitry
that generates the final request signal for each entry (input
to the arbiter logic). With this structure, a 75% savings
in energy dissipation is achieved by downsizing from 32 en-
tries to 8 entries. Furthermore, the cycle time of the CAM
array read is reduced by 56%. It should be noted that a
32 entry conventional CAM structure consumes roughly the
same amount of energy as the adaptive CAM array with
32 entries. Because the CAM array dissipates ten times
more energy than the RAM array (using 2.34um transmis-
sion gate transistor width) a 75% energy savings in the CAM
array corresponds to a 70% overall issue queue energy say-

77

: f

<
tm¢~m~ion gale ~ i ~ l ha¢, widSh

F i g u r e 7: A d a p t i v e R A M a r r a y e n e r g y savings

A d a p ~ R A M A ~ a y
loo f

=4 tS a
E ~ En~es

F i g u r e 8: A d a p t i v e R A M a r r a y de l ay values

ings (shutdown logic overhead is included).

Adaptlw CAM Army

a ~ m
. ~ 2 . 3 4 u

~4 ~s 8
Enabk:d E.~rie~

Figure 9: Adapt ive C A M array energy values

77

16
32
64
128

AdapUve CAM Anay

Transistor Counts
Issue Queue

28820
57108
113716
227092

Transistor Counts Complexity of
Shutdown Logic Shutdown Logic

802 2.8%
1054 1.8%
1736 1.5%
2530 1.1%

Table 1: C o m p l e x i t y of shutdown logic in terms of transis tor count

3r9Um
234U

Issue Queue
Number of Entries

32 24
E,'~exl Enbtea

Figure 10: Adapt ive C A M array delay values

5. CONCLUSION
We examine the power saving potential of an adaptive, out-
of-order issue queue strncture. We propose an implementa-
tion that divides the issue queue into separate chunks, con-
nected via transmission gates. These gates are controlled by
signals which determine whether a particular chunk is to be
disabled to reduce the effective queue size. The queue size
control signals are derived from counters that keep track of
the active state of each queue entry on a cycle-by-cycle basis.
After a (programmable) cycle window, the decision to resize
the queue can be made based on the activity profile mon-
itored. The major contribution of this work is a detailed,
circuit-level implementation backed by (AS/X) simulation-
based analysis to quantify the net power savings that can
be achieved by various levels of queue size reduction.

6. ACKNOWLEDGEMENTS
We wish to thank John Wellman, Prabhakar Kudva, Victor
Zyuban and Hans Jacobson for many interesting discussions
and helpful hints.

7. REFERENCES
[1] D. H. Albonesi. Dynamic IPC/Clock Rate

Optimization. Proc. ISCA-25, pp. 282-292, June/July
1998.

[2] D. H. Albonesi. The Inherent Energy Efficiency of
Complexity-Adaptive Processors. Proc. ISCA
Workshop on Power-Driven Microarchitecture, June
1998.

[3] R. Balasubramonian, D.H. Albonesi, A.
Buyuktosunoglu, and S. Dwarkadas. Memory
Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor

78

Architectures. 33rd International Symposium on
Microarchitecture, pp. 245-257, December 2000.

[4] M. Butler and Y.N Patt. An investigation of the
performance of various dynamic scheduling
techniques. Proc. ISCA-92, pp. 1-9.

[5] G. Cai. Architectural level power/performance
optimization and dynamic power estimation. Proc. of
the Cool Chips Tutorial, in conjunction with
Micro-32, 1999.

[6] R. Canal and A. Gonzalez. A low-complexity issue
logic. Proc. ACM Int'l. Conference on Supercomputing
(ICS), pp. 327-335, Santa Fe, N.M., June 2000.

[7] D. M. Chapiro. Globally-Asynchronous
Locally-Synchronous systems. PhD thesis, Stanford
University, October 1984.

[8] D. Folegnani and A. Gonzalez. Reducing the power
consumption of the issue logic. Proc. ISCA Workshop
on Complexity-Effective Design, June 2000.

[9] R. Kessler. The Alpha 21264 microprocessor. IEEE
Micro, 19(2): 24-36, March/April 1999.

[10] S. Palacharla, N. P. Jouppi and J. E. Smith.
Complexity-effective superscalar processors. Proc.
ISCA-97, pp. 206-218, June 1997.

[11] M. D. Powell, S.H. Yang, B. Falsafi, K. Roy, T. N.
Vijaykumar. Gated-Vdd: A Circuit Technique to
Reduce Leakage in Deep-Submicron Cache Memories.
ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED), 2000.

[12] C. L.Seitz. System Timing. In Carver A. Mead and
Lynn A. Conway, editors, Introduction to VLSI
Systems, chapter 7, Addison-Wesley, 1980.

[13] A. Sjogren and C. Myers. Interfacing synchronous and
asynchronous modules within a high-speed pipeline.
Proceedings of the 17th Conference on Advanced
Research in VLSI, September 1997.

[14] K. Wilcox and S. Manne. Alpha Processors: A history
of power issues and a look to the future. Proc. of the
Cool Chips Tutorial, in conjunction with Micro-32,
1999.

[15] K.Yeager. The Mips R10000 superscalar
microprocessor. IEEE Micro, 16(2): 28-41, April 1996.

[16] AS/X User's Guide. IBM Corporation, New York,
1996.

78

