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The marketplace for general-purpose microprocessors offers hundreds of functionally similar models, dif-
fering by traits like frequency, core count, cache size, memory bandwidth, and power consumption. Their
performance depends not only on microarchitecture, but also on the nature of the workloads being executed.
Given a set of intended workloads, the consumer needs both performance and price information to make ra-
tional buying decisions. Many benchmark suites have been developed to measure processor performance, and
their results for large collections of CPUs are often publicly available. However, repositories of benchmark
results are not always helpful when consumers need performance data for new processors or new workloads.
Moreover, the aggregate scores for benchmark suites designed to cover a broad spectrum of workload types
can be misleading. To address these problems, we have developed a deep neural network (DNN) model, and we
have used it to learn the relationship between the specifications of Intel CPUs and their performance on the
SPEC CPU2006 and Geekbench 3 benchmark suites. We show that we can generate useful predictions for new
processors and new workloads. We also cross-predict the two benchmark suites and compare their performance
scores. The results quantify the self-similarity of these suites for the first time in the literature. This work
should discourage consumers from basing purchasing decisions exclusively on Geekbench 3, and it should
encourage academics to evaluate research using more diverse workloads than the SPEC CPU suites alone.
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1 INTRODUCTION

Computer hardware evolves rapidly. In 2015 alone, Intel released over 200 CPU SKUs.! The SKUs
have different characteristics like frequency, cache size, memory bandwidth, and core count. Better
configurations usually cost more. The performance of a microprocessor is not solely a function of
its microarchitecture; it depends critically on the nature of the workloads running on it. Thus, both
CPU microarchitecture and workloads need to be taken into account when quantifying actual CPU
performance. Consumers can then estimate whether investing in a costly configuration helps to
meet their particular goals.

To help study processor performance, a variety of benchmark suites have been developed. For
the more popular suites, such as Geekbench, SPEC CPU, and Passmark, sizable repositories of per-
formance data have been collected, allowing the public to compare the behaviors of known config-
urations on standard workloads. However, there are some issues in using these repositories. The
first is that consumers need to wait for comprehensive benchmark results of new processors to be
contributed to the public repositories. The second issue is that for new workloads, consumers have
to test a large number of possible configurations to find the most effective hardware. Daunted by
this challenge, some consumers rely blindly on aggregate CPU scores in benchmark repositories.

To resolve these issues, we use statistical methods and machine learning techniques to analyze
data from the SPEC CPU2006 and Geekbench 3 repositories.? SPEC CPU2006 is widely reported
in academic studies. Geekbench 3 is used by many consumers to make purchasing decisions. We
use deep neural networks (DNNs) to predict the performance of Intel CPUs, and we compare the
DNN prediction with that by linear regression (LR). The DNN predictive model learns interactions
between processor specifications for different workloads, sharpening the usefulness of benchmark
data repositories.

This article makes the following contributions:

—We use DNN to predict the performance of SPEC and Geekbench workloads on new CPU
SKUs. (The mean error is 5% for SPEC and 11% for Geekbench.) We show that DNN is more
accurate than traditional LR.

—With the same accuracy, we show that the performance of new workloads on just 10 SKUs
can predict their performance on other SKUs.

—For the first time in the literature, we quantify the self-similarity of these widely used suites,
by using DNN to cross-predict the results between the suites (with 25.9% and 14.9% mean
error when predicting SPEC and Geekbench, respectively), and by comparing their CPU
rankings (which are inconsistent, with footrule distance as high as 0.59).

The rest of the article is organized as follows. Section 2 gives our analysis of Intel processors in
terms of SKU specifications and SPEC performance. Section 3 describes our methodology. Section 4
summarizes our three case studies. Section 5 compares our prediction accuracy on those case stud-
ies. Section 6 compares the SKU rankings in the three cases. Section 7 summarizes related work
and compares it with our own. Section 8 presents our conclusions.

2 INTEL PROCESSOR STATISTICS

In this section, we present some statistical facts about Intel processors, SPEC performance for the
Intel SKUs, and the SKUs’ microarchitectures and types in our SPEC and Geekbench datasets. We
show the large performance variations and a rich variety of SKUs in our datasets.

IStock Keeping Unit. In this article, a SKU is a CPU with a distinct processor number.
2The datasets in this article are available at https://github.com/Emma926/cpu_selection.git.
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Fig. 1. The number of SKUs released by Intel for 17 microarchitectures between 1993 and 2016. Bubble size
indicates the number of SKUs. Architectures include x86, Itanium, and Atom. (Data from http://ark.intel.
com.)

We construct our Intel processor specification dataset from http://ark.intel.com, where Intel
publishes the specifications of all its processors. We collect specifications including microarchitec-
ture, launch year, number of cores, base frequency, cache size, power, and memory type. Figure 1
shows the release years of Intel microarchitectures. The size of a bubble corresponds to the number
of SKUs released in the corresponding year. The figure contains 17 microarchitectures that Intel
has released since 1993.

Intel has a “Tick-Tock” model for microarchitecture code names. A tick represents a shrinking
of the technology and a tock represents a new microarchitecture. In Figure 1, for example, West-
mere and Sandy Bridge have 32nm feature size, and Sandy Bridge and Ivy Bridge have the same
microarchitecture. Every year, there is expected to be a tick or tock. Starting in 2014, however, Intel
decided to add a “refresh” cycle, to update the current microarchitecture. That is why for 2014 in
Figure 1 there are only a few Broadwell SKUs but more Haswell SKUs. After 2016, Intel switched
their model to a three element cycle known as “Process-Architecture-Optimization.”

