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ABSTRACT
Modern systems-on-chip (SoCs) include not only general-purpose
CPUs but also specialized hardware accelerators. Typically, there
are three coherence model choices to integrate an accelerator with
the memory hierarchy: no coherence, coherent with the last-level
cache (LLC), and private cache based full coherence. However, there
has been very limited research on finding which coherence models
are optimal for the accelerators of a complex many-accelerator SoC.
This paper focuses on determining a cost-aware coherence inter-
face for an SoC and its target application: find the best coherence
models for the accelerators that optimize their power and perfor-
mance, considering both workload characteristics and system-level
contention. A novel comprehensive methodology is proposed that
uses Bayesian optimization to efficiently find the cost-aware coher-
ence interfaces for SoCs that are modeled using the gem5-Aladdin
architectural simulator. For a complete analysis, gem5-Aladdin is ex-
tended to support LLC coherence in addition to already-supported
no coherence and full coherence. For a heterogeneous SoC targeting
applications with varying amount of accelerator-level parallelism,
the proposed framework rapidly finds cost-aware coherence inter-
faces that show significant performance and power benefits over
the other commonly-used coherence interfaces.
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1 INTRODUCTION
Modern SoCs not only consist of general-purpose processors but
also application-specific accelerators, which efficiently execute spe-
cific tasks such as image processing or speech recognition. Recent
SoCs utilize several accelerators, for example, Tesla’s Full Self Driv-
ing ASIC integrates Arm A72 CPUs, a GPU, two neural network
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Figure 1: Accelerator coherence interfaces for an SoC

accelerators, and a video encoder [1]. Such integration of different
compute units has given rise to the heterogeneous SoC paradigm [2].

An accelerator can be integrated with the system’s memory
hierarchy using one of the three common coherence models:
non-coherent, coherent with the last-level cache (LLC), or fully-
coherent [3, 4]. In the non-coherent model, an accelerator typically
uses software-managed direct memory access (DMA) to request
data from the main memory, and stores it in its local scratchpad. In
the LLC-coherent model, data is directly retrieved from the LLC into
the local scratchpads. Finally, in the fully-coherent model, a private
cache is used instead of a scratchpad, implementing a coherence
protocol such as MESI, similar to the processor’s cache.

These coherence models exhibit interesting cost trade-offs [4].
The non-coherent model is simple and involves minimal hardware
overhead, but it suffers from performance/power overheads due
to expensive main memory accesses. LLC-coherent can be more
efficient than non-coherent for workloads with high LLC hit rates.
However, its performance can suffer when several accelerators are
operating concurrently, leading to significant LLC conflict misses.
The fully-coherent model can be power-efficient due to the use of
small private caches instead of larger scratchpads but can incur per-
formance overheads when operating on a large streaming dataset,
unable to fit in a small cache.

We define an accelerator coherence interface for a many-
accelerator SoC as a set of coherence models selected for its various
accelerators (Figure 1). There are two possible accelerator coher-
ence interfaces: homogeneous, where all accelerators use the same
coherence model (for example all fully-coherent accelerators), and
heterogeneous with different models for the accelerators (some
non-coherent, others LLC-coherent or fully-coherent). However,
most of the existing works use homogeneous interfaces for many-
accelerator SoCs [2, 5–9].

There has been very limited research on determining the optimal
accelerator coherence interfaces for many-accelerator SoCs. This
selection is challenging as it should consider a twofold criterion
for best solutions: (i) the characteristics of the kernels being ac-
celerated, e.g., their data access patterns, and (ii) the system-level
properties, such as contention in the shared resources (e.g., shared
LLC). Contention is a critical bottleneck for accelerator performance
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as modern SoCs utilize increasing number of accelerators in parallel
(also called accelerator-level parallelism (ALP) [10]). To this end,
this paper determines a cost-aware accelerator coherence interface
for an SoC and its target application at design time, where the co-
herence models are selected based on the above twofold criterion in
order to optimize the power and performance of the accelerators.

Contributions. We introduce a novel methodology, called
CHIME, to automatically and efficiently findCost-aware coHerence
Interfaces for Many-accElerator SoCs. CHIME uses gem5-Aladdin
architectural simulator [11] to comprehensively model and evalu-
ate the impact of different coherence interfaces on the power and
performance of the accelerators in an SoC, and employs Bayesian
optimization to rapidly converge to a cost-aware coherence inter-
face for a target application. For a complete analysis, we extended
gem5-Aladdin to support LLC coherence in addition to the already-
supported no coherence and full coherence. To the best of our knowl-
edge, this is the first comprehensive methodology for determining
optimal coherence interfaces for many-accelerator SoCs.