In this article, we use relative runtime as a measure of performance. We take a Sandy Bridge
processor (E3-1230) as the reference machine. We choose E3-1230 because it is common across
datasets. The relative runtime of a workload is defined as

runtime — runtimey.¢

: (1)

relative runtime =

runtimeyf
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Fig. 2. Means and standard deviations of SPEC relative runtimes. Each runtime is the average over all SPEC
workloads of performance for a given SKU. The lengths of the bars show that SKUs with the same microar-
chitecture have very diverse performance.

where runtime,.¢ is the runtime of the corresponding workload on the reference machine. For
brevity, this article will consistently use “performance” to indicate relative runtime. Thus, the
scaled runtime of E3-1230 is 0. In Figure 2, the E3-1230 performance is slightly below the aver-
age of all Sandy Bridge SKUs, so the line is centered on a value greater than 0. Since all results
are presented relative to the same reference processor, the results are unaffected by the particular
choice of the reference.

To show the diverse performance of different SKUs, we take the average SPEC performance
on SKUs, and we gather the SKUs based on their microarchitecture code names. In Figure 2, the
dots show the mean relative runtime of the SKUs with the same microarchitecture code name, and
the lengths of the bars show the standard deviations. Longer bars indicate the performance of the
SKUs is more diverse. The SKUs have the same microarchitecture but different frequency, cache
size, memory size, and so on. These lead to variations in each bar, and they contribute as much
to performance variation as the microarchitectures themselves. The bars overlap horizontally. That
means when selecting SKUs to optimize performance, there can be many choices with different
microarchitectures but similar performance.

The SKUs in the public repositories are random, depending on users’ submissions. SPEC and
Geekbench have their own setup and compilation instructions. The setup of each data point is
included in the repositories. We summarize the SKUs in the SPEC and Geekbench datasets in
Figure 3. Our work focuses on performance prediction on the SKUs currently on the market, thus
we discard SKUs older than Sandy Bridge. We first do preprocessing to aggregate duplicate data.
Before explaining preprocessing, we first define a CPU configuration as a SKU running at a certain
frequency with a certain memory size. In this article, we say that a configuration (SKU, frequency,
memory size) determines a workload’s performance. Other factors such as compiler and OS affect
performance as well, but we do not consider them in this work. In the repositories, multiple result
submissions may have the same configuration. We average the data points that have the same
workload and configuration.

Figure 3 shows the microarchitectures and types of the SKUs in our SPEC and Geekbench
datasets. There are 352 SKUs in total for SPEC, and 119 SKUs for Geekbench. In both datasets,
we have more SKUs of Sandy Bridge, Ivy Bridge, and Haswell than Broadwell and Skylake. Fig-
ure 3 shows that we have a fairly rich collection of SKUs.

Users can customize the memory size with a chosen SKU. We refer to a SKU with a certain
memory size as a configuration. In total, we have 639 configurations of 352 SKUs for the SPEC
workloads. To help visualize the performance of SPEC workloads on 639 configurations, we first
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Fig. 3. SKU breakdown in the SPEC (top) and Geekbench (bottom) datasets. Total number of SKUs is 352
for SPEC and 119 for Geekbench.
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Fig. 4. Means and standard deviations of SPEC workloads’ relative runtimes on the SKUs in our dataset.
SPECfp is more diverse than SPECint. 462.libquantum is more similar to SPECfp.

show, in Figure 4, the means and standard deviations of the relative runtimes of the workloads.
The blue bars are SPECfp; the red bars, SPECint. SPECint workloads are very similar to each other,
except for 462.libquantum. SPECfp workloads have more diverse means and standard deviations.
That indicates FP workloads are more diverse in terms of performance on the 639 configurations.
The performance of 462.libquantum is more similar to SPECfp. If clustering the workloads, we
would like to see that they form two clusters, with SPECint and some SPECfp workloads in one
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Fig. 5. Principal component analysis of SPEC workloads’ performance scaling on 639 configurations of 352
SKUs. The green stars are centroids of two clusters identified by k-means. SPECfp workloads are more spread
out than SPECint. 462.libquantum (red dot at the bottom left) is clustered with SPECfp benchmarks. The
outlier near the top is 481.wrf.

cluster and the other FP workloads, which have quite different means and standard deviations in
Figure 4, in the other cluster.

To visualize them in a two-dimensional space, we construct a matrix with 28 rows (for the 28
SPEC workloads) and 639 columns. Every matrix entry is the relative runtime of the workload
on the corresponding SKU configuration. We then do a principal component analysis (PCA) to
visualize the matrix. Figure 5 shows the PCA space. We only show two principal components
(PCs) because the first and second PCs account for 82% of the variance.

The closer two workloads are, the more similar their performance scaling across the 639 con-
figurations. Blue dots are SPECfp and red are SPECint. SPECfp is more spread out than SPECint.
That means SPECfp workloads are more sensitive to SKU configuration differences, such as mi-
croarchitecture, frequency, and memory size. It is also an indication that it is harder for current
microarchitectures to extract performance from SPECint than FP. SPECint workloads have less
instruction level parallelism and more data dependencies. This is also observed by Campanoni
et al. [2].

The points at the bottom of Figure 5 form two clusters, and the point at the top (481.wrf) is
clearly an outlier. We want to find the centroids of the two clusters while leaving 481.wrf alone.
Running a k-means algorithm with three clusters leaves 481.wrf in a cluster by itself. We plot the
two centroids of the other two clusters using stars. 462.libquantum (the red dot at the bottom left)
is clustered with SPECfp. The centroids will be used to explain our results in Section 5.2.

Although Figures 4 and 5 lead to consistent conclusions, they characterize the performance
space differently. Figure 4 focuses on the means and standard deviations of the performance data,
while PCA in Figure 5 emphasizes different performance on different SKU configurations. This can
be explained with an example using two workloads (A, B) and three SKU configurations. Workload
A’srelative runtimes are 0.5, 0.7, —0.4, respectively. On the same SKU configurations, workload B’s
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Table 1. Data in This Article

Data Description Data Type
Workload The names of the workloads One hot encode
Microarchitecture Code Name Intel code names Integer encode
Type Server, desktop, mobile, or embedded | One hot encode
L3 Cache Size Last level cache size Numerical
Instruction Set Extensions SSE or AVX Integer encode
Memory Type DDR,DDR2,DDR3,DDR4 Integer encode
Memory Channels Number of memory channels Numerical
Max Memory Bandwidth Max memory bandwidth Numerical
ECC Memory Support Whether ECC memory is supported Binary
Base Frequency Nominal frequency Numerical
Turbo Frequency Turbo frequency Numerical
Turbo Boost Technology Whether Turbo Boost is supported Binary
Cores Number of cores Numerical
Threads Number of threads Numerical
Hyper-Threading Whether hyper-threading is supported Binary
TDP Thermal design power Numerical
Year Year of release Numerical
Frequency The dynamic frequency Numerical
Memory Size The size of off-chip memory Numerical
Runtime The runtimes of the workloads Numerical

The data include CPU specifications (from the Intel processor dataset) and dynamic workload features (from SPEC
and Geekbench datasets), and what we predict (runtime).

relative runtimes are 0.7, —0.4, and 0.5. The two workloads could look exactly the same in Figure 4,
but PCA would show their difference.

3 METHODOLOGY

The previous section shows a large variation in performance. Thus, a predictive model can be
helpful. This section shows the method we use to build a predictive model. We present our features,
data preprocessing, model selection, and metrics (baselines) for evaluating the results.

A naive way to make a prediction is to use a previous generation to predict its successor. To
do this, one needs the exact configuration of interest from previous generation, because some-
times other features are more important than microarchitecture generations, shown in the bars of
Figure 2. For the same reason, using other SKUs in one generation to predict a new SKU in the
same generation is difficult. We have tried that, and our current predictive models achieve bet-
ter accuracy. We eventually decide to use machine learning to learn the relations between CPU
specifications and performance, to avoid the missing data problem of the naive methods.

3.1 Features

Table 1 summarizes the data in this article. The data include features fed to the predictive model,
and the value we predict, the runtime. The features include CPU specifications from the Intel CPU
dataset and dynamic workload features from the SPEC and Geekbench datasets.

CPU Specifications: The microarchitecture code names include microarchitecture changes
and technology scaling. Within one microarchitecture generation, the SKUs are different in their
frequencies, last level cache sizes, TDP, and number of cores. We also add the release year as a
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feature. The type of the SKU is also an important feature. Intel categorizes the SKUs as mobile,
desktop, server, and embedded. L2 and L1 caches per core do not change much across SKUs. Thus,
we only include last level cache sizes.

For discrete data, we do integer encoding and one hot encoding. Integer encoding means map-
ping discrete values to integers. Each feature needs only one entry. Discrete names and types
usually obey the order of the assigned integers. One hot encoding uses one feature entry for one
discrete value. It implies nothing more than that the discrete values are different. The encoding
methods are specified in Table 1. We choose to map the microarchitecture code names, memory
types, and instruction set extensions into consecutive integers, with their natural order. For the
SKU types, it is easier to do one hot encoding. We also distinguish the workloads using one hot
encoding. Before training and testing, numerical and integer data need to be standardized, but one
hot encoding data do not.

Dynamic Workload Features: Every entry in the SPEC and Geekbench datasets contains a
configuration (SKU, current frequency, memory size), the name of the workload, and performance
(relative runtime, which is the value to predict). We then get the CPU specifications from the Intel
processor dataset by the SKU processor number. We do not use the scores provided in SPEC and
Geekbench as performance metrics. For SPEC, we use the runtime in seconds. For Geekbench, we
assume that the total amount of work is constant for a given workload and we use the inverse of
throughput to estimate runtime. Details on the data preprocessing are in Section 3.2.

3.2 Data Preprocessing

The SPEC2006 repository provides runtime in seconds. Geekbench 3 provides throughput, e.g., as
GB/s. We first average the performance of the workloads with the same (CPU SKU, Frequency,
Memory Size) configuration. Variations of system software such as OS or compiler are not consid-
ered in this work. Geekbench 3 runtime is taken to be the inverse of throughput, assuming that
one workload has a constant total amount of work. The average runtime is then converted into
relative runtime for the chosen reference machine based on Equation (1). The specific choice of
the reference machine does not affect the prediction. The relative performance is normalized to
have mean 0 and standard deviation 1. The preprocessing steps are typical of machine learning
experiments [22].

3.3 Model Selection

In this section, we explain our choice of DNNs and LR for this work. We then illustrate our ap-
proach for tuning DNN topology and the hyperparameters of DNN and LR.

DNNs: DNNs have proven successful in many domains, from regression and classification to
game playing. Compared with traditional methods, DNN excels when data size is large, scales well
with more data, and it does not require expertise in feature engineering. The advantages of DNN
make it a very good fit for the performance prediction scenario. Thus, in this article, we use DNN
as our predictive model.

The topology and hyperparameters are tuned through model selection. To do model selection,
we randomly split the dataset into a training set, a validation set, and a testing set. The testing
set is the last holdout set, to avoid using all data to do model selection. We start by sweeping
the hyperparameters in all experiments, including the number of layers, the nodes per layer, the
learning rate, the number of training epochs, the activation function, and the optimizer. The models
are trained with the training set. The model with the lowest loss on the validation set is selected.