CHIME can be utilized not only for finding the cost-aware co-
herence interface for an application-specific SoC but also for a
general-purpose SoC that runs multiple applications. A coherence
interface optimal for one application may not be optimal for oth-
ers. In this case, CHIME is first used to determine a cost-aware
coherence interface for each application separately, and then the
performance/power overheads are evaluated using the chosen cost-
aware coherence interface of each application for all the others. The
final interface selected for the SoC is the one that leads to minimal
overheads for all the target applications.

The effectiveness of CHIME is demonstrated by finding the cost-
aware coherence interfaces for a many-accelerator SoC with 7 ac-
celerators, targeting 9 different applications synthetically created to
mimic real workloads such as image processing. These applications
have varying degrees of ALP: from only one accelerator operating
to all 7 running in parallel. For these applications, CHIME rapidly
converges to cost-aware coherence interfaces that show up to 32.7%
improvements in average accelerator performance and 51.3% lower
total accelerator power compared to several baseline coherence
interfaces. Moreover, if the optimization target is a low power, then
we find that the same cost-aware coherence interface is obtained for
each of the 9 applications, which then becomes the final interface
for the SoC. Alternatively, if the target is high performance, then
we select the cost-aware coherence interface corresponding to the
application that uses all 7 accelerators concurrently as the final
one. It incurs an average performance overhead of only 2.4% for
the other 8 applications.

2 RELATEDWORK
Most of the prior research have used homogeneous coherence in-
terfaces for many-accelerator SoCs, while only a limited works use
heterogeneous interfaces. All-non-coherent interface is used not
only in early SoCs [8] but also very recently for integrating several
accelerators for wearable electronics [12]. All-LLC-coherent has
been used both in academia [2] as well as in industrial products such
as in ARM Cortex-A72 processor [5]. Similarly, all-fully-coherent
interface has been common in IBM’s SoCs, for example, the wire-
speed processor [9] and the CAPI interface [6]. Recently, there
has been research that highlights the need for a heterogeneous
coherence interface for many-accelerator SoCs [13], [4]. A hybrid
coherence interface, called Spandex, correctly integrates CPUs and
GPUs that use different coherence models [14]. However, none

of these works provides a methodology to determine cost-aware
coherence models for accelerators of an SoC.

A couple of recent works proposed methods to determine co-
herence models for the accelerators of an SoC, but have several
limitations and are not comprehensive [15, 16]. The first work does
not optimize for power, and it only chooses between non-coherent
and LLC-coherent models while ignoring the commonly-used fully-
coherent model [15]. The second proposed selecting the appropriate
coherence models for the accelerators at runtime [16]. However,
this approach is also limited in the following ways: (i) the impact
of various coherence models on the accelerator’s power is ignored,
while our approach optimizes both power and performance; (ii)
their coherence selection algorithm may not lead to optimal solu-
tions in terms of performance. This algorithm selects models only
on the basis of dynamic memory footprint while ignoring other
factors, such as data access pattern. In contrast, our framework
exhaustively considers these accelerator characteristics; and (iii)
their runtime approach requires support for all of the coherence
models for every accelerator, which is not scalable and can lead
to significant power/area costs. In contrast, our technique only
needs support for a single coherence model per accelerator as the
cost-aware models are determined during design time.

3 BACKGROUND
Background on the two main threads of this paper is presented:
gem5-Aladdin simulator and Bayesian optimization (BayesOpt).

gem5-Aladdin overview. This tool has the capability to model
a complex SoC and all the interactions between its different com-
ponents. It integrates gem5 architectural simulator [17] with the
Aladdin accelerator simulator [18]. In gem5-Aladdin, a CPU invokes
an accelerator using ioctl system calls to begin simulation using Al-
addin. Aladdin is a trace-based simulator that profiles the dynamic
execution of a kernel, and constructs its data dependence graph.
Various design optimizations, such as loop unrolling, can then be
applied followed by scheduling and execution of the graph, and
returning of the control to the CPU.

Bayesian optimization. Bayesian optimization has been
shown to be highly-effective for optimizing black-box func-
tions [19], [20]. These functions are expensive to evaluate and
cannot be expressed as closed-form expressions. BayesOpt intelli-
gently and rapidly reduces the search space such that only minimal
objective function evaluations are performed.

BayesOpt first evaluates the objective functions at random inputs.
This initial sampling is followed by intelligently selecting those
inputs that tend to optimize the objectives. In more details, the
algorithm builds a Bayesian statistical model of each of the objective
functions using the initial random sampling. Usually, a Gaussian
process (GP) is used for this modeling, which is a probabilistic model
that describes the distribution of the objective function (𝑓 (𝑥)) at
some candidate input 𝑥 [21] based on the past observations. These
GP models are then updated as the algorithm proceeds and samples
new input values. The selection of these inputs is determined by the
evaluation of an acquisition function, which is computed using the
GP-predicted objective values [19]. The algorithm keeps sampling
those inputs that maximize the acquisition function until all the
optimal solutions are found.

Choice of GP parameters. A GP distribution is defined by a mean
and a covariance function. The mean reflects the expected value of
a function at some input before any observations. The covariance
function, called the kernel, models the dependence between the
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function values at two different inputs. In this paper, the widely-
used squared exponential (SE) kernel [21] is used.

Choice of acquisition function. In this paper, the S-Metric-Selection-
based Efficient Global Optimization (SMS-EGO) is used as the acqui-
sition function, which has been shown to be highly-effective for
multi-objective optimization and handling a large design space [22].
SMS-EGO uses a hypervolume metric to determine the degree to
which a candidate point is optimal. Hypervolume is defined as the
volume enclosed between a candidate point and a fixed reference
point in the Pareto space. The reference point is usually chosen to
be the maximal value in each objective function. The hypervolume
of a Pareto-optimal point is higher than a non-optimal point. The
idea is to maximize the hypervolume until all the points with the
highest hypervolume (i.e, Pareto-optimal) are found.

4 MODELING COHERENCE INTERFACES
In this paper, gem5-Aladdin is extended to support LLC-coherence
in addition to the already-supported no-coherence and full-
coherence models. Details on this extension and on the correctness
of a system using a heterogeneous accelerator coherence interface
are now provided.

Extension to LLC coherence. An accelerator coherency port
(ACP) interface is implemented in gem5-Aladdin for LLC-coherence.
ACP is a 64-bit bus interface between an accelerator scratchpad
memory and the LLC. Only limited modifications are made to
gem5’s Ruby memory simulator to support ACP with minimal
overheads. First, a new ACP controller is added for the accelerators
to issue ACP-read and ACP-write requests from the scratchpads to
the LLC. Second, the LLC controller is augmented to receive the
new ACP requests. Finally, gem5’s MESI protocol is modified to
add two new transient states in the LLC controller, while keeping
the stable states (M,E,S,I) unmodified. The two states are needed
to handle the ACP read and write misses in the LLC: we call these
states ACP-R and ACP-W, respectively. No new states are needed
for ACP hits as the LLC is simply accessed for data. In cases when
ACP read/write arrives at the LLC and the requested cacheline is
still owned by a private L1, the request will be forwarded to the
exclusive owner. If it is a read request, the owner will directly send
the data to the accelerator, or if it is a write request, the owner
will write the data back to the LLC. After receiving the data, the
LLC performs the actual modification. No extra transient states are
needed in these cases as the existing ones in the MESI protocol (for
similar cache-to-cache transfers) can be re-used.

In more detail, when in ACP-R, a read request is sent to the
DRAM, and a stall is issued to the requesting unit to wait for the
response from the memory. In ACP-W, in addition to the issuing of
requests to the DRAM and stalling, all the other copies of the target
cache line are also invalidated. Further, during the ACP misses,
these states also merge a new main memory request with any
previously pending requests, if these are for the same cache line.
Hence, avoiding extra requests and improving power-performance
efficiency. Moreover, no additional cache storage is required as the
transient states are stored in the miss status holding registers.

Correctness. An SoC using a mix of no coherence, LLC co-
herence, and full coherence for its different accelerators operates
correctly. In case of the non-coherent model, the CPU flushes its
caches both before an accelerator is invoked, and also after the
accelerator completes processing and writes the data back to the
main memory so as not to read any stale data. In both full coherence

Figure 2: CHIME operation for a given application

and LLC coherence, the accelerators follow the same coherence
protocol as the CPUs (MESI) for correctness.