We find that the best set of hyperparameters is always the same. Therefore, in all experiments
we use a DNN with three hidden layers and 100 nodes per layer. The learning rate is 0.001 over 300
training epochs. The activation function is tanh and the optimizer is RMSprop. Thus, for example,
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the number of weights for predicting SPEC is 50 million. Fortunately, training is offline and has a
one-time cost.

LR: LR has been shown to work well in the CPU performance prediction literature [20], while
DNN is known to be able to explore non-linear interactions between features, and it has been
shown to be more accurate than LR at performance prediction [16, 17]. Unlike DNNs, LR has
interpretable weight parameters. In realistic scenarios, people can choose LR or DNN based on the
parameters, accuracy, and the value of interpretable weights. In order to make it a fair comparison,
we reimplement LR with mean absolute error (MAE) as the loss function. That is, the model is
optimized to yield the lowest MAE. Minimizing the MAE entails assuming the noise distribution
to be Laplacian [4]. In our experiments, both DNN and LR have L1 regularization with a weight of
0.01. They take exactly the same training sets, testing sets, and features.

Other Models: Popular predictive models other than DNN include LR, support vector machines
(SVMs), k nearest neighbors (kNNs), PCA, and genetic algorithms (GAs). In Section 7, we list stud-
ies using some of those models. However, SVM is not suitable for large-scale training because of
its computational complexity [35]. kNN, PCA, and GA are better when there are fewer data points
(<100) and simpler feature relations. Besides, traditional methods need carefully selected features,
and accuracy does not benefit from more training data. Therefore, we choose to use DNN and
compare it with one traditional method, LR.

3.4 Metrics

MAE: We use MAE as the measure of accuracy, rather than mean squared error (MSE). The reasons
are as follows.

(1) There may be outliers and errors in the submitted data. With MSE, the optimizer penalizes
the outliers much more than normal data. However, we do not want to overfit the model
to the outliers [22].

(2) If a prediction is x and the MAE of the model is 0.01, the real value of x is very likely to
be x + 0.01. MSE is not as easy to interpret.

Because the MAE is in a standardized space, we use two baselines to help understand it. We
assume two independent and identically distributed random variables, a and b, from Gaussian
distribution N(0, 1). The expected distance between a and b is %, which is approximately 1.13 [32].
Therefore, a prediction with MAE of 0.25 is a very good prediction. Another way to interpret the
MAE is to compare it with the standard deviation of the testing set. A naive way to do prediction
is to always predict the mean of the dataset. This way, by definition the MAE is the standard

deviation .
Zi:o |x; — m|

n
where n is the number of data points, m is the mean of the testing set, and x; is the real value
of predicted performance, after normalization. Note that while the whole dataset is normalized to
have mean 0 and standard deviation 1, the testing sets may be in different scales. In the captions of
Figures 6 and 7, we compare the MAEs with the standard deviations of the testing sets, and show
that the MAEs are much smaller. However, what we just discussed are naive baselines. The next
metric can show that our prediction is good enough in realistic scenarios.

Top-k Accuracy: To bring the MAE metric into realistic context, we use the predictive model
to help select SKUs. We predict performance and use that prediction to rank the SKUs.

We choose top-k accuracy, which measures whether the known best SKU is among the top k
predicted SKUs. It is a popular metric for image classification tasks [13, 19]. Other metrics for
comparing rankings include Pearson correlation, Spearman footrule distance, and Kendall rank

MAE = = Standard Deviation, (2)
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correlation. They measure the difference between the tested ranking and the expected ranking, by
considering every item in each ranking. Top-k accuracy is a better metric for this work, because
users care more about whether the best SKU is in the top k choices, than about how similar one
SKU ranking is to another. In this context, top-k accuracy is more interpretable than the ranking
correlations.

We construct three baselines to compare with our predictive model. Without the predictive
model, it is customary to compare microarchitecture code names (newer is better), frequencies
(higher is better), and cache sizes (larger is better). Thus, we construct the baselines taking those
factors into consideration. Though the baselines are simple, this is how most customers make
purchasing decisions.

A Frequency: Rank the SKUs based on frequencies. If frequencies are the same, rank them
with cache sizes.

B Cache: Rank the SKUs based on cache sizes. If cache sizes are the same, rank them with
frequencies.

C Frequency + Cache: Rank the SKUs based on a summation of frequency and cache size
with weights. The weights are discussed in Section 5.1. If the values are the same, rank
them with microarchitecture code names.

To measure the top-k accuracy, we shuffle our training or testing set, find the best SKU in the
testing set using real performance from the datasets, and measure how often the best SKU is one
of the top k SKUs as ranked by our predictive model and the baselines.

4 CASE STUDIES OVERVIEW

In this section, we sketch the case studies, including prediction for new SKUs and for new work-
loads, and cross-prediction between suites. We implement our models with Keras (https://keras.io).

4.1 Case 1: Prediction for New SKUs

In this case, we show that we can predict the performance of SPEC and Geekbench workloads
on new SKUs. Using our open-source model, trained with SPEC and Geekbench data for existing
SKUs from online repositories, users can predict Geekbench and SPEC performance on new SKUs
of interest and choose the ones likely to perform the best.

In order to test the model on new SKUs, we adopt repeated random sub-sampling validation,
a widely used cross-validation method [8]. We hold out several SKUs from the dataset, train the
model with the remaining data, and test the model with the holdout set.

We randomly choose 10% of the SKUs from one microarchitecture at a time as our testing set.
We use the rest of the data as our training set. We repeat this process 20 times for every microar-
chitecture. We choose 20 repetitions after trying 50 and finding that the results were statistically
consistent. Comparing the MAEs of 20 DNN repetitions versus 50, the maximum absolute differ-
ence is 0.005 and the standard deviation difference is 0.009. Both are minimal.

The premise of this case study is that the predictive models are able to learn the performance
function of a workload using the CPU specifications in Table 1. Specifically, the training set may
contain SKUs with the same microarchitecture as the new SKU, and SKUs with similar features
such as L3 cache, frequency, and memory size, but different microarchitecture. The predictive
model then predicts the new SKU’s performance as though interpolating the training set.

Note that the prediction is nontrivial, even if the same microarchitecture or the full feature set
of a different microarchitecture is in the training set. As shown in Figure 2, both microarchitecture
and other SKU features (such as frequency) introduce large variations in performance. Knowing
one of them does not make the prediction easy.
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4.2 Case 2: Prediction for New Workloads

In this study, we show that after measuring performance of a new workload on just a handful of
SKUs, we can train a model to predict the workload’s performance on other SKUs. Armed with such
predictions, consumers can choose the best processor for the workload based on both performance
and price.

To demonstrate the approach, we split our dataset, taking out one workload at a time and treat-
ing it as the new workload. Then we train the model with all the other workloads’ data plus
a certain amount of data from the chosen workload. We perform the experiment separately for
SPEC and Geekbench. We refer to this case as self-prediction of benchmark suites.

The premise of this and the next case study is that, given the data of a new workload on several
SKUs, the model can find workloads with similar performance on those SKUs, and use the perfor-
mance of those workloads to predict the new workload’s performance on other SKUs. Therefore,
the prediction accuracy should be related to the similarity of the new workload to the workloads
in the training set.

For every workload A, we remove the data for workload A from the overall dataset. We call
the remaining data data_rest. We then sample a fixed set of SKUs for workload A as a testing set,
and we refer to the rest of the data for workload A as train_pool. We randomly pick n SKUs from
train_pool (where n is 1, 5, 10, or 50) and combine their data with data_rest to form a training set.
We repeat the process for 20 iterations.

4.3 Case 3: Cross-Prediction Between Suites

The experiments in case 2 are conducted within each benchmark suite. Case 3 is an extension of
case 2 that we call cross-prediction. We predict one workload in Geekbench using all data for SPEC
plus that collected using several SKUs for the chosen workload. Then we repeat with Geekbench
and SPEC switched.

For every workload A in Geekbench, we split the whole dataset into the data of workload A
and the rest. We then sample a fixed set of SKUs from workload A as a testing set, and we refer to
the remaining data of workload A as train_pool. We randomly pick n SKUs from train_pool and
combine their data with the SPEC data as a training set. We sweep n over 1, 5, 10, and 50, and we
repeat the process 20 times.

5 PREDICTION ACCURACY

In this section, we show prediction accuracy measured byMAE in the case studies. We show that
DNN is more accurate than LR, and case 2 (self-prediction) is more accurate than case 3 (cross-
prediction).

5.1 Case 1: Prediction for New SKUs

Figure 6 compares the MAEs of LR and DNN for SPEC and Geekbench, respectively. The heights of
the bars represent the average MAEs of the 20 random test sets. The error bars show one standard
deviation of the MAEs. A smaller error bar indicates that different selections of testing set give
large differences in MAEs, therefore the model is more robust to predict different SKUs.

For both SPEC and Geekbench, DNN always has lower MAEs and is less sensitive to the selec-
tion of the test set than LR. That means the relationships between features and performance are
not simply linear. In Figure 6 (bottom), LR has a very large MAE and standard deviation when
predicting Geekbench on Broadwell SKUs. That is because in Figure 3 (bottom), there are only five
Broadwell SKUs, and one is desktop while the others are servers. Using servers to predict desktop
performance leads to large MAEs for LR. Apparently, DNN addresses this better. To compare the
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Fig. 6. Results of predicting the performance of SPEC (top) and Geekbench (bottom) on new SKUs. We com-
pare linear regression (LR) and deep neural network (DNN) models. DNN always has lower mean absolute
errors (MAEs) than LR. With DNN, the average MAE for SPEC is 5.5% and for Geekbench it is 11.2%. The
standard deviations of the test sets are all over 20%.
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average MAEs (the last set of bars in Figure 6), LR is 19.9% and DNN is 5.5% for SPEC, and LR
is 20% and DNN is 11.2% for Geekbench. DNN is a better choice when the dataset is large and
interactions between features are complicated.

The average MAE is 5.5% for SPEC and 11.2% for Geekbench using DNN. The MAE for Geek-
bench is higher than SPEC because Geekbench users are not like SPEC users, who are mostly
computer architects and system engineers, benchmarking on dedicated machines. One can easily
install Geekbench and produce scores on personal devices. Results may be noisy if other appli-
cations are running at the same time, causing contention in computing and memory resources.
We observe larger variance in Geekbench data. We compute the average standard deviation of the
performance for the same workload with the same (SKU, frequency, memory) configuration. It is
4.4% for Geekbench, and 1.1% for SPEC. The larger noise from the data makes it harder to predict
Geekbench.

The accuracy of simulation-based prediction is about 4% [20], which is slightly lower than our
5.5% MAE of SPEC. Compared to the simulation-based approach, the extra noise in our approach
comes from the performance variation introduced by compilers and operating systems in the
datasets, and no architectural features. We use no architectural features which makes the pre-
diction harder, but it also makes the method easier to apply to any other public datasets, without
the need for tedious simulation.

5.2 Case 2: Prediction for New Workloads

In this section, we show the prediction results of case 2. We show that the DNN prediction accuracy
is largely determined by the similarity of the predicted workload to the rest of the benchmark
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Fig. 7. The results of case 2. The workloads are sorted by the MAE after adding 50 SKUs. The workloads on
the right are outliers. The average MAEs are shown in the bars on the right. The line for adding 5 SKUs is
omitted, but the average bar for that case is shown. The standard deviations of the testing sets are all over
11%.

suite. We quantify the outlierness of a workload and show that it is positively correlated with the
prediction MAE, with a Pearson correlation of 0.69.