5 PROPOSED CHIME METHODOLOGY
This paper determines a cost-aware accelerator coherence interface
for an SoC and its target application at design time. In such an inter-
face, those coherence models are selected for the accelerators that
optimize their power and performance, considering an exhaustive
twofold criterion for best solutions: (i) the characteristics of the
accelerators’ target kernels (data access pattern, memory footprint,
etc.), and (ii) the interaction of the accelerators with the SoC, such
as the impact on contention in shared resources (e.g., LLC/NoC).

We propose a comprehensive methodology, called CHIME, to
efficiently determine Cost-aware coHerence Interfaces forMany-
accElerator SoCs. In CHIME, the extended gem5-Aladdin (Section 4)
is used to model the above twofold criterion and evaluate the effects
of different coherence models (no coherence, LLC coherence, and
full coherence) on the power and performance of the accelerators
for a given application. BayesOpt is used in CHIME to intelligently
tune the accelerators’ coherence models and rapidly converge to
the cost-aware coherence models. Two objective functions are mini-
mized: (i) average (geo-mean) of the cycles taken by the accelerators
to execute their respective kernels, and (ii) total accelerator power
dissipated while running these kernels, which includes both static
and dynamic power (memory and functional unit) of all the accelera-
tors. The approach, however, is general and can use other coherence
models as well as optimize different cost functions. CHIME can
also be extended to GPUs, which however, will require a coherence
wrapper such as Spandex [14] for correctness. GPU extension is
left as future work.

This section first presents how CHIME selects a cost-aware co-
herence interface for an SoC and its target application. It then
describes how CHIME can be utilized for general-purpose SoCs in
order to select a single cost-aware coherence interface at design
time that can be used by multiple applications.

CHIME operation for a given application of an SoC. There
are three phases of CHIME (Figure 2): initialization, optimization,
and convergence. In the initialization phase, BayesOpt performs
random sampling, where it generates 10 random coherence inter-
faces. Each of these interfaces is 𝑛-dimensional with a coherence
model randomly selected for each of the 𝑛 accelerators of the SoC.
gem5-Aladdin evaluates the power and performance metrics for
these interfaces, which are fed back to BayesOpt.

After initialization, the framework enters the iterative optimiza-
tion phase. During each iteration, BayesOpt first updates the GP
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Component Parameters
CPU Cores Out-of-order X86 @1 GHz 8-µop issue width, 192-entry ROB
L1 Caches 64 KB, 4-way associative, 64 B cacheline, LRU
L2 Cache (LLC) 2 MB, 16-way associative, LRU, 1 LLC controller
DRAM LP-DDR4, @1600 MHz, 4 GB, 25.6 GB/s, 1 memory controller
Accelerators 2 FFT Transpose, 3 Sparse matrix vector multiply (SPMV), and 2 Stencil-3Ds
NoC 4 × 4 2D-mesh topology, link bandwidth: 128 bits, single-cycle routers/links

Table 1: SoC micro-architecture configuration

models of the two objectives based on the available data (for the
first iteration, this data are the initial random samples). Next, these
GP models are used to predict the values of the objective functions
for all possible 𝑛-dimensional coherence interfaces. These predicted
values are then used to compute the SMS-EGO acquisition func-
tion (i.e. hypervolume) for all possible coherence interfaces. The
interface with the maximum hypervolume is then selected. For
this coherence interface, the power and performance metrics are
then evaluated using gem5-Aladdin. These values are fed back to
BayesOpt to update the GP models in the next iteration, followed
by selecting a new interface that maximizes the hypervolume. The
iterations continue until no further improvement in hypervolume
is seen and the convergence is achieved.

In the final convergence phase, the values of the two objectives,
obtained from gem5-Aladdin, are plotted for all the 𝑛-dimensional
coherence interfaces that were selected by BayesOpt in the previous
two phases. The Pareto-optimal interfaces are extracted from this
plot, which represent the possible cost-aware coherence interfaces
for the SoC and its given application. A final interface can then
be selected from these cost-aware coherence interfaces based on
the SoC’s optimization target: performance or power. For example,
if the system is targeted for low power, the Pareto-optimal coher-
ence interface with the lowest total accelerator power is chosen
(point Opt-Pow in Figure 2), else if the target is high performance,
the Pareto-optimal interface with the lowest average accelerator
execution time is selected (point Opt-Perf).