Prediction Results: The results of SPEC are shown in Figure 7 (left). The workloads are sorted
based on the MAEs after adding 50 SKUs (brown line). (The line for 5 added SKUs is omitted but
the average bar is shown.) The standard deviations of all the testing sets are larger than 20%, and
our MAEs in all cases are lower than the standard deviation. For 5, 10, and 50 added SKUs, the
MAEs are 5.7%, 5.3%, and 4.7%, respectively. MAE improvements when moving from 10 SKUs to
50 are similar to those when moving from 5 SKUs to 10. Since adding 40 SKUs is more difficult
than adding 5, we conclude that using 10 SKUs for the new workload is a reasonable choice.

Similarly, the Geekbench prediction results are shown in Figure 7 (right). The workloads are
sorted and the rightmost workloads are outliers with very high MAEs. The standard deviations of
Geekbench testing sets are all above 11%. The outliers’ standard deviations are at least twice their
MAESs. That means our model shrinks the confidence interval by at least 50%.

Case 2 is harder than case 1. In case 1, the average MAE is 11%. In case 2, the average MAE is
14.2%, with two obvious outlier workloads (Blackscholes and AES). We conclude that case 2 works
reasonably well, apart from the two outliers. Also, for the same reason as with SPEC, we choose
10 as the proper number of SKUs to use.

Insights on Benchmark Similarity: By studying MAEs across SPEC workloads, we find that
the prediction MAE is correlated with the similarity of the predicted workload to the rest of the
benchmark suite. This observation supports the statement in Section 4.2 that the model finds sim-
ilar workloads based on the data points of the new workload, and it uses the similar workloads to
predict the performance of the new workload on other SKUs.

In Figure 7 (left), after adding 50 SKUs it is still relatively hard to predict the workloads on
the right. We call these workloads outliers. The workload with highest MAE is 481.wrf and it is
also the outlier lying above all other workloads in Figure 5, which shows the workloads’ relative
performance scaling in the varied SKU configurations.

Some outliers are well-studied in prior works. Phansalkar et al. show that 436.cactusADM is an
outlier in terms of memory access characteristics in Figure 9 of [24]. However, workload features
collected in prior works are unable to explain why 481.wrf is such an outlier in SKU scaling space,
as shown in Figures 7 and 5. Future work will try to answer that question.

To study the outlierness of the workloads in Figure 7 (left), we ran a k-means algorithm to split
the workloads into two clusters, cluster1 and cluster2. Their centroids C; and C; are plotted as stars
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Fig. 8. Correlation of SPEC workloads’ outlierness (distance) with MAE after adding 50 SKUs. The distance
of a workload is its distance from the centroid in its cluster. Centroids are in Figure 5.

in Figure 5. We compute the distance of a workload to its cluster’s centroid as

distance = I(x € clusterl)||x — Cy||»

®)

+ I(x € cluster2)||x — Cs||s,

where x stands for the location of the workload in Figure 5 and I yields 1 if its argument is true
and 0 otherwise. The distance quantifies the outlierness of a workload.

Figure 8 plots a workload’s MAE after 50 added SKUs (y-axis) against its distance (x-axis). Dis-
tance and MAE have a Pearson correlation of 0.6898. We can use distance to identify workloads
with high errors. Workloads with distance higher than 5 have MAEs higher than 10%. This corre-
lation explains why the outliers have higher MAEs than others even after adding 50 SKUs.

Conclusion: This case shows that we are able to predict a new workload’s performance by
running it on 10 SKUs. The accuracy of the prediction depends on the similarity of the workload
to those in the training set. Even if it is very different, our model is still able to shrink the confidence
interval.

5.3 Case 3: Cross-Prediction Between Suites

Figure 9 shows the results of cross-prediction: using Geekbench to predict SPEC (top) and wvice
versa (bottom). Because the MAEs of the workloads and the outliers are similar to case 2 (self-
prediction), we only show the average MAE bars in this case.

To compare self-prediction and cross-prediction, we first compare Figure 9 (top) with the bars
in Figure 7 (left), both of which predict SPEC workloads. Cross-prediction gives higher MAEs, for
any number of added SKUs. After adding 50 SKUs, the average MAE of cross-prediction is 16.9%;
the average MAE of self-prediction is 4.6%. Comparing the predictions of Geekbench in Figure 9
(bottom) and the bars in Figure 7 (right), after adding 50 SKUs the average MAE for cross-prediction
is 12.6% and that for self-prediction is 10%.

Cross-prediction gives consistently higher errors because the workloads in SPEC and Geek-
bench are very different, more different than the workloads in either benchmark suite itself. In
other words, the workloads in a benchmark suite are more similar to each other than to workloads
outside of the benchmark suite.
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Fig. 9. Case 3 is about cross-prediction. SPEC workloads are predicted with the Geekbench dataset (top).
Geekbench workloads are predicted with the SPEC dataset (bottom). Cross-prediction has higher errors than
self-prediction (case 2).

Benchmark suites like SPEC CPU2006 are expected to be diverse and representative of real-
world workloads. However, a benchmark suite is developed for a purpose, and different suites
usually have different purposes. The purpose itself is the reason why the workloads in the suite
are similar. The SPEC CPU2006 benchmark suite is intended for computer designers and architects
to use for pre-silicon design analysis. SPEC workloads are drawn from and representative of real
workloads.

In contrast, Geekbench is intended to stress a certain part of the hardware. For example, memory
microbenchmarks do a lot of memory streaming operations to study the bandwidth limit of the
hardware system. From this point of view, it is reasonable that SPEC and Geekbench are very
different and the workloads in each suite are more similar.