Extension to general-purpose SoC. If an SoC is targeted for
multiple applications, CHIME can be used to find the cost-aware
coherence interface for each of these applications at design time,
and then select one of these interfaces to be used for all the target
applications. The selected interface, while optimal for one of the
applications, may lead to overheads for the others as different appli-
cations can have varying amount of ALP. The idea is to choose that
interface which leads to minimum performance/power overheads
for all the applications. To this end, the following steps are used if
the SoC’s optimization target is high performance: (i) using CHIME,
find Opt-Perf interfaces for each of the SoC’s applications; (ii) using
gem5-Aladdin, determine the performance and power overheads of
using Opt-Perf of each application for all the other applications; (iii)
select the Opt-Perf interface with the least average performance
overheads for all the applications; and (iv) if there are more than
one such interfaces then select the one with lower power overheads.
Similar approach is used when the target is low power, but Opt-Pow
interfaces are considered and priority is given to power overheads.

6 EXPERIMENTAL RESULTS
This section presents the experimental setup (SoC configuration
and the workloads), followed by detailed results to show the effec-
tiveness of CHIME for different applications.
6.1 Experimental Setup
Table 1 shows the SoC configuration modeled in gem5-Aladdin. The
modeled SoC consists of 7 accelerators: 2 FFT-transpose accelera-
tors (FFT0/1), 2 Stencil-3Ds (Stencil0/1), and 3 SPMV accelerators

Application configurations Accelerator(s) running
App1 FFT0
App2 SPMV0
App3 Stencil0
App4 SPMV0 and Stencil0
App5 SPMV0, SPMV1, and Stencil1
App6 SPMV0, SPMV1, Stencil0, and Stencil1
App7 SPMV0, SPMV1, SPMV2, Stencil0, and Stencil1
App8 FFT0, FFT1, SPMV0, SPMV1, Stencil0, and Stencil1
App9 All 7 accelerators running concurrently

Table 2: Applications with varying amount of ALP

(SPMV0/1/2). These kernels are taken from the Machsuite bench-
marks [23]. The accelerators, along with 7 CPUs, and LLC/memory
controllers are connected to different routers of a 4 × 4 NoC. This
SoC is modeled to mimic support for several read-world applica-
tions, e.g., SPMVs can be used for linear algebra solvers, data/graph
analytics, and partial differential equation solvers; Stencil-3Ds can
be used for FIR filtering and 1D convolutions; and the FFTs can be
used for image feature extraction and DSP for speech compression.

To thoroughly demonstrate the effectiveness of CHIME, we cre-
ated 9 synthetic applications that use different accelerators with
varying amount of accelerator-level parallelism (Table 2). These
synthetic applications are based on real workloads that can run
several accelerators in parallel, such as for image and speech pro-
cessing [10, 24]. While App1-App3 use only a single accelerator,
App4-App9 use 2-7 accelerators concurrently. Furthermore, when
used as non-coherent/LLC-coherent, the following scratchpadmem-
ory sizes are used for these accelerators to fit the entire operating
dataset of the kernels: 8 KB for FFT, 512 KB for SPMV, and 256 KB
for Stencil-3D, On the other hand, when used as fully-coherent,
these accelerators use 64 KB L1 caches.
6.2 Results
This section presents how the performance and power of the cost-
aware coherence interfaces, obtained for each of the above 9 appli-
cations using CHIME, compares with several baseline coherence
interfaces. More detailed analysis is then presented for App9 that
uses all the accelerators concurrently. Finally, a single cost-aware
coherence interface is selected for the targeted SoC’s 9 applications.

Cost-aware coherence interface for each application. Fig-
ures 3 and 4 show the performance and power of the cost-aware co-
herence interfaces obtained using CHIME for the 9 applications. For
each application, two cost-aware coherence interfaces are selected:
Opt-Perf that achieves the best performance among the Pareto-
optimal interfaces (as shown in Figure 2), andOpt-Pow that achieves
the lowest power among these points. Four other baseline interfaces
are used for comparisons: three homogeneous coherence interfaces,
and a heterogeneous interface obtained at design time based on the
coherence model selection algorithm of [16]. The homogeneous
baselines are highly common [2, 5–9]: (i) All-NC (All-Non-Coherent),
(ii) All-LLC (All-LLC-Coherent), and (iii) All-FC (All-Fully-Coherent).
The heterogeneous baseline (called Mem-Footprint-Only) does not
optimize for power, and selects the coherence models based only
on the accelerators’ memory footprints while ignoring workload
attributes such as data access pattern. For the target application, the
Mem-Footprint-Only will choose FFT0 and FFT1 as fully-coherent
as their datasets (8 KB) can fit in private caches (64 KB), while
the remaining as LLC-coherent, which are unable to fit in private
caches but their combined footprint is still less than or equal to the
LLC size (2 MB).