Conclusion: Cross-prediction is harder than self-prediction. To predict performance for new
workloads, one needs a training set with a very diverse collection of workloads. Benchmark suites
tend to be self-similar, because each serves a specific purpose. Even so, cross-prediction is useful,
as shown in the next section.

6 SKU RANKING COMPARISON

In this section, we use the performance prediction results of the DNN model to rank SKUs. We then
compare the SKU rankings with the baseline metrics described in Section 3.4. The baselines repre-
sent the customary ways of making purchasing decisions. Our methodology makes SKU selection
more accurate without requiring expertise on workload characterization or computer architecture
specifications.

6.1 Case 1: Prediction for New SKUs

In this section, we show that our DNN model outperforms the three baselines in Section 3.4 when
using SPEC and Geekbench to select new SKUs.

The results of SPEC and Geekbench are shown in Figure 10. For baseline C, a combination of
frequency and cache, we swept 100 combinations of weights. We combined frequency(GHz) X w
with cache(MB) X (1 — w), and swept w from 0.01 to 1, with a step size of 0.01. In Figure 10, we use
0.9 X frequency + 0.1 X cache so that the frequency and cache values are in about the same range.
The top-3 accuracy of baseline C combining frequency and cache is no better than A (frequency)
or B (cache).
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Fig. 10. SKU ranking results of case 1. Our DNN model has the highest top-3 accuracy.

Frequency is the best metric among the three baselines. The following subsections show similar
results, therefore we show baseline A and drop the others in the rest of the article.

Our predictive model outperforms all of the workload-indifferent baselines. For Geekbench, the
frequency metric achieves accuracy comparable to that of our DNN model. The Geekbench suite
as a whole is quite frequency-sensitive. The SPEC suite, on the other hand, is sensitive to neither
frequency nor cache, which suggests that choosing SKUs for complicated workloads requires more
than simply comparing frequency or cache.

Conclusion: When selecting a SKU that optimizes SPEC or Geekbench performance, our pre-
dictive model works better than simply comparing frequencies, cache sizes, or a combination of
the two. Selecting a SKU by frequency is better than by cache size, and is more successful for
microbenchmarks like Geekbench than for complicated workloads like SPEC.

6.2 Cases 2 and 3: Self- and Cross-Prediction

In this section, we compare the top-k accuracies of cases 2 and 3 and baseline A (frequency). Results
using baselines B and C are consistent with those presented, so we omit them. We show case 2 and
case 3 in the same plots to compare their results. Both cases use 10 additional SKUs for the new
workload. The results appear in Figure 11.

It is very difficult to find the best SKU for SPEC workloads for cases other than SPEC self-
prediction (case 2). The top-3 accuracy of case 3 is very small, and that of frequency is 0. We start
to observe more accuracy from them when we relax the choices to top-7 SKUs. It indicates building
the predictive model is the only reasonable way to find good SKUs for SPEC. The situation can get
worse for the workloads in people’s daily lives such as web browser, Microsoft Office suite, Adobe
suite, and other customized workloads from individual companies.

Self-prediction has higher accuracies than cross-prediction for most of the workloads, suggest-
ing self-prediction is easier. The ranking accuracies further support what has been observed from
the prediction accuracy studies in Figures 7 and 9, and the self-similarity statement in Section 5.3.
Exceptions are AES, Dijkstra, and Stream Scale from Geekbench, which have higher accuracies
when trained with SPEC. Among them, AES is the outlier with the highest MAE from the self-
prediction accuracy results in Figure 7 (right). The results indicate that those three workloads are
more similar to SPEC in terms of selecting the best SKUs.

Self- and cross-prediction are more accurate than frequency. Note that in cases 2 and 3, the test
set is fixed, and the only variation in the 50 iterations is the random additional 10 SKUs from the
new workload, as described in Section 4. Therefore, for frequency bars in Figure 11, there is only
one ranking of SKUs to test, and the top-k accuracy is either 0 or 1, depending on whether the
best SKU is ranked top-k or not. By averaging the accuracies for the whole suite, we find that
frequency performs the worst. Though the previous subsection shows the accuracy of frequency
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Fig. 11. Based on SPEC (top) and Geekbench (bottom), compare the SKU rankings by self-prediction (case 2),
cross-prediction (case 3), and the best baseline (Frequency). Self-prediction performs the best. Frequency is
not a reasonable approach to select SKUs for new workloads.

to be comparable to DNN prediction for Geekbench (Figure 10), individual workloads may or may
not be sensitive to frequency. Frequency is not a good way to select SKUs.

Conclusion: SPEC self-prediction is the only reasonable way to find the best SKU for SPEC
workloads. Self-prediction is easier than cross-prediction in most cases. Frequency has the low-
est accuracy, so frequency alone should not be the deciding factor when selecting SKUs for new

workloads.

6.3 Benchmark Suite Comparison

In this section, we compare the benchmark suites in terms of SKU ranking. While there is no pre-
diction involved, it is natural to compare the two benchmark suites after comparing the individual
workloads in them.

Geekbench is very popular on computer enthusiast websites, with many articles claiming that
“Geekbench suggests A outperforms B.” Such articles affect many consumers’ choices when pur-
chasing computing products. Most people use laptops to run workloads such as web browsers,
Microsoft’s Office suite, Adobe software, and so on. We describe these as realistic workloads. Con-
sumers choose CPUs based on Geekbench scores because they assume that Geekbench predicts
the performance of realistic workloads. Here we view SPEC workloads as falling between realistic
workloads and Geekbench in terms of complexity and real-world relevance.
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Fig. 12. Comparison of SKU rankings based on SPEC and Geekbench averages. Points are clustered above
the diagonal because Geekbench ranks SKUs lower than SPEC (giving them higher ranking indexes). The hor-
izontal cluster below shows that Geekbench poorly distinguishes SKUs with quite different SPEC behavior.

To show how the two suites produce different rankings, we rank the SKUs that SPEC and Geek-
bench datasets have in common by averaging each benchmark suite’s performance on each such
SKU. Figure 12 shows the ranking comparison. The x-axis is the rank based on SPEC and the y-axis
is the same SKU’s rank based on Geekbench. The footrule distance between the two rankings is
0.59. (The range is from 0 to 1.) If the ranks were consistent on both suites, the points would lie
along the gray line (x = y). We observe two patterns in Figure 12. One is the cluster of points above
the gray line; Geekbench ranks those SKUs lower than SPEC (gives them higher ranking indexes).
Another pattern is the cluster of points below the gray line and close to the x-axis. SPEC ranks
those SKUs from 0 to 120, while Geekbench ranks them from 0 to around 50. In other words, the
SKUs have very different SPEC performance, but are poorly differentiated by Geekbench.

The Geekbench SKU ranking is not consistent with SPEC rankings. That means that if an enthu-
siast article says “Geekbench shows that A outperforms B,” SPEC may suggest that B outperforms
A. Tt is very unlikely that a Geekbench score can give accurate indications for realistic workloads
either. If one buys a CPU configuration based on its highest Geekbench score, the hardware may
not be the best for running the workloads that he or she runs daily.

This suggests that people use Geekbench incorrectly. The aggregate score of a benchmark suite
is misleading. Geekbench is designed to stress floating point, integer, and memory operations. It
makes more sense to compare the performance of individual microbenchmarks that are relevant
to realistic workloads. If one runs a lot of matrix operations and image processing workloads, such
as MATLAB and Adobe Photoshop, the floating point benchmarks in Geekbench are very helpful.

Conclusion: Aggregate Geekbench scores are misleading. Benchmarking relevant individual
Geekbench workloads makes more sense. SKU rankings by Geekbench are inconsistent with rank-
ings by SPEC, and probably also with rankings for realistic workloads. For a non-expert consumer,
the best way is to take all datasets available, plus the new workload’s performance on 10 SKUs,
and train a predictive model as in cases 2 and 3.
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7 RELATED WORK
7.1 Performance Prediction

For performance prediction, our work uses DNNs, regarded as the state-of-the-art machine learn-
ing algorithm. It has been proven to be able to simulate any function [5].

Unlike simulation-based performance prediction [16, 17, 20, 28], our approach does not use
microarchitecture features such as instruction issue width, read-write buffer size, or number of
pipeline stages. We use only the CPU specifications that manufacturers provide. Microarchitec-
ture features would make performance prediction easier and more accurate, but our approach is
more helpful for consumers choosing CPUs. Even when manufacturers describe microarchitecture
features, consumers need expert knowledge to make use of such information.

Performance prediction is a well-studied field. There are mechanistic models [3, 10-12, 18, 33,
34], empirical models [9, 21, 31], and machine learning models [1, 36]. Zheng et al. used perfor-
mance counters and a “stochastic dynamic coupling” heuristic for aligning host and target execu-
tion samples to estimate performance using only binary code [37]. In contrast, we focus on CPU
SKU selection for consumers, rather than performance prediction for hardware/architecture de-
signers. Our method does not use performance counters or architecture features other than those
accessible to all consumers.

Piccart et al. use data transposition to rank commercial machines [27]. Their work exploits
machine similarity rather than workload similarity. Our work has different objectives and uses
different metrics. It exploits workload similarity and benchmark suite self-similarity to help users
pick the best CPU SKU for their needs.

7.2 Workload Characterization

Phansalkar et al. develop a series of SPEC workload characterizations [23-26]. However, they
do not focus on workload performance scaling as we do, so their classification results are not
consistent with ours. Our approach provides an orthogonal way to characterize workloads.

Some researchers use static workload features to predict performance. Shelepov et al. use spatial
locality, cache size, and frequency to predict speedup on a variety of processors [29, 30]. Hoste
et al. collect microarchitecture-independent features to classify workload performance [14, 15].
Delimitrou et al. study workload characteristics for cloud scheduling [6, 7]. In our work, we predict
a new workload’s performance on hundreds of CPU SKUs. The number of workloads is much
smaller than the number of hardware platforms. Because the workload features are static, we
argue that it is hard to use static features in this work.

8 CONCLUSION

To help customers select proper CPU SKUs and overcome the limitations of public benchmark
datasets, we have presented statistical and predictive analysis of workload performance, with data
collected from the SPEC CPU and Geekbench 3 suites and Intel processor specifications.

We demonstrated performance prediction for new SKUs and new workloads with DNNs. For
new SKUs, the accuracy is 5% (SPEC) and 11% (Geekbench) MAE. With the same accuracy, we find
that we can predict a new workload’s performance by running it on 10 SKUS. We compared our
predictive methods against workload-indifferent metrics for selecting processors. Our predictive
model is the only approach that achieves reasonable accuracy in all three case studies. Notably,
workload-indifferent methods of SKU selection do not work for new workloads.

For the first time in the literature, we showed benchmark suite self-similarity quantitatively by
cross-prediction and comparison of SPEC and Geekbench SKU rankings. The accuracy of cross-
prediction is lower than that for prediction within the suites because they are so different: 25.9%
mean error to predict SPEC and 14.2% to predict Geekbench.
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Rankings based on average Geekbench are inconsistent with those based on average SPEC.
Geekbench rankings do not imply SPEC rankings. It is also hard to draw any conclusions about
realistic workloads from a benchmark suite. We suggest studying the Geekbench or SPEC work-
loads of interest, rather than relying on aggregate scores.
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