Low amount of ALP (Apps1-4). These applications only have a
single accelerator running (Apps1-3) or two operating concurrently
(App4). For these cases, the cost-aware coherence interface selected
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Figure 4: Power comparison of coherence interfaces

by CHIME is only based on the kernel properties as there is no
(or minimal) system-level contention for shared resources. The
selected Opt-Perf interfaces use the best performing coherence
models for the operating accelerator(s) and for the remaining ones,
those coherence models are chosen that lead to minimal accelerator
memory leakage power (non-coherent for FFTs with only 8 KB
scratchpads, and fully-coherent for SPMVs/Stencils with 64 KB
caches). Interestingly, Opt-Pow for all applications is the same
that minimizes the total accelerator memory power (functional
unit power is independent of the coherence models): FFT0/1 non-
coherent, SPMV0/1/2 and Stencil0/1 as fully-coherent.

As shown in Figure 3, for Apps1-4, Opt-Perf achieves significant
improvements over the four baselines in terms of average accel-
erator performance: up to 32.5% over All-NC, 32.7% over All-FC,
15.1% over All-LLC, and 15.1% over Mem-Footprint-Only. As ex-
pected, Opt-Pow incurs significant performance overheads except
for App3, where it performs the same as Opt-Perf and All-FC. In
App1, the uniform accesses of the FFT kernel [11] are more effi-
ciently handled using scratchpads than caches; hence LLC coher-
ence is preferred (in All-LLC and Opt-Perf) which also minimizes
accesses to the main memory compared to no coherence. For App2,
the large dataset for SPMV is unable to fit in small private caches,
hence again larger scratchpad-based LLC-coherence performs bet-
ter (in All-LLC, Mem-Footprint-Only, and Opt-Perf). For App3 with
Stencil-3D accelerator operating, full-coherence achieves better
performance (in All-FC, Opt-Pow, and Opt-Perf) as it is more suited
to the kernel’s non-uniform strided access pattern [11]. Following
the above reasoning, Opt-Perf for App4 chooses LLC-coherence for
SPMV0 and full-coherence for Stencil0, showing the best perfor-
mance compared to the others.

Figure 4 shows significant improvements in total accelerator
power for Opt-Pow: up to 49.9% over All-LLC, 20.6% over All-FC,
50.5% over All-NC, and 49.8% over Mem-Footprint-Only. Interest-
ingly, Opt-Perf also achieves up to 45.8% improvements over All-NC,
All-FC, and Mem-Footprint-Only, while showing overheads over
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All-FC and Opt-Pow. Opt-Pow selects those coherence models that
lead to minimal accelerator memory power (NC for FFTs, and FC
for the rest). Opt-Perf also uses the low memory power coherence
models for the idle accelerators, and since a majority are not being
used, it achieves considerable improvements.

High amount of ALP (Apps5-9). Figure 3 shows the average ac-
celerator performance of different coherence interfaces for these
applications that have 3-7 accelerators running concurrently. Opt-
Perf interfaces for these applications are selected taking into ac-
count both the kernel characteristics (data access patterns/memory
footprint) and also system properties (e.g., contention in LLC/NoC).
Accelerators that are not operating simply use the coherencemodels
that lead to minimal memory leakage power. For Apps 5-9, Opt-Perf
achieves significant performance improvements over the four base-
lines: up to 9.4% over All-LLC, 23.2% over All-FC, 21.6% over All-NC,
and 10.4% over Mem-Footprint-Only. Overall, Opt-Perfs use LLC
coherence for SPMVs/FFTs, and a mix of LLC and full coherence for
Stencil-3Ds to achieve the best performance for these applications.
Detailed analysis for App9 in the next section shows that such a
mix of coherence models leads to smaller data transfer cycles for
the accelerators under contention.

Figure 4 shows the total accelerator power of different coherence
interfaces for Apps 5-9. Opt-Pow, which is the same as for Apps 1-4,
achieves the lowest power with significant improvements over the
baselines: up 51.3% over All-LLC, 21.2% over All-FC, 51% over All-
NC, and 51.2% over Mem-Footprint-Only. Opt-Perf also shows up to
15.9% lower power than All-LLC, All-NC, and Mem-Footprint-Only
but incurs overheads compared to All-FC.

Detailed analysis for App9. Details on the convergence of
CHIME to Pareto-optimal coherence interfaces are now presented
for the application with all 7 accelerators running concurrently.
Additionally, while the above results showed performance gains
obtained by Opt-Perf only in terms of average accelerator per-
formance, this section now presents improvements achieved by
Opt-Perf in terms of individual accelerator performance for App9.

Pareto-optimal analysis for App9. Figure 5 shows the Pareto-
optimal coherence interfaces obtained for App9 using the CHIME
framework, from which we selected the Opt-Perf and Opt-Pow
interfaces. In this case, CHIME started with 10 random samples
in the initialization phase, followed by 60 iterations of the opti-
mization phase to achieve convergence. The framework is found
to be highly-efficient as only a total of 70 gem5-Aladdin evalua-
tions were performed to achieve these Pareto-optimal solutions,
while the complete design space comprises of 2187 configurations
(3 possible coherence choices for each of the 7 accelerators). Each
iteration of the framework took 70 minutes: mostly dominated by
the gem5-Aladdin run, while BayesOpt only took 20 seconds to
select the next coherence interface for evaluation.
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Figure 7: Overhead analysis when using Opt-Perf of each ap-
plication for all the other applications

Performance breakdown for App9. Figure 6 shows the performance
for each of the accelerators, comparing the Opt-Perf cost-aware
coherence interface with the previously considered 4 baseline inter-
faces as well as one additional baseline called Isolation-Optimal. The
Isolation-Optimal interface assigns those coherence models to the
accelerators that lead to best performance when these accelerators
are run in isolation without any contention from the others (e.g.,
Apps 1-3). Based on the analysis of Apps 1-3 in Figure 3, Isolation-
Optimal will use LLC coherence for the FFTs and SPMVs, and full
coherence for the Stencils. The comparison of Opt-Perf with this
baseline shows that the impact of contention can be significant on
the performance of the accelerators.

Compared to the 5 baselines, Opt-Perf showed significant perfor-
mance improvements for most of the accelerators. It achieved up
to 25.6% better performance than All-NC (for SPMV0), up to 21.2%
better than All-LLC (for SPMV1), up to 39.3% better than All-FC
(for SPMV1 but with small overheads for the Stencils), up to 11.9%
better than Isolation-Optimal (for Stencil0), and up to 14.3% better
than Mem-Footprint-Only (for SPMV0 but with minor overhead
for Stencil1). On average also, Opt-Perf achieved considerable per-
formance benefits. The reason is while it selects those coherence
models for most of the accelerators that favor their kernel properties
(LLC coherence for SPMVs and FFTs, full coherence for Stencil1),
for Stencil0, it uses a model that is not suited to its characteristics
but eases overall system contention. The net effect is significant
reductions in data transfer times, especially for SPMVs and FFTs.

Selecting a single coherence interface for the SoC. If the op-
timization target is high performance, Figure 7 shows the overheads
in average accelerator performance when using Opt-Perf of each
application for all the other applications. The Opt-Perf interface
corresponding to App9 (Stencil1: FC, Rest: LLC) is selected as the
final interface for the SoC as it has the least average performance
overhead of 2.4%. Alternatively, if the target is low power then the
overhead analysis is not required as all of the 9 applications have

the same Opt-Pow interface (FFTs: NC, and the rest FC), which is
then selected as the final coherence interface.
7 CONCLUSION
This paper proposes a comprehensive methodology, called CHIME,
to efficiently determine cost-aware coherence interfaces for many-
accelerator SoCs. The approach uses Bayesian optimization with
a new version of gem5-Aladdin that now supports LLC coherence
for accelerators. For a complex SoC and its target 9 different appli-
cations, CHIME finds cost-aware coherence interfaces that show
significant performance and power benefits over several baseline
interfaces. CHIMEwill be made public and can be used to determine
optimal coherence models for different SoCs and applications, and
in combination with tuning other architectural parameters.
